Practical Access to Metallo-Thiophenes: Regioselective Synthesis of 2,4-Disubstituted Thiophenes

Sylvie M. Asselin*, Matthew M. Bio, Neil F. Langille*, and Ka Yi Ngai

Chemical Process R&D, Amgen, Inc., 360 Binney Street, Building 1000, Cambridge, Massachusetts 02142

Supporting Information

General Methods

All solvents and reagents were obtained from commercial suppliers and used without purification. Reactions were conducted under an atmosphere of nitrogen with a suitable outlet to accommodate modest pressure changes. Reaction temperatures were monitored by internal thermocouple. Reaction progress and compound purity were determined by HPLC analysis, using an Eclipse XDB C8, 4.6 x 150 mm, 5 μ m column, with a gradient method using 0.1% (v/v) 70% HClO₄/water and acetonitrile as mobile phase. Assay yield and purity were assessed using HPLC comparison to high purity reference standards, and confirmed by quantitative 1 H NMR in DMSO- d_{6} (vs. internal standards benzyl benzoate, or *N*-benzyl benzamide). 1 H NMR spectra were obtained using a Bruker 400 MHz spectrometer; chemical shifts are reported in ppm using the solvent internal standard (CDCl₃: δ 7.27, DMSO- d_{6} : δ 2.50, CD₃OD: δ 3.31). 13 C NMR spectra were recorded on a 100 MHz spectrometer with complete proton decoupling; chemical shifts are reported in ppm with the solvent as the internal reference (CDCl₃: δ 77.0, DMSO- d_{6} : δ 39.5). HRMS (ESI-TOF) spectra were obtained using Agilent 1100 systems. Liquid chromatography purification was performed on an ISCO Combiflash Companion apparatus; chromatographic purifications and isolated yields are unoptimized.

General Procedures:

Titration of isopropylmagnesium chloride:

Commercial isopropylmagnesium chloride is available as a 2 M solution in THF (Aldrich 230111). The quality of this material can be confirmed by titration¹ versus stoichiometric (±)-menthol (CAS [89-78-1]) as follows:

- 1. To a flask with stir bar, charge 1.000 g (6.399 mmol) of (±)-menthol, 15-20 mg of 1,10-phenanthroline, and 10.0mL (10 Vol) THF.
- 2. Purge the flask with nitrogen, and cool to 0 °C.
- 3. Charge isopropylmagnesium chloride solution in THF drop-wise, until a purple color persists for greater than one minute.
- 4. Calculate molarity of isopropylmagnesium chloride solution as follows:

$$M (i-PrMgCl in THF) = \frac{\text{weight of (\pm)-menthol (in grams)}}{156.27 \text{ g/mol menthol}} \times \frac{1000 \text{ mL /L}}{\text{vol } i-PrMgCl (in mL)}$$

5. Acceptable molarity range for isopropylmagnesium chloride is determined to be 1.85 to 2.2 M solution, and amount used should be calculated accordingly.²

General method for magnesiation of heterocycles:

To a flask charge heterocycle (1.40 equiv) and THF (4 volumes, relative to heterocycle). Initiate stirring, purge the flask with nitrogen, and add 2,2,6,6-tetramethylpiperidine (0.10 equiv) in one portion at 20-25 °C. Add dropwise over ~10 min, *iso*-propylmagnesium chloride (2.00 M solution in THF, 1.00 equiv), at <30 °C. Heat the resulting clear solution to reflux (66 °C) for 18-24 h, until ¹H NMR analysis of a reaction aliquot quenched with CD₃OD indicates >90% deprotonation. The resulting magnesioheterocycle is cooled to 20 °C prior to use.

¹ Lin, H.-S.; Paquette, L. A. Synth. Commun. **1994**, 24, 2503-2506.

² Commercial hexylmagnesium chloride is available as a 2 M solution in THF (Aldrich 64126). This reagent does not provide a well-defined endpoint according to the procedure in reference 1. The quality of this material can be confirmed by potentiometric titration versus stoichiometric 2-butanol. For details, see: Chen, Y.; Wang, T.; Helmy, R.; Zhou, G. X.; LoBrutto, R. *J. Pharm. Biomed. Anal.* **2002**, 29, 393-404.

