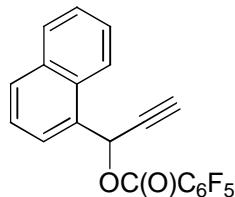


Supporting Information

Cooperative Catalytic Reactions Using Organocatalysts and Transition Metal Catalysts: Enantioselective Propargylic Alkylation of Propargylic Esters with Aldehydes

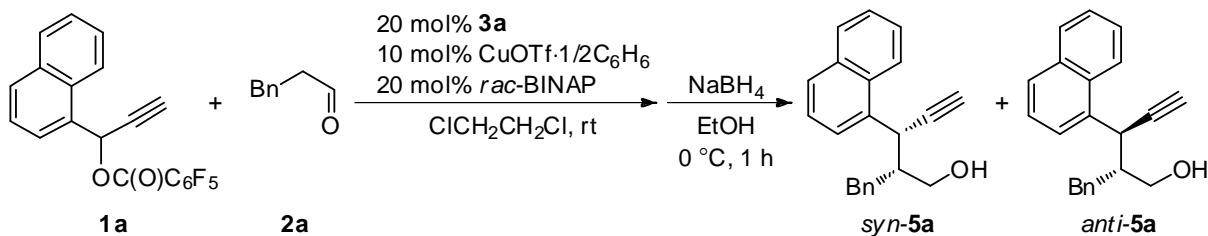
Akiko Yoshida, Masahiro Ikeda, Gaku Hattori, Yoshihiro Miyake, and Yoshiaki Nishibayashi*

*Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113-8656, Japan*

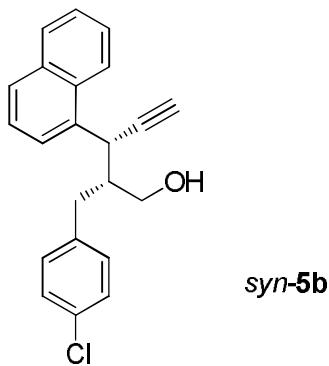

General Methods. ^1H NMR (270 MHz) and ^{13}C NMR (67.8 MHz) spectra were measured on a JEOL Excalibur 270 spectrometer using CDCl_3 as solvent. HPLC analyses were performed on Hitachi L-7100 and GL-7410 apparatuses equipped with a UV detector using 25 cm x 4.6 mm DAICEL Chiralpak AS-H column. Elemental analyses were performed at Microanalytical Center of The University of Tokyo. Mass spectra were measured on a JEOL JMS-700 mass spectrometer.

All reactions were carried out under a dry nitrogen atmosphere. Solvents were dried by the usual methods, then distilled under N_2 and degassed before use. Aldehydes (**2a** and **2d**), diphosphines, and optically pure secondary amines (**3**) are commercially available reagents. Aldehyde (**2c**) was prepared by PCC oxidation of the corresponding alcohol. Aldehydes (**2b**^{S1} and **2e**^{S2}) were synthesized according to literature.

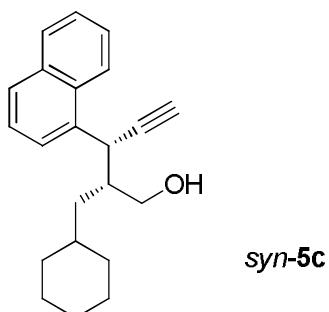
General Procedure for the Preparation of Propargylic Esters. A typical experimental procedure for the preparation of 1-(1-naphthyl)-2-propynyl pentafluorobenzoate (**1a**) is described below. In a 100 mL Schlenk flask were placed 1-naphthaldehyde (2.34g, 15.0 mmol) and anhydrous diethyl ether (15 mL). After cooling the reaction flask to 0 °C, ethynylmagnesium bromide (0.5 M in tetrahydrofuran; 33.0 mL, 16.5 mmol) was added to the solution. Then, the mixture was stirred at room temperature for 1.5 h. The reaction was quenched by saturated NH_4Cl solution (30 mL), and organic materials were extracted with diethyl ether (15 mL x 2). The combined extracts were washed with brine, and dried over anhydrous MgSO_4 . After the concentration under reduced pressure, the resulting residue was purified by column chromatography (SiO_2 , eluent: hexane/ethyl acetate, 90/10) to give 1-(1-naphthyl)-2-propyn-1-ol as a white solid (2.47 g, 13.6 mmol, 92 % isolated yield).


In a 200 mL round-bottomed flask were placed 1-(1-naphthyl)-2-propyn-1-ol (1.82 g, 10.0 mmol), triethylamine (1.21 g, 12.0 mmol), and anhydrous dichloromethane (50 mL). After cooling the reaction flask to 0 °C, pentafluorobenzoyl chloride (2.54 g, 11.0 mmol) was added to the solution. Then, the mixture was stirred at room temperature for 1 h. The reaction was quenched by water (30 mL), and organic materials were extracted with dichloromethane (15 mL x 3). The combined extracts were washed with brine, and dried over anhydrous Na_2SO_4 . The solvent was concentrated under reduced pressure and the

resulting residue was purified by column chromatography (SiO₂, eluent: hexane/ethyl acetate, 90/10 to 70/30) to give 1-(1-naphthyl)-2-propynyl pentafluorobenzoate (**1a**) as a white solid (3.32 g, 8.83 mmol, 88 % isolated yield).

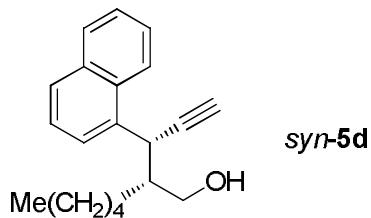

1-(1-naphthyl)-2-propynyl 2,3,4,5,6-pentafluorobenzoate (1a): A white solid, mp 102.4-102.9 °C. ¹H NMR 8.23 (d, *J* = 8.4 Hz, 1H), 7.87-7.93 (m, 3H), 7.47-7.63 (m, 3H), 7.27 (d, *J* = 2.3 Hz, 1H), 2.82 (d, *J* = 2.3 Hz, 1H). ¹³C NMR δ 158.0, 145.6 (md, *J* = 251Hz), 143.5 (md, *J* = 251Hz), 137.7 (md, *J* = 251Hz), 134.0, 130.6, 130.4, 130.3, 128.9, 127.1, 126.9, 126.2, 125.1, 123.5, 107.5 (m), 78.9, 77.5, 66.4. Anal. Calcd for: C₂₀H₉F₅O₂: C, 63.84; H, 2.41. Found: C, 63.75; H, 2.66.

Enantioselective Propargylic Alkylations of Propargylic Esters with Aldehydes.