Experimental:

2-(4-Methylthiophene-2-carbonyl)benzoic acid (4).³ 2,2,6,6-Tetramethylpiperidine (25.2 mL, 150 mmol) was charged in one portion to 3-methylthiophene **1** (147 g, 144 mL, 1500 mmol) in THF (576 mL). *iso*-Propylmagnesium chloride (2.00 M solution in THF, 633 mL, 1270 mmol) was added over 10 min at <30 °C. The resulting solution was heated to reflux at 66 °C. After 23 h, ¹H NMR analysis of a reaction aliquot quenched with CD₃OD indicated 98%⁴ conversion to the Mg-thiophene **2b** (96.8% 2-D-4-methylthiophene, 1.2% 2-D-3-methylthiophene of theoretical 0.85 equiv). The Mg-thiophene solution was cooled to 20 °C. Phthalic anhydride **3** (170 g, 1150 mmol) in THF (720 mL) was charged to a separate flask and the resulting slurry was cooled to –20 °C. The Mg-thiophene solution (at 20 °C) was added to the phthalic anhydride slurry over 45 min, at –25 °C to –20 °C. After 20 min, the reaction was quenched with H₂O (510 mL) added over 10 min between –20 °C and 10 °C,⁵ followed by 6N HCl (289 mL) to pH 2. The reaction mixture was warmed to 20 °C, and MTBE (289 mL) was added. After 10 min, the layers were separated; the upper organic layer assayed to 267 g keto acid **4** (94.1%⁶).

The crude keto acid **4** was concentrated by distillation (60 °C, 350 mbar) to 530-545 mL (2X vs. assay yield), and the resulting pot was maintained at 60 °C. Ethanol (1070 mL, 4X) was added, and the solution was distilled again to 530-545 mL total volume. HPLC analysis of the distillate revealed 3-

⁴ 98% conversion is calculated based on limiting reagent *i*-PrMgCl.

³ Weinmayr, V. J. Am. Chem. Soc. **1952**, 74, 4352-4357.

⁵ In a power compensation calorimetry experiment conducted at 10 °C isothermal, quenching the reaction with water (4 X over 1 h, 60.6 mmol scale) resulted in a 74 kJ/mol exotherm, uncorrected for heat of mixing.

⁶ Yield is based on limiting reagent phthalic anhydride.

methylthiophene as the only UV-active component. After breaking vacuum, ethanol (800 mL, 3X) was charged and the flask was cooled to 20 °C over 3 h. Water (1330 mL, 5X) was added over 2 h, and then aged for 10 h. The slurry was filtered, and the cake displacement-washed with 25% EtOH:H₂O (535 mL, 2X). The collected mother liquors and wash contained 11.6 g (4.1%) product **4**. The solid was dried on the frit at 20 °C for >24 h, under a nitrogen stream, to provide keto acid **4** as an off-white solid (261 g, 97.3 wt%, 89.7% adjusted yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 13.16 (br s, 1H), 7.96 (ddd, J = 0.5, 1.5, 7.5 Hz, 1H), 7.64-7.72 (m, 3H), 7.49 (ddq, J = 0.6, 1.5, 7.5 Hz, 1H), 7.09 (dq, J = 0.4, 1.5 Hz, 1H), 2.18 (dd, J = 0.4, 0.6 Hz, 3H); ¹³C NMR (DMSO- d_6 , 400 MHz) δ 188.5, 166.9, 143.6, 140.7, 138.6, 136.1, 132.1, 130.7, 129.9, 129.9, 129.8, 127.4, 15.0; HRMS calculated for C₁₃H₉O₂S₁ [M + H – H₂O]⁺ 229.0318, found 229.0316; IR (neat): 3050, 2970, 2920, 1690 cm⁻¹; mp: 191 °C.

4-(4-Methylthiophene-2-yl)phthalazine-1)2*H***)-one (6).**⁷ Crude keto acid **4** (91.9 g) was synthesized as described above. The crude MTBE/THF layer was concentrated by distillation (60 °C, 300 mbar) to 180-190 mL, and the resulting pot was maintained at 60 °C. Ethanol (367 mL, 4X) was added, and the solution was distilled again to 180-190 mL total volume. After breaking vacuum, ethanol (367 mL, 4X) was charged to the reaction and the flask was cooled to 20-30 °C. To the resulting solution was added hydrazine (35 wt % solution in H₂O, 169 mL, 1870 mmol) over 10 min, at 35 °C. The reaction was heated to 80 °C for 18 h, until HPLC assay of the resulting slurry indicated >95% conversion to product.⁸

The reaction was cooled to 20 °C over 2 h, and then aged at 20 °C for 1 h. The resulting slurry was filtered, and the cake was displacement-washed with 1:1 EtOH:H₂O (180 mL). The cake was dried

⁷ Iwase, N.; Morinaka, Y.; Tamao, Y.; Kanayama, T.; Yamada, K. 3,6-Disubstituted Pyridazine Derivative Blood Platelet Aggregation Inhibitors. Eur. Pat. Appl. EP 534443 19920924, Mar. 31, 1993; *Chem. Abstr.* **1993**, *119*, 249963.

⁸ This reaction proceeds below the flash point of 35% hydrazine/water (112.7 °C), and below the boiling point of a hydrazine/water azeotrope (120.3 °C). DSC and ARC scanning of the reaction components at 300 °C and 250 °C, respectively, showed no unsafe thermodynamic events.

under N₂ stream at 20 °C to give 82.7 g thiophene-phthalazinone **6** as a pale yellow solid (98.6 wt %, 84.7% adjusted yield over two steps). The collected mother liquors and wash contained 1.78 g product **6** (1.9%) and 5.70 g keto acid **7** (6.1%). ¹H NMR (CDCl₃, 400 MHz) δ 2.38 (d, J = 0.8, 3H), 7.09 (dq, J = 0.8, 1.1, 1H), 7.28 (d, J = 1.1, 1H), 7.86 (m, 2H), 8.17 (m, 1H), 8.53 (m, 1H), 10.31 (bs, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 15.83, 122.91, 126.63, 127.08, 128.22, 129.38, 130.88, 131.71, 133.70, 136.33, 138.14, 142.43, 159.72; mp: 232 °C.

(4-Methylthiophen-2-yl)methanol (9a). Magnesiothiophene 2b was generated according to the general magnesiation procedure (20.0 mmol scale), cooled to 20 °C, and then added over 30 min to a 0 °C solution of *p*-formaldehyde (0.840 g, 1.40 equiv) in THF (13.8 mL, 5 volumes, relative to heterocycle). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (90 min). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 5). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.28 grams (88.9%) assay yield of 9a. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful concentration *in vacuo* provided the desired compound 9a as a pale yellow amorphous solid (1.78 g, 82.5 wt%, 57% adjusted isolated yield). H NMR (CDCl₃, 400 MHz) δ 2.24 (s, 3H), 2.39 (s, exchangeable, 1H), 4.73 (app. s, 2H), 6.81 (s, 1H), 6.84 (s, 1H); H CDCl₃, 100 MHz) δ 15.6,

⁹ (a) Lozanova, A. V.; Moiseenkov, A. M.; Semenovskii, A. V. *Izv. Akad. Nauk, Ser. Khim.* **1980**, 958-959. (b) Wang, C.-C.; Chen, H.-C.; Wang, S.-H.; Lin, M.-C.; Shieh, T.-L.; Huang, Y.-H.; Chuang, S.-C.; King, C.-H. R. Preparation of 4-oxoquinazoline derivatives as kinesin inhibitors. U.S. Pat. Appl. US 2008-125094, Nov. 27, 2008; *Chem. Abstr.* **2008**, *150*, 5760.

59.9, 120.5, 127.7, 137.4, 143.8; HRMS calculated for $C_6H_7O_1S_1Na_1$ [M+Na] 150.01153, found 150.01150; IR (neat): 3645, 2925, 1020 cm⁻¹.

4-Methylthiophene-2-carbaldehyde (**9b**). Magnesiothiophene **2b** was generated according to the general magnesiation procedure (20.0 mmol scale), cooled to 20 °C, and then added over 30 min to a 0 °C solution of *N,N*-dimethylformamide (1.26 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes, relative to heterocycle). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (15 min). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 4-5). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.20 grams (87.2%) assay yield of **9b**. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful concentration *in vacuo* at 0 °C provided the desired compound **9b** as a volatile pale yellow oil (2.05 g, 74.0 wt%, 60.1% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 2.33 (s, 3H), 7.37 (s, 1H), 7.58 (s, 1H), 9.88 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 182.9, 143.6, 139.1, 137.9, 131.0, 15.4; HRMS calculated for C₆H₇O₁S₁ [M+H] 127.02121, found 127.02101; IR (neat): 2925, 2865, 1765, 1386, 1020 cm⁻¹.

_

¹⁰ (a) Jean, S. J. Org. Chem. **1954**, 19, 70-3. (b) Smith, K.; Barrat, M. L. J. Org. Chem. **2007**, 72, 1031-1034.