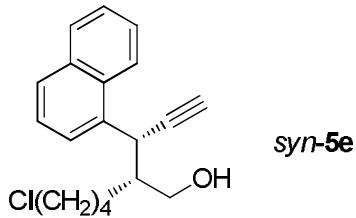


A typical experimental procedure for the reaction of 1-(1-naphthyl)-2-propynyl pentafluorobenzoate (**1a**) with 3-phenylpropanal (**2a**) is described below. In a 20 mL Schlenk flask were placed CuOTf·1/2C₆H₆ (5.0 mg, 0.020 mmol) and *rac*-BINAP (24.9 mg, 0.040 mmol) under N₂. After anhydrous 1,2-dichloroethane (2.0 mL) was added, the mixture was magnetically stirred at 60 °C for 1 h. After cooling the reaction flask to room temperature, (*S*)- α,α -bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether (**3a**) (23.9 mg, 0.040 mmol) and **2a** (53.7 mg, 0.400 mmol) were added to the reaction mixture, and then **1a** (75.3 mg, 0.200 mmol) and anhydrous 1,2-dichloroethane (3.0 mL) were added successively under N₂. The reaction flask was kept at room temperature for 1.5 h. After cooling the reaction flask to 0 °C, ethanol (5.0 ml) and NaBH₄ (22.7 mg, 0.600 mmol) were added, and then the mixture was magnetically stirred at 0 °C for 1 h. The reaction was quenched by water (15 mL), and the resulting mixture was extracted with dichloromethane (10 mL x 3). The combined organic layer was washed with brine, and was dried over anhydrous Na₂SO₄. After the concentration under reduced pressure, the resulting residue was purified by column chromatography (SiO₂, eluent: hexane/ethyl acetate, 95/5 to 85/15) to give 2-benzyl-3-(1-naphthyl)-4-pentyn-1-ol^{S3} (**5a**) as a pale yellow oil (31.9 mg, 0.106 mmol, 53% isolated yield, *syn*-**5a**/*anti*-**5a** = 3.2/1). The optical purity of **5a** was determined by HPLC analysis; Daicel Chiralpak AS-H, hexane/ⁱPrOH = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time; 23.6 min (*syn*-major) and 77.5 min (*syn*-minor), 98% *ee* (*syn*); 27.2 min (*anti*-minor) and 47.5 min (*anti*-major), 96% *ee* (*anti*).

Spectroscopic Data and Isolated Yield of Other Products.



2-(4-Chlorobenzyl)-3-(1-naphthyl)-4-butyn-1-ol (5b): Isolated yield 54% (*syn*-5b/*anti*-5b = 3.8/1). A pale yellow oil. *syn*-isomer: ^1H NMR δ 8.16 (d, J = 8.1 Hz, 1H), 7.79-7.92 (m, 3H), 7.45-7.57 (m, 3H), 7.09 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.08 (dd, J = 4.3 and 2.6 Hz, 1H), 3.70 (dd, J = 10.8 and 8.4 Hz, 1H), 3.57 (dd, J = 10.0 and 3.8 Hz, 1H), 2.79 (dd, J = 13.8 and 3.8 Hz, 1H), 2.62 (dd, J = 13.8 and 10.8 Hz, 1H), 2.44 (d, J = 2.6 Hz, 1H), 2.30-2.42 (m, 1H). *anti*-isomer: ^1H NMR δ 7.75-7.92 (m, 4H), 7.28-7.57 (m, 7H), 4.50 (dd, J = 4.3 and 2.6 Hz, 1H), 3.80 (dd, J = 11.2 and 5.8 Hz, 1H), 3.63 (dd, J = 11.2 and 4.2 Hz, 1H), 3.08 (dd, J = 13.6 and 5.9 Hz, 1H), 2.80 (dd, J = 13.6 and 8.8 Hz, 1H), 2.48 (d, J = 2.6 Hz, 1H), 2.20-2.28 (m, 1H). *syn*-isomer: ^{13}C NMR δ 138.5, 134.93, 134.1, 131.7, 130.6, 130.3, 128.7, 128.3, 127.9, 126.6, 126.4, 125.64, 125.2, 123.0, 83.4, 73.3, 63.0, 47.0, 35.0, 32.6. *anti*-isomer: ^{13}C NMR δ 138.6, 134.86, 134.0, 132.3, 130.8, 130.4, 129.1, 128.1, 126.2, 126.1, 125.61, 122.4, 83.5, 73.7, 62.7, 47.4, 35.8, 34.6. HRMS (EI) Calcd for $\text{C}_{22}\text{H}_{19}\text{ClO}$ [M]: 334.1124. Found: 334.1132. The optical purity of *syn*-5b was determined by HPLC analysis; Daicel Chiralpak AS-H, hexane/ $^i\text{PrOH}$ = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time; 20.0 min (major) and 54.8 min (minor), 99% *ee*. The optical purity of *anti*-5b was determined by HPLC analysis; Daicel Chiralpak AS-H, hexane/ $^i\text{PrOH}$ = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time; 22.8 min (minor) and 36.0 min (major), 97% *ee*.



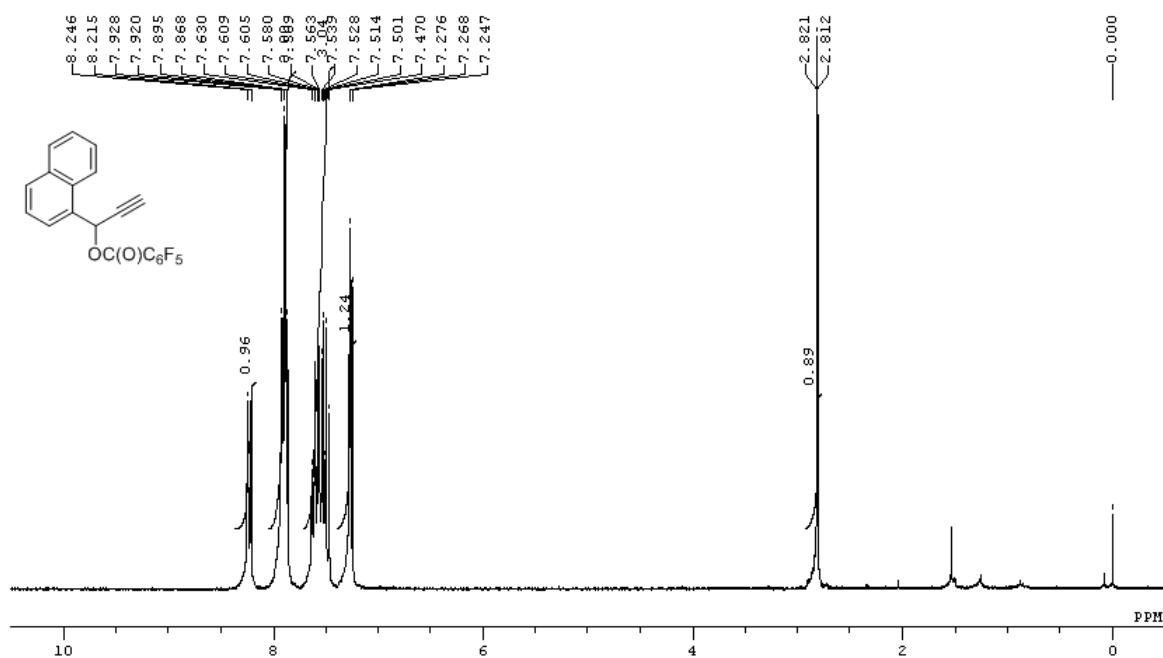
2-(Cyclohexylmethyl)-3-(1-naphthyl)-4-butyn-1-ol (5c): Isolated yield 52% (*syn*-5c/*anti*-5c = 3.2/1). A pale yellow oil. *syn*-isomer: ^1H NMR δ 8.16 (d, J = 8.4 Hz, 1H), 7.75-7.90 (m, 3H), 7.43-7.56 (m, 3H), 5.03 (dd, J = 3.5 and 2.6 Hz, 1H), 3.74-3.83 (m, 2H), 2.33