Trimethyl(4-methylthiophen-2-yl)silane (9c). ¹¹ Magnesiothiophene 2b was generated according to the general magnesiation procedure (20.0 mmol scale), cooled to 20 °C, and then added over 30 min to a 0 °C solution of chlorotrimethylsilane (3.55 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes, relative to heterocycle). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (1 h). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was neutral (pH 7). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.92 grams (85.7%) assay yield of 9c. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful concentration *in vacuo* at 0 °C provided the desired compound 9c as a volatile colorless oil (2.14 g, 96.1 wt%, 60.4% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 0.35 (s, 9H), 2.34 (2, 3H), 7.09 (s, 1H), 7.18 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 138.9, 136.5, 126.0, 15.0, -0.1; HRMS calculated for C₈H₁₆S₁Si₁ [M+H] 171.06637, found 171.06602; IR (neat): 2925, 1675, 1438, 1274 cm⁻¹.

(4-Methylthiophen-2-yl)(phenyl)methanol (9d). Magnesiothiophene 2b was generated according to the general magnesiation procedure (20.0 mmol scale), cooled to 20 °C, and then added over 30 min to a 0 °C solution of benzaldehyde (2.85 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes, relative to

¹¹ Albertin, L.; Bertarelli, C.; Gallazzi, M. C.; Meille, S. V.; Capelli, S. C. *J. Chem. Soc., Perkin Trans.* 2, **2002**, 1752-1759.

¹² Agarwal, N.; Ravikanth, M. *Tetrahedron*, **2004**, *60*, 4739-4747. See also ref. 10b.

7

heterocycle). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (18 h). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 4). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 3.73 grams (91.2%) assay yield of **9d**. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and concentration *in vacuo* provided the desired compound **9d** as an off-white amorphous solid (2.88 g, 86.7 wt%, 61.1% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 2.21 (s, 3H), 2.46 (broad s, 1H), 5.99 (s, 1H), 6.70 (s, 1H), 6.85 (s, 1H), 7.30-7.41 (m, 3H), 7.44-7.48 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 15.8, 72.5, 120.6, 126.3, 127.0, 128.0, 128.6, 137.4, 143.2, 127.9; HRMS calculated for C₁₂H₁₂S₁O₁Na₁ [M+Na] 227.05011, found 227.05050; IR (neat): 3030, 2984, 1690, 1295, 1180 cm⁻¹.

1-(4-Methylthiophen-2-yl)ethanone (**9e**). Magnesiothiophene **2b** was generated according to the general magnesiation procedure (20.0 mmol scale), cooled to 20 °C, and then added over 30 min to a 0 °C solution of *N*-methoxy-*N*-methylacetamide (2.98 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes, relative to heterocycle). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (18 h). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 4-5). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.45 grams (87.4%) assay yield of **9e**. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful

¹³ (a) Hartough, H. D.; Kosak, A. I. *J. Am. Chem. Soc* **1947**, *69*, 3093-3096. (b) Armstrong, A.; Pullin, R.D. C.; Jenner, C. R.; Scutt, J. N. *J. Org. Chem.* **2010**, *75*, 3499-3502.

concentration *in vacuo* at 0 °C provided the desired compound **9e** as a volatile yellow oil (2.10 g, 91.8 wt%, 68.8% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H), 2.49 (s, 3H), 4.73 (app. s, 2H), 7.19 (s, 1H), 7.47 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 15.4, 26.6, 129.4, 134.3, 138.7, 143.9, 190.5; HRMS calculated for C₇H₈O₁S₁ [M+H] 141.03686; found 141.03690; IR (neat): 3030, 2984, 1820 cm⁻¹.

$$\begin{array}{c|c} & & & & \\ \hline & S & & & \\ \hline & 4X \text{ THF } & \text{66 °C} \end{array} \end{array} \begin{array}{c} \text{MgC} \\ \hline & \text{Ph} \end{array} \begin{array}{c} \text{DMF} \\ \hline & \text{5X THF } & \text{0 °C} \end{array} \begin{array}{c} \text{9f} \\ \hline \end{array}$$