(d, $J = 2.6$ Hz, 1H), 2.12-2.23 (m, 1H), 0.66-1.79 (m, 12H), 0.17-0.32 (m, 1H). *anti*-isomer: ^1H NMR δ 7.99 (d, $J = 8.1$ Hz, 1H), 4.56 (dd, $J = 5.1$ and 2.6 Hz, 1H), 3.65 (dd, $J = 11.3$ and 4.6 Hz, 1H), 2.40 (d, $J = 2.6$ Hz, 1H). *syn*-isomer: ^{13}C NMR δ 135.3, 134.0, 130.6, 128.9, 127.6, 126.4, 126.11, 125.4, 125.1, 123.1, 83.8, 72.7, 64.7, 42.0, 36.7, 35.2, 34.4, 34.3, 32.1, 26.4, 26.2, 25.9. *anti*-isomer: ^{13}C NMR δ 135.5, 134.1, 130.7, 129.2, 127.9, 126.2, 126.07, 125.6, 125.3, 122.8, 84.6, 73.0, 63.3, 41.9, 38.0, 35.0, 34.1, 33.3, 26.6, 26.3. HRMS (EI) Calcd for $\text{C}_{22}\text{H}_{26}\text{O}$ [M]: 306.1984. Found: 306.1987. The optical purity of *syn*-**5c** was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 98/2, flow rate = 0.5 mL/min, $\lambda = 254$ nm, retention time; 20.1 min (major) and 32.7 min (minor), 97% *ee*. The optical purity of *anti*-**5c** was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 98/2, flow rate = 0.5 mL/min, $\lambda = 254$ nm, retention time; 18.6 min (minor) and 29.5 min (major), 98% *ee*.

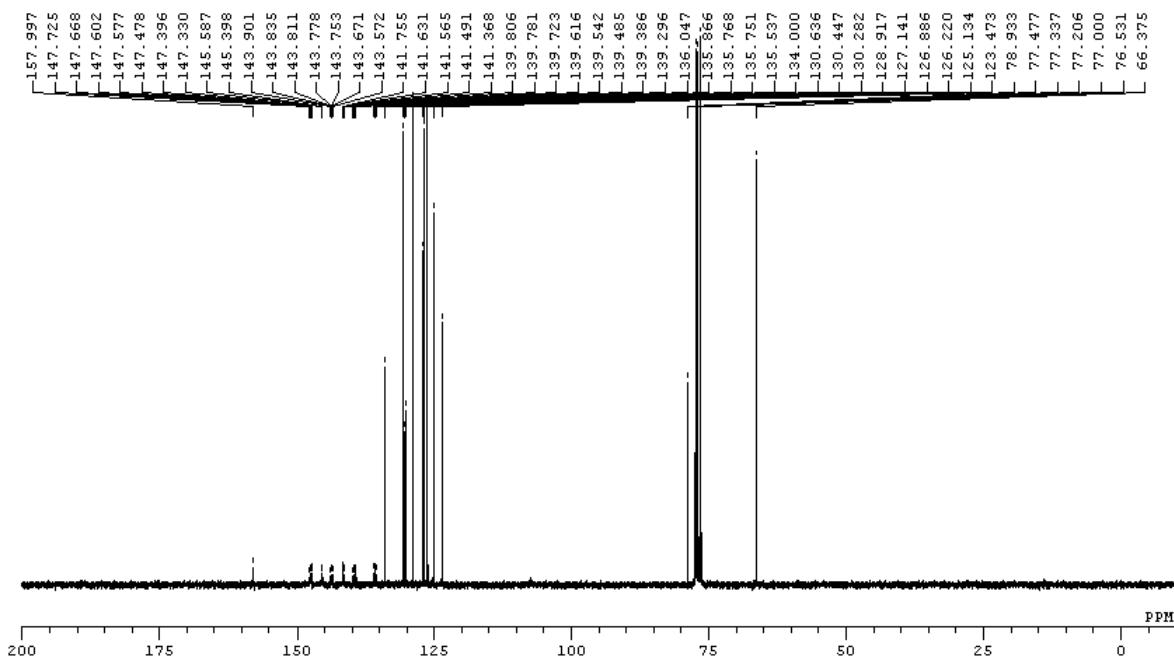
2-[1-(1-naphthyl)-2-propynyl]heptan-1-ol (5d): Isolated yield 58% (*syn*-**5d**/*anti*-**5d** = 3.5/1). A pale yellow oil. *syn*-isomer: ^1H NMR δ 8.16 (d, $J = 8.4$ Hz, 1H), 7.76-7.90 (m, 3H), 7.44-7.56 (m, 3H), 5.01 (dd, $J = 3.8$ and 2.7 Hz, 1H), 3.64-3.81 (m, 2H), 2.34 (d, $J = 3.0$ Hz, 1H), 2.02-2.13 (m, 1H), 0.97-1.72 (m, 8H), 0.73 (t, $J = 6.9$ Hz, 3H). *anti*-isomer: ^1H NMR δ 8.01 (d, $J = 8.1$ Hz, 1H), 4.62 (dd, $J = 5.1$ and 2.7 Hz, 1H), 2.39 (d, $J = 2.7$ Hz, 1H), 0.89 (t, $J = 6.6$ Hz, 3H). *syn*-isomer: ^{13}C NMR δ 135.4, 134.0, 130.66, 129.0, 127.6, 126.5, 126.1, 125.5, 125.2, 123.1, 83.9, 72.7, 64.2, 45.00, 35.2, 31.9, 27.1, 26.6, 22.4, 13.9. *anti*-isomer: ^{13}C NMR δ 135.5, 134.1, 130.69, 129.2, 128.0, 126.2, 125.6, 125.3, 122.8, 84.4, 73.0, 63.2, 44.96, 36.1, 32.0, 30.1, 26.9, 22.6, 14.0. HRMS (EI) Calcd for $\text{C}_{20}\text{H}_{24}\text{O}$ [M]: 280.1827. Found: 280.1823. The optical purity of *syn*-**5d** was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 98/2, flow rate = 0.5 mL/min, $\lambda = 254$ nm, retention time; 21.1 min (minor) and 25.2 min (major), 83% *ee*. The optical purity of *anti*-**5d** was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 98/2, flow rate = 0.5 mL/min, $\lambda = 254$ nm, retention time; 18.8 min (minor) and 35.7 min (major), 94% *ee*.