4-Phenylthiophene-2-carbaldehyde (9f). 14 Magnesiothiophene 8a was generated according to the general magnesiation procedure (20.0 mmol scale, 18 h deprotonation), cooled to 20 °C, and then added over 30 min to a 0 °C solution of N,N-dimethylformamide (1.26 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (30 min). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 6). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 3.32 grams (88.3%) assay yield of 9f. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful concentration in vacuo at 0 °C provided the desired compound 9f as a white amorphous solid (2.07 g, 99.0 wt%, 54.4% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.37 (m, 1H), 7.46 (m, 2H), 7.61 (m, 2H), 7.87 (m, 1H), 8.05 (m, 1H), 9.99 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 126.3, 128.0, 129.1, 129.6, 134.4, 134.7, 143.7, 144.4, 182.9; HRMS calculated for C₁₁H₈O₁S₁ [M+H] 189.03686, found 189.03723; HRMS calculated for C₁₁H₇O₁S₁Na [M+Na] 211.01881, found 211.01881; IR (neat): 3030, 2984, 2848, 1780, 1390 cm⁻¹.

-

¹⁴ Johnson, A. L. J. Org. Chem. 1976, 41, 1320-1324.

Thiophene-2-carbaldehyde (9g).¹⁵ Magnesiothiophene 8b was generated according to the general magnesiation procedure (20.0 mmol scale, 20 h deprotonation), cooled to 20 °C, and then added over 30 min to a 0 °C solution of *N*,*N*-dimethylformamide (1.26 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiophene-Grignard (10 min). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 6). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.07 grams (92.3%) assay yield of 9g. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and careful concentration *in vacuo* at 0 °C provided the desired compound 9g as a colorless volatile oil (1.20 g, 99.0 wt%, 53.0% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.24 (m, 1H), 7.79 (m, 2H), 9.96 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 182.6, 143.5, 136.2, 134.8, 128.0; HRMS calculated for C₅H₅O₁S₁ [M+H] 113.00556, found 113.00587; IR (neat): 2970, 1750, 1420 cm⁻¹.

Benzo[b]thiophen-2-yl(phenyl)methanol (**9h**). Magnesiothiophene **8c** was generated according to the general magnesiation procedure (20.0 mmol scale, 24 h deprotonation), cooled to 20 °C, and then added over 30 min to a 0 °C solution of benzaldehyde (2.85 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of

¹⁵ CAS No [98-03-3]

¹⁶ (a) Shirley, D. A.; Cameron, M. D. *J. Am. Chem. Soc.* **1952**, 74, 664-665. (b) Rohbogner, C. J.; Wunderlich, S. H.; Clososki, G. C.; Knochel, P. *Eur. J. Org. Chem.* **2009**, 1781-1795.

the thiophene-Grignard (16 h). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was slightly acidic (pH 6). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 3.90 grams (81.1%) assay yield of **9h**. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and concentration *in vacuo* provided the desired compound **9g** as a white solid (3.30 g, 93.8 wt%, 64.4% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 2.73 (s, exchangeable, 1H), 6.11 (m, 1H), 7.13 (m, 1H), 7.29-7.44 (m, 5H), 7.51 (m, 2H), 7.71 (m, 1H), 7.81 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 148.7, 142.6, 139.8, 139.5, 128.7, 128.6, 126.5, 124.3, 124.2, 123.7, 122.7, 121.3, 73.1; HRMS calculated for C₁₅H₁₂O₁S₁Na [M+Na] 263.05011, found 263.05045; IR (neat): 3020, 2984, 2640, 1690, 1270, 1100 cm⁻¹.

Benzo[d]thiazol-2-ylmethanol (9i).¹⁷ Magnesiothiophene 8c was generated according to the general magnesiation procedure (20.0 mmol scale, 30 h deprotonation), cooled to 20 °C, and then added over 30 min to a 0 °C solution of benzaldehyde (2.85 mL, 1.40 equiv) in THF (13.8 mL, 5 volumes). The resulting mixture was stirred at 0 °C, until HPLC analysis indicated >95% conversion of the thiazole-Grignard (24 h). The reaction mixture was quenched with water, and then 6N HCl was added until the reaction mixture was acidic (pH 4). MTBE was added to provide a clean phase cut. The layers were separated, and the aqueous layer was washed once with MTBE. HPLC analysis of the combined crude organic layers revealed 2.36 grams (71.4%) assay yield of 9i. Purification by flash chromatography (ISCO Companion, MTBE/hexanes gradient) and concentration *in vacuo* provided the desired compound 9i as a yellow oil (2.27 g, 82.5 wt%, 56.6% adjusted isolated yield). ¹H NMR (CDCl₃, 400 MHz) δ 3.10 (t, *J* = 6.1 Hz, 1H), 5.04 (d, *J* = 6.1 Hz, 2H), 7.35 (m, 2H), 7.84 (m, 2H); ¹³C NMR (CDCl₃,

100 MHz) δ 170.2, 153.0, 136.4, 124.6, 124.5, 123.4, 122.4, 59.9. HRMS calculated for $C_8H_7N_1O_1S_1Na$ [M+Na] 188.01460. Found 188.01400; mp 102 °C; IR (neat): 3190, 3065, 2988, 2940, 2340, 1050 cm⁻¹.