6-Chloro-2-(1-(1-naphthyl)-2-propynyl)hexan-1-ol (5e): Isolated yield 64% (*syn*-5e/*anti*-5e = 3.5/1). A pale yellow oil. *syn*-isomer: ^1H NMR δ 8.15 (d, J = 8.4 Hz, 1H), 7.77-7.90 (m, 3H), 7.44-7.58 (m, 3H), 5.02 (dd, J = 3.8 and 2.7 Hz, 1H), 3.75-3.84 (m, 2H), 3.33 (t, J = 6.5 Hz, 2H), 2.35 (d, J = 2.7 Hz, 1H), 2.03-2.17 (m, 1H), 1.25-1.81 (m, 5H), 0.96-1.13 (m, 1H). *anti*-isomer: ^1H NMR δ 8.01 (d, J = 8.6 Hz, 1H), 4.62 (dd, J = 5.4 and 2.6 Hz, 1H), 3.68 (dd, J = 11.5 and 4.5 Hz, 1H), 3.54 (t, J = 6.5 Hz, 2H), 2.41 (d, J = 2.6 Hz, 1H). *syn*-isomer: ^{13}C NMR δ 135.2, 134.0, 130.6, 129.0, 127.8, 126.4, 126.24, 125.6, 125.2, 123.0, 83.6, 72.9, 64.1, 44.8, 35.1, 32.5, 25.9, 24.7. *anti*-isomer: ^{13}C NMR δ 134.1, 130.7, 129.2, 128.1, 126.3, 126.19, 125.7, 125.3, 122.7, 84.3, 73.1, 62.9, 44.7, 36.0, 32.7, 29.3, 24.5. HRMS (EI) Calcd for $\text{C}_{19}\text{H}_{21}\text{ClO}$ [M]: 300.1281. Found: 300.1268. The optical purity of *syn*-5e was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time; 35.0 min (minor) and 39.1 min (major), 84% *ee*. The optical purity of *anti*-5e was determined by HPLC analysis; Daicel Chiraldak AS-H, hexane/ $^i\text{PrOH}$ = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time; 31.4 min (minor) and 62.4 min (major), 94% *ee*.

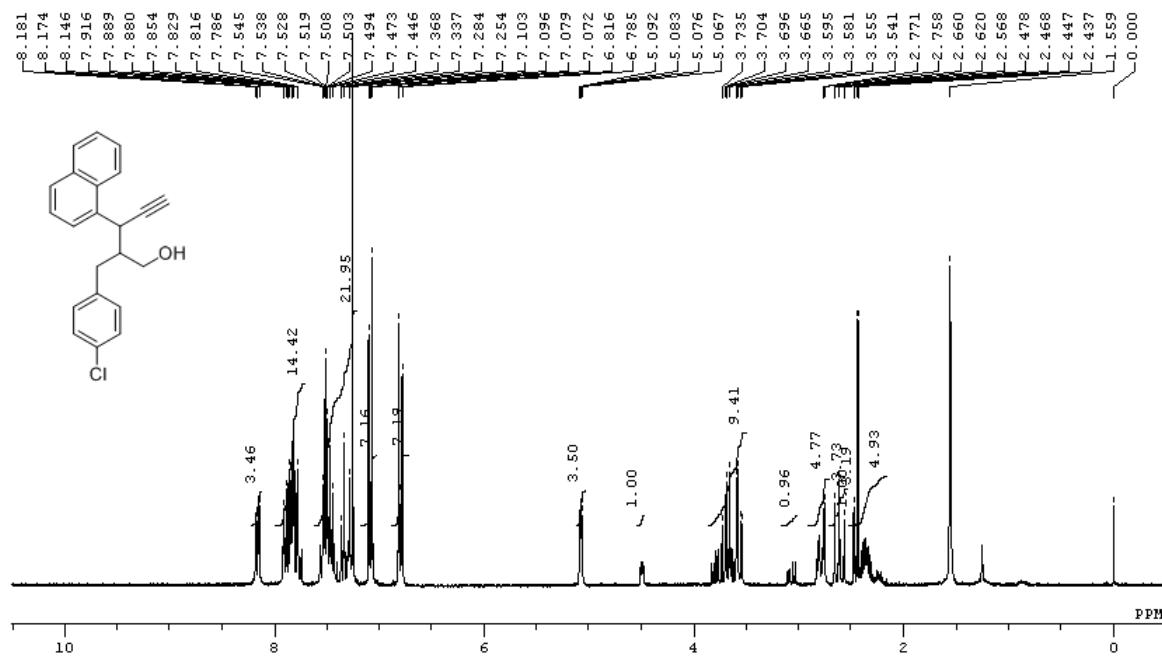
References

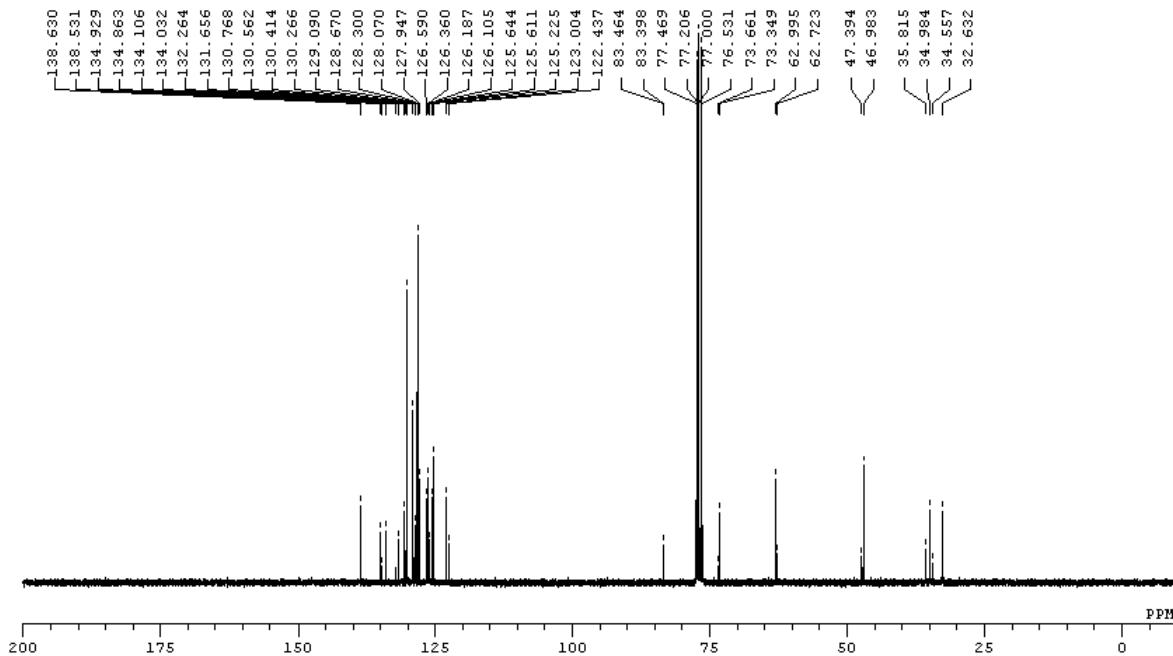

(S1) (a) Stauffer, S. R.; Hartwig, J. F. *J. Am. Chem. Soc.* **2003**, *125*, 6977. (b) Nestl, B. M.; Glueck, S. M.; Hall, M.; Kroutil, W.; Stuermer, R.; Hauer, B.; Faber, K. *J. Org. Chem.* **2006**, 4573.