¹⁷ (a) Courtot, C.; Tchelitcheff, S. *Compt. Rend.* **1943**, 217, 201-3. (b) Jeffreys, R. A. *J. Chem. Soc.* **1954**, 503-505.

Acquisition Time (sec)	10.2239	Comment	neill	Date	14 Jan 2010 16	5:44:16		
File Name	\\CHOWDER\\\	TEAMS/NMR/JCAMP/NEILL	\2010\102129-01	-1_10.DX		Frequency (MHz)	400.13	
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin	GmbH		
Original Points Count	65536	Owner	shr-usam-cc10	046		Points Count	65536	
SW(cyclical) (Hz)	6410.16	Solvent	DMSO-d6	Spectrum Offset (Hz)	2798.0542	Sweep Width (Hz)	6410.06	

Acquisition Time (sec)	10.2239	Comment	neill	Date	11 Feb 2010 13:	24:55	0.000
File Name	\\CHOWDER\TE	EAMS/NMR/JCAMP/NEILL	\2010\111009-03-1	_10.DX		Frequency (MHz)	399.93
Nucleus	1H	Number of Transients	4	Origin	Bruker BioSpin G	GmbH	
Original Points Count	65536	Owner	shr-usam-cc1004	6		Points Count	65536
SW(cyclical) (Hz)	6410.16	Solvent	DMSO-d6	Spectrum Offset (Hz)	2495.3164	Sweep Width (Hz)	6410.06
Temperature (degree C	27.000						* *************************************

Acquisition Time (sec)	10.2239	Comment	neill	Date	26 Nov 2007 18	8:38:18		
File Name	\\CHOWDER	TEAMS\NMR\JCAMP\NEILL	\2007\85963-22-5_	10.DX		Frequency (MHz)	399.93	Ĵ.
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin	GmbH		
Original Points Count	65536	Owner	smallmolecules	Points Count	65536	SW(cyclical) (Hz)	6410.16	
Solvent	CHLOROFO	RM-d		Spectrum Offset (Hz)	2493.0339	Sweep Width (Hz)	6410.06	72

Acquisition Time (sec)	2.3069	Comment	neill	Date	27 Nov 2007 00	:46:18		
File Name	\\CHOWDER\TE	AMS/NMR/JCAMP/NEILL/	2007\85963-22-5_3	0.DX		Frequency (MHz)	100.57	
Nucleus	13C	Number of Transients	1024	Origin	Bruker BioSpin GmbH			
Original Points Count	65536	Owner	smallmolecules	Points Count	65536	SW(cyclical) (Hz)	28408.66	
Solvent	CHLOROFORM-	d		Spectrum Offset (Hz)	12066.2695	Sweep Width (Hz)	28408.22	

Acquisition Time (sec)	10.2239	Comment	kngai	Date	20 Aug 2008 13:59:29			
File Name	(ICHOWDER)	TEAMS\NMR\JCAMP\KNGAI	\2008\93279-89	9-2_10.DX	Frequency (MHz)	399.93		
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH			
Original Points Count	65536	Owner	shr-usam-cc1	10046	Points Count	65536		
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFO	RM-d	Spectrum Offset (Hz)	2493.1318		

Acquisition Time (sec)	2.3069	Comment	kngai	Date	20 Aug 2008 14:10:16			
File Name	\\CHOWDER\TE	AMS/NMR/JCAMP/KNGA/	2008\93279-89-2_2	20.DX	Frequency (MHz)	100.57		
Nucleus	13C	Number of Transients	128	Origin	Bruker BioSpin GmbH			
Original Points Count	65536	Owner	shr-usam-cc1004	6	Points Count	65536		
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFORM-	d	Spectrum Offset (Hz.) 12057.1670		

Acquisition Time (sec)	10.2239	Comment	kngai	Date	23 Jun 2008 15:59:44		
File Name	\CHOWDER\T	EAMS\NMR\JCAMP\KNGA	\2008\93279-31-1_	10.DX	Frequency (MHz)	399.93	
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH		
Original Points Count	65536	Owner	shr-usam-cc1004	16	Points Count	65536	
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM	-d	Spectrum Offset (Hz)	2492.8384	
Supon Width (Uz)	6410.06	Tomporatura (dograd C	1 27 000	1	W 25		

Acquisition Time (sec)	2.3069	Comment	kngai	Date	18 Aug 2008	15:28:50	
Date Stamp 18 Aug 2008 15:28:50		Contract Con	File Name	\\CHOWDER\TEAMS\\NMR\JCAMP\KNGAI\2008\93279-22-6_20.DX			
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-cc10046			Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFORM-d			Spectrum Offset (Hz)	12070.8818
Ouroon Width (Ha)	20100 22	Tomporatura (dograo Cl	27,000	î .			

93279-22-6_20.DX

Acquisition Time (sec)	10.2239	Comment	kngai	Date	18 Aug 2008 17:06:20			
File Name	\CHOWDER\T	EAMS\NMR\JCAMP\KNGAI	\2008\93279-27-4_	10.DX	Frequency (MHz)	399.93		
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH	35555		
Original Points Count	65536	Owner	shr-usam-cc1004	6	Points Count	65536		
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM-	d	Spectrum Offset (Hz)	2493.0339		
0 145 101 101 1	2440.00	**************************************	1 07 000	100		- 0000000000000000000000000000000000000		

Acquisition Time (sec)	2.3069	Comment	kngai	Date	18 Aug 2008	3 14:27:04	
Date Stamp	18 Aug 2008 1	14:27:04		File Name	\\CHOWDE	R\TEAMS\NMR\JCAMP\KNGAI	\2008\93279-27-4_20.DX
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-co	10046		Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFO	RM-d		Spectrum Offset (Hz)	12064.1025
Sweep Width (Hz)	28408.22	Temperature (deg	gree C) 27.000				

93279-27-4_20.DX

Acquisition Time (sec)	10.2239	Comment	kngai	Date	09 Jun 2008 21:14:42	
File Name	\CHOWDER\	TEAMS\NMR\JCAMP\KNGAI	\2008\93279-(08-3_10.DX	Frequency (MHz)	400.13
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH	- CO # 2002 27
Original Points Count	65536	Owner	shr-usam-co	:10046	Points Count	65536
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFO	DRM-d	Spectrum Offset (Hz)	2795.1621

Acquisition Time (sec)	2.3069	Comment	kngai	Date	20 Aug 200	8 10:31:38	
Date Stamp	20 Aug 2008 10:3	31:38	4-4-4-186-175	File Name	\\CHOWDE	RITEAMSINMRIJCAMPIKNO	GAI\2008\93279-8-6_50.DX
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	128	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-cc	10046		Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFO	ORM-d		Spectrum Offset (Hz	2) 12061.5010
Sweep Width (Hz)	28408.22	Temperature (deg	ree C) 27.000				

Acquisition Time (sec)	10.2239	Comment	kngai	Date	19 Aug 2008 13:52:07			
File Name	\\CHOWDER\TE	AMS/NMR/JCAMP/KNGA	12008194406-19-3	10.DX	Frequency (MHz)	400.13		
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH			
Original Points Count	65536	Owner	shr-usam-cc1004	16	Points Count	65536		
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM	-d	Spectrum Offset (Hz)	2795.6511		
Supon Midth (Ha)	6410.06	Tomporatura (dograe C	1 27 000	T	- 1910 At Alexander - 1910			

Acquisition Time (sec)	2.3069	Comment	kngai	Date	18 Aug 2008 20	1:30:25	
Date Stamp	18 Aug 2008 20:3	0:25		File Name	\\CHOWDER\T	EAMS\NMR\JCAMP\KNGAI	2008\93279-19-2_10.DX
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	1024	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-cc10046	3		Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFORM-d			Spectrum Offset (Hz)	12053.2646
Sweep Width (Hz)	28408.22	Temperature (degree	C) 27.000				100000000000000000000000000000000000000

Acquisition Time (sec)	10.2239	Comment	kngai	Date	05 Aug 2008 17:47:46	Office and the second of the s
File Name	\CHOWDER\TE	AMS\NMR\JCAMP\KNGAI	\2008\94406-2-10_	10.DX	Frequency (MHz)	399.93
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH	
Original Points Count	65536	Owner	shr-usam-cc1004	16	Points Count	65536
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM-	ď	Spectrum Offset (Hz)	2492.8384
	DESIGNATION OF THE PROPERTY OF	ALCOHOLOGICAL CONTRACTOR CONTRACT		T		