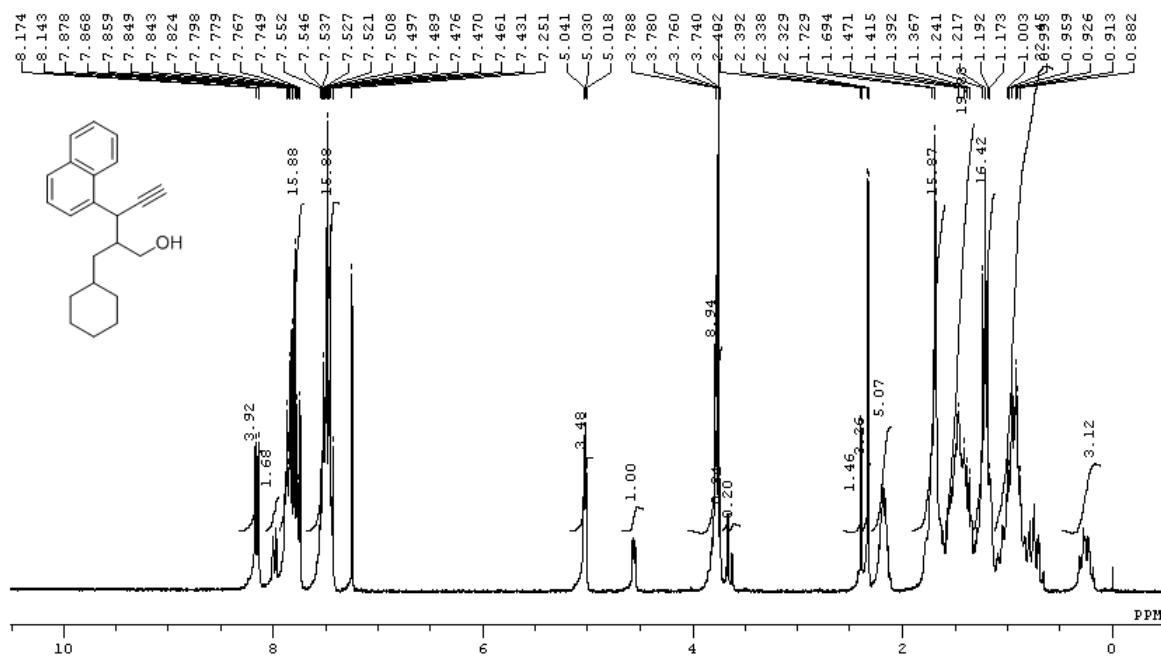
(S2) Fox, R. J.; Lalic, G.; Bergman, R. G. *J. Am. Chem. Soc.* **2007**, *129*, 14144.

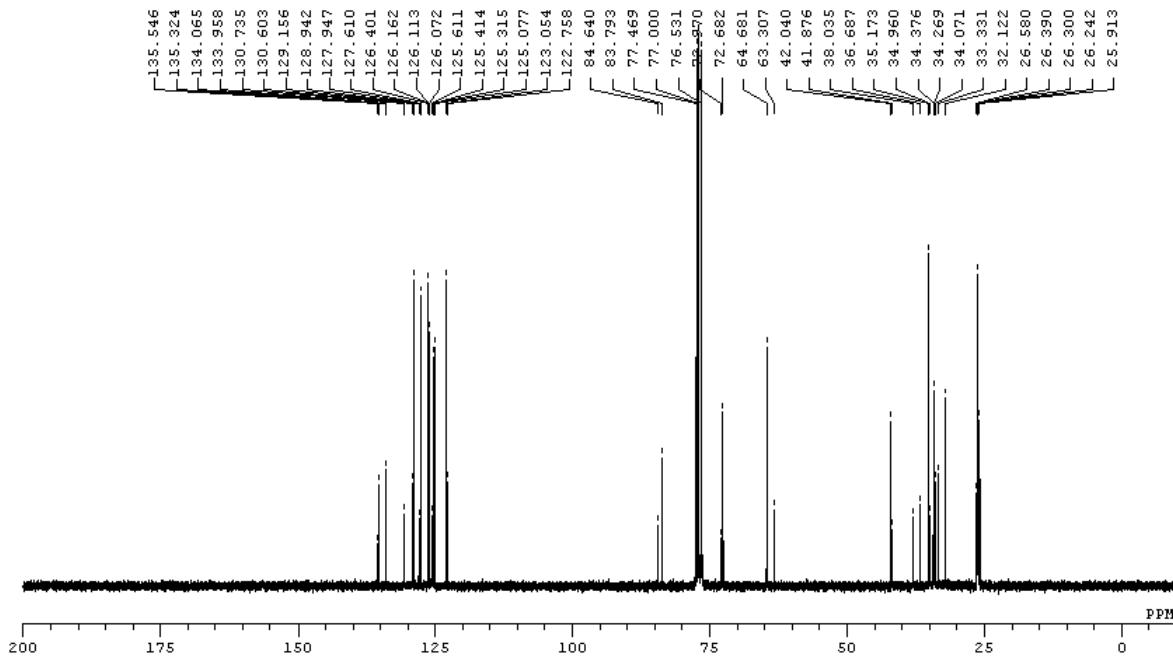

(S3) Ikeda, M.; Miyake, Y.; Nishibayashi, Y. *Angew. Chem., Int. Ed.* **2010**, *49*, 7289.