Acquisition Time (sec)	2.3069	Comment	kngai	Date	18 Aug 2008 17:33:35	
File Name	\\CHOWDER\TE	EAMS\NMR\JCAMP\KNGAI	.2008\94406-2-11_1	IO.DX	Frequency (MHz)	100.57
Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin GmbH	
Original Points Count	65536	Owner	shr-usam-cc1004	6	Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFORM-	d	Spectrum Offset	(Hz) 12064.9688
Comment Marches (11-1)	20400 22	Townson (downson C	1 27 000			Mark Harriston Company

		41		17	1940 E		
Acquisition Time (sec)	10.2239	Comment	kngai	Date	05 Aug 2008 19:30:12		
File Name	\\CHOWDER\TE	AMS\NMR\JCAMP\KNGAI	\2008\94406-5-4_1	0.DX	Frequency (MHz)	399.93	
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH		
Original Points Count	65536	Owner	shr-usam-cc1004	6	Points Count	65536	
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM-	d	Spectrum Offset (Hz)	2492.8381	
Svijeyeneal) [112]	0410.10	Solvent	OF ILOT OF OTHER	u	Spectrum Onset [112]	2402.0001	

Acquisition Time (sec)	2.3069	Comment	kngai	Date	18 Aug 2008 18:00:57		
File Name	\\CHOWDER\\T	EAMS\NMR\JCAMP\KNGAI	12008194406-5	-6_10.DX	Frequency (MHz)	100.57	
Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin GmbH		
Original Points Count	65536	Owner	shr-usam-cc	10046	Points Count	65536	
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFO	RM-d	Spectrum Offset (F	tz) 12028.1230	
Sweep Width (Hz)	28408.22	Temperature (degree C	27.000				

Acquisition Time (sec)	10.2238	Comment	kngai	Date	27 Aug 2008 10:0	13:25	
Date Stamp	27 Aug 2008 10:0	3:25	92	File Name	\\CHOWDER\TE	AMS/NMR/JCAMP/KNGAI	\2008\94406-27-10_10.DX
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-cc10046	3		Points Count	65536
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM-d			Spectrum Offset (Hz)	2795.3579
Sween Width (Hz)	6410.06	Temperature (degree C)	27.000				300000000000000000000000000000000000000

94406-27-10_10.DX

Acquisition Time (sec)	2.3069	Comment	kngai	Date	27 Aug 2008	3 10:47:05	
Date Stamp	27 Aug 2008 1	0:47:05		File Name	\\CHOWDE	R\TEAMS\NMR\JCAMP\KNGAI	\2008\93279-73-11_10.DX
Frequency (MHz)	100.62	Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin GmbH
Original Points Count	65536	Owner	shr-usam-cc	10046		Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFO	RM-d		Spectrum Offset (Hz)	12061.0391
Sweep Width (Hz)	28408.22	Temperature (degr	ee C) 27.000				

93279-73-11_10.DX

Acquisition Time (sec)	10.2239	Comment	kngai	Date	21 Jul 2008 16:14:25		
File Name	\\CHOWDER\TE	AMS/NMR/JCAMP/KNGAI	\2008\93279-73-01	_10.DX	Frequency (MHz)	399.93	
Nucleus	1H	Number of Transients	16	Origin	Bruker BioSpin GmbH		
Original Points Count	65536	Owner	shr-usam-cc1004	6	Points Count	65536	
SW(cyclical) (Hz)	6410.16	Solvent	CHLOROFORM-	d	Spectrum Offset (Hz)	2492.8381	
						V-1000-0-12-	

Acquisition Time (sec)	2.3069	Comment	kngai	Date	27 Aug 2008 14:4	7:05	- Name of Section
File Name	\CHOWDER\TE	AMS\NMR\JCAMP\KNGAI	\2008\93279-73-11_	10.DX		Frequency (MHz)	100.62
Nucleus	13C	Number of Transients	512	Origin	Bruker BioSpin Gr	nbH	
Original Points Count	65536	Owner	shr-usam-cc10046	6		Points Count	65536
SW(cyclical) (Hz)	28408.66	Solvent	CHLOROFORM-	d		Spectrum Offset (Hz)	12061.0391
Curson Midth (Ma)	20400 22	Tomporatura (degrae C	1 27 000				