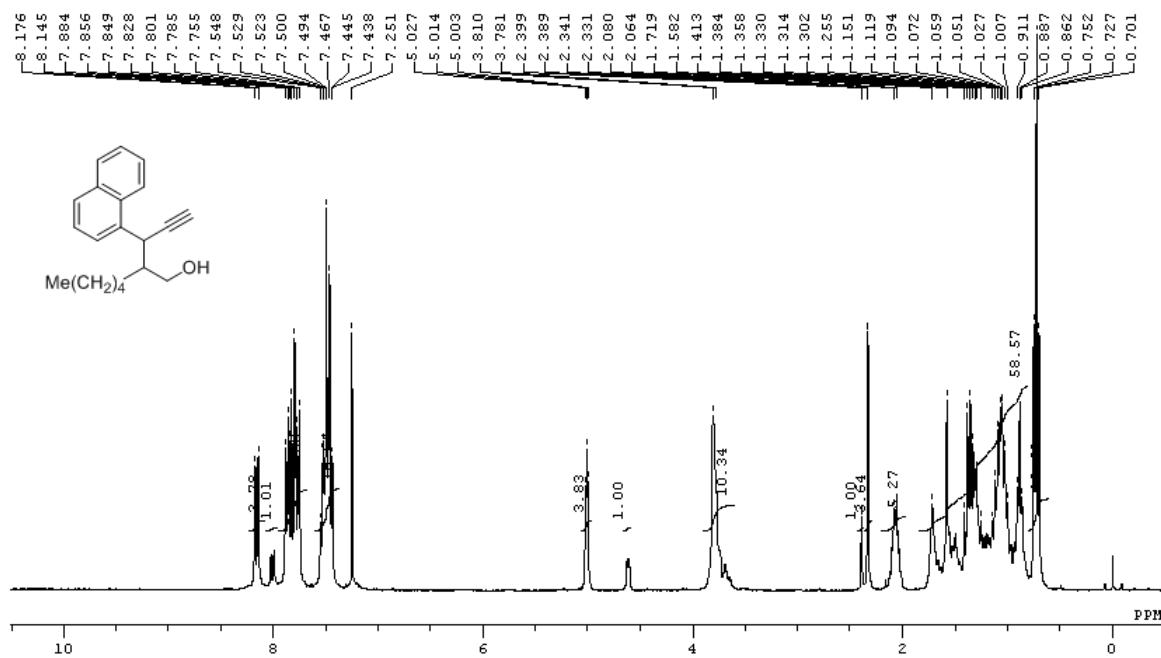
¹H and ¹³C NMR Spectra.

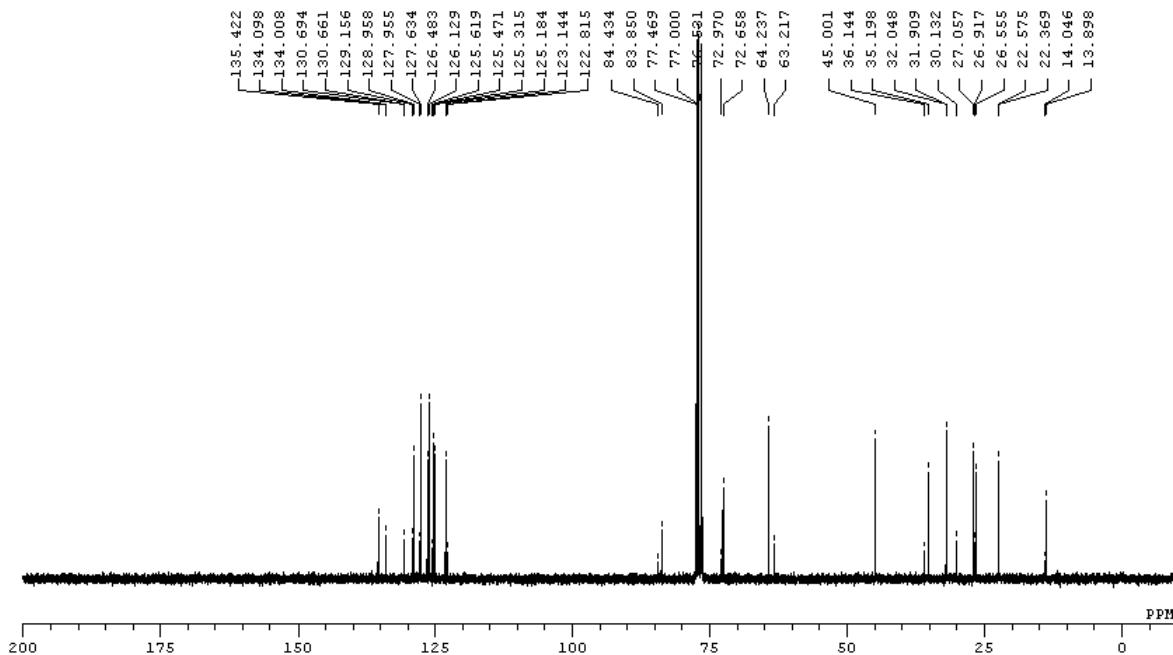

1a

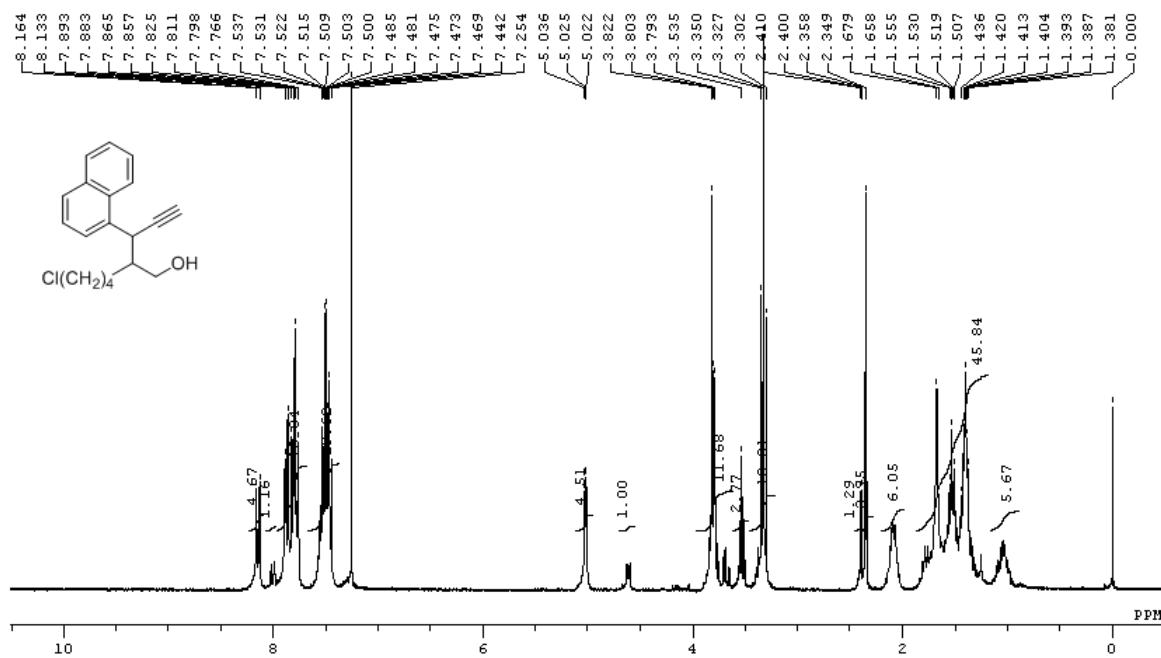

1a

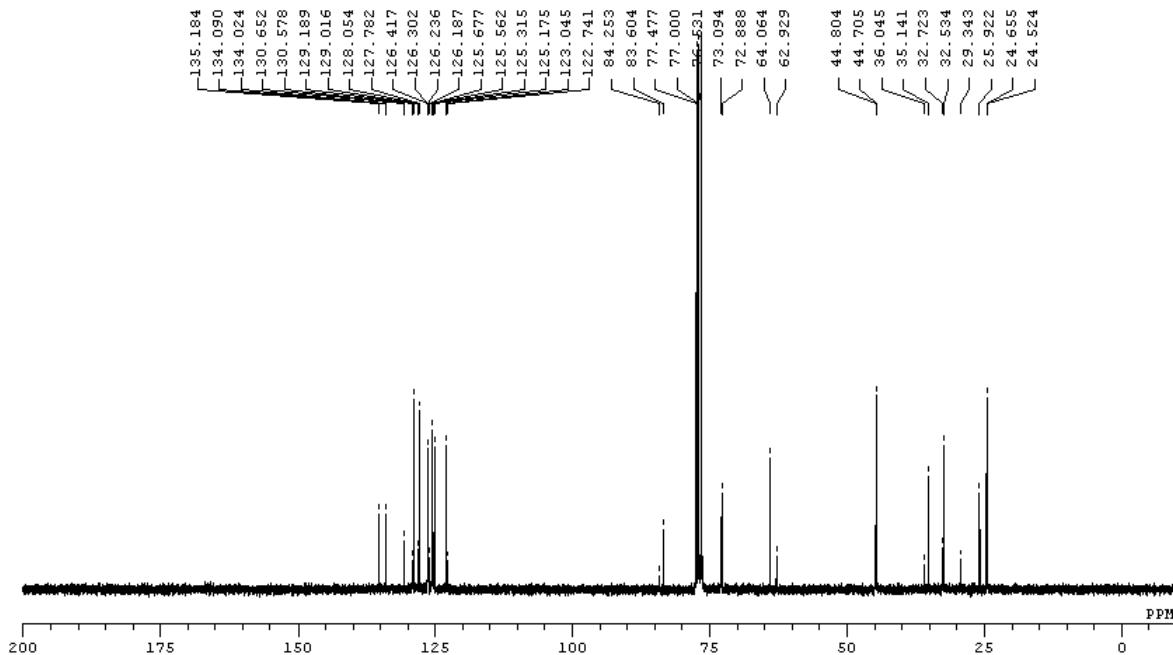

5b


5b

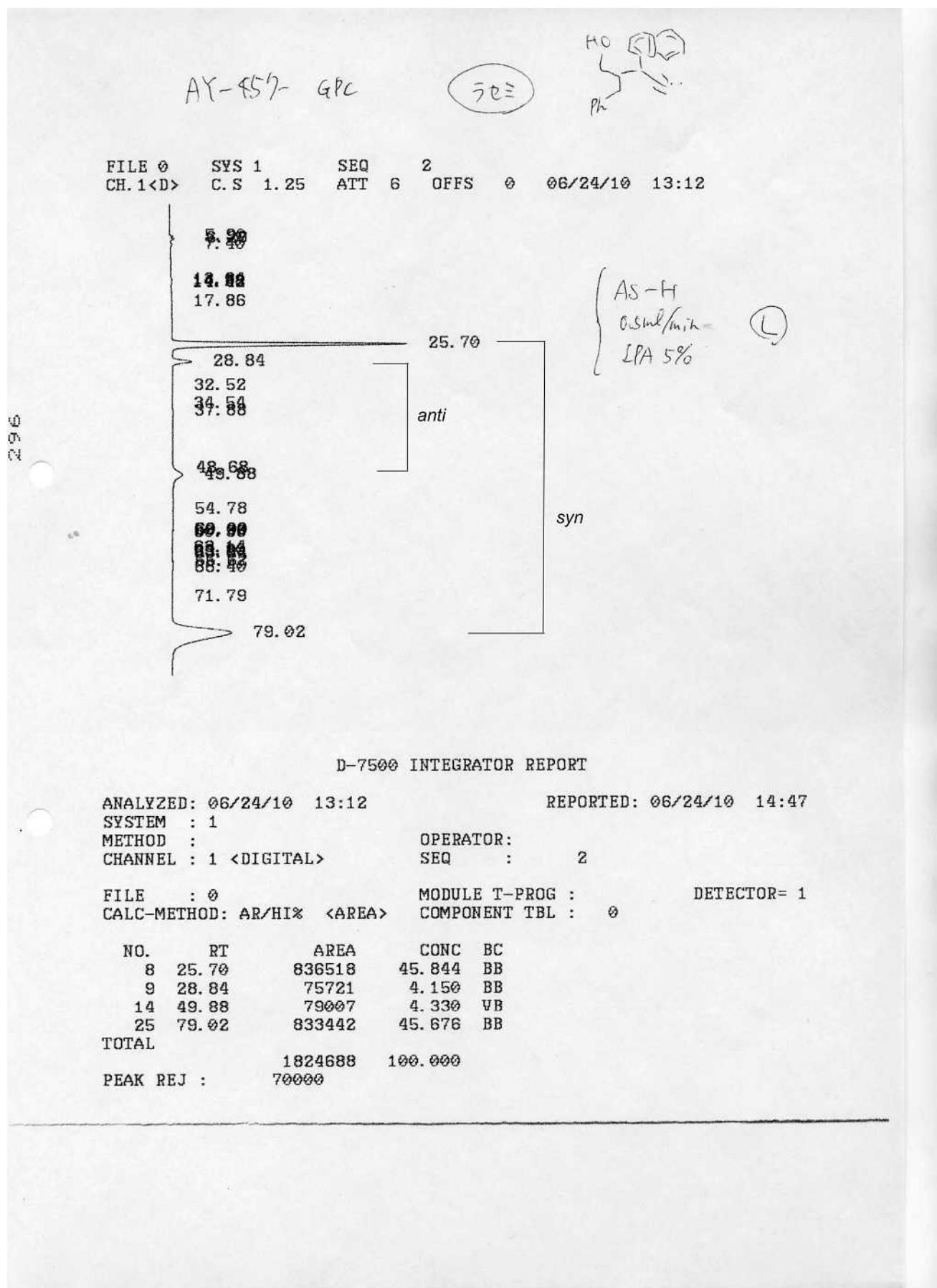

5c


5c

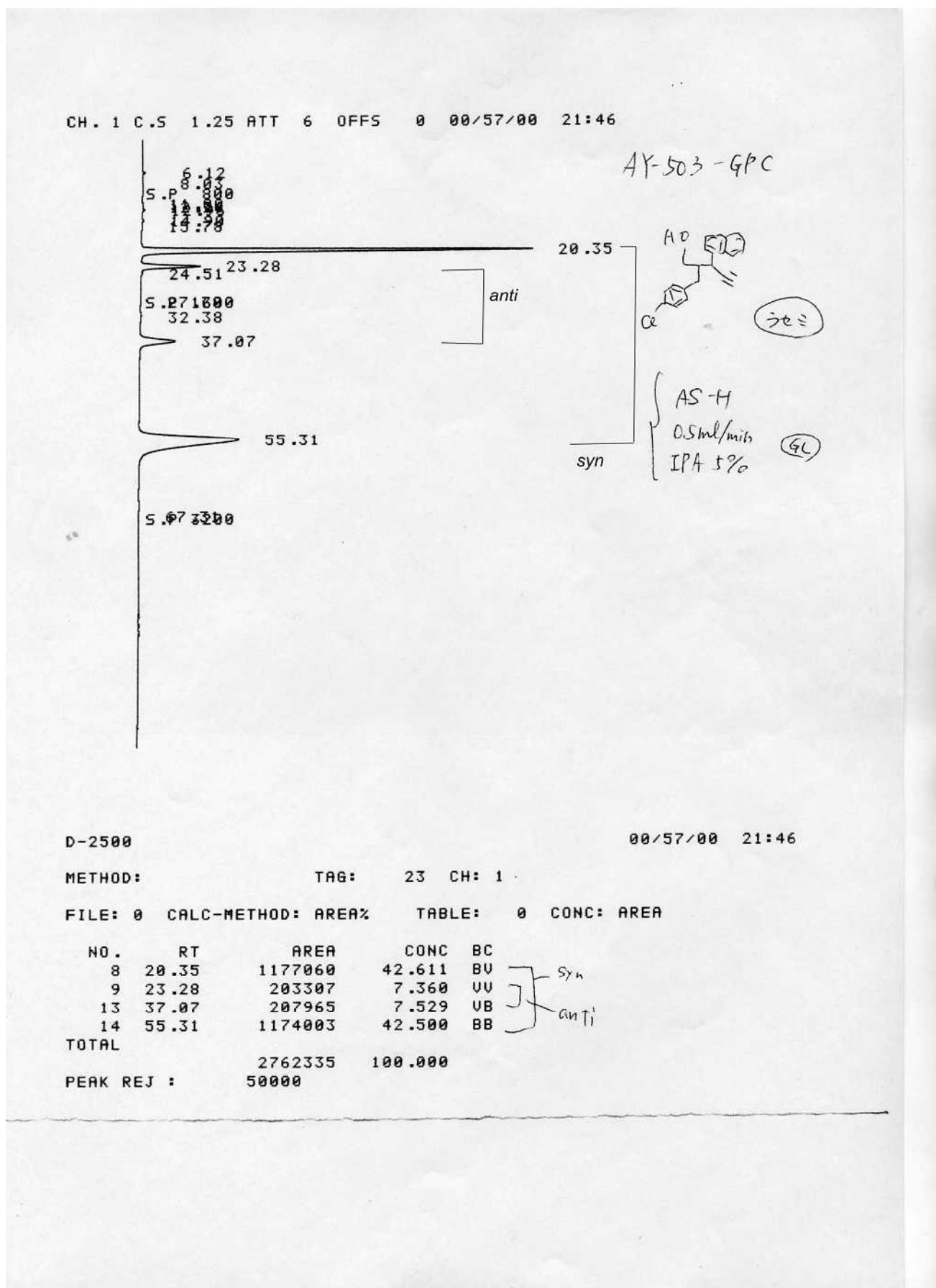

5d


5d

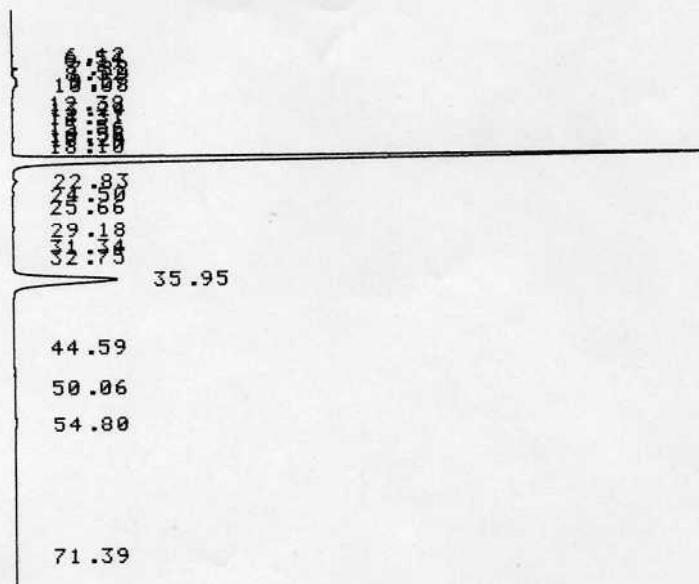
5e



5e


Charts of Propargylic Alkylated Products by HPLC Analysis.

5a (rac)



5b (rac)

5b

CH. 1 C.S 1.25 ATT 8 OFFS 0 00/11/00 00:40 AY-564-GPC2 ~1.2

19.95

{ AS-H
0.5 ml/min
1A 5%

(GL)

D-2500

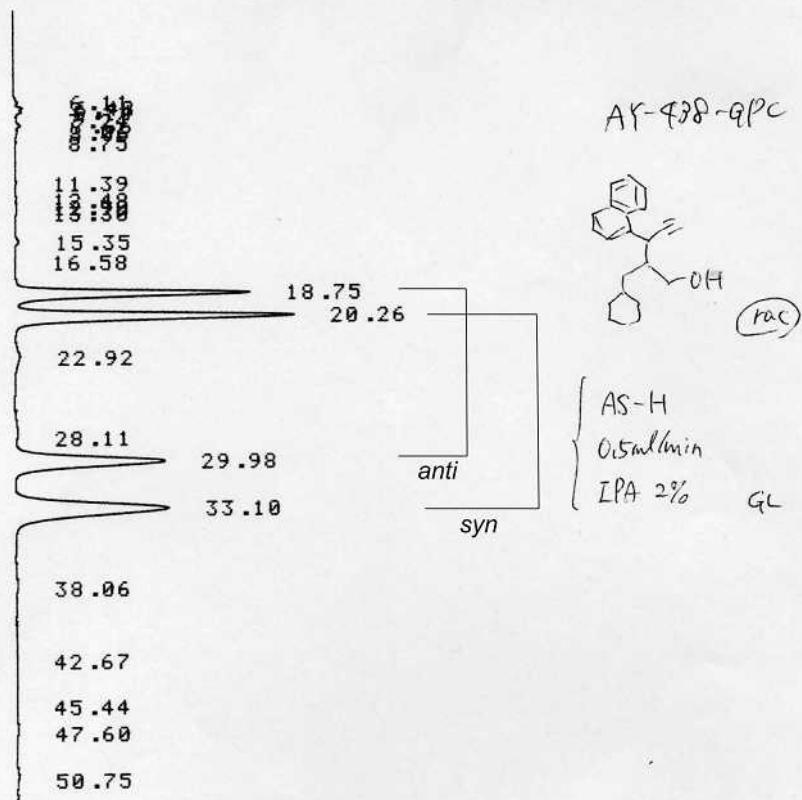
00/11/00 00:40

METHOD: TAG: 12 CH: 1

FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA

NO.	RT	AREA	CONC	BC
5	9.57	58035	0.724	UU
6	10.08	62619	0.781	UU
14	19.95	6115145	76.245	UU
15	22.83	26240	0.327	TBB
21	35.95	1703512	21.240	BB
23	50.06	17912	0.223	BB
24	54.80	36976	0.461	BB

SYN 98.8%

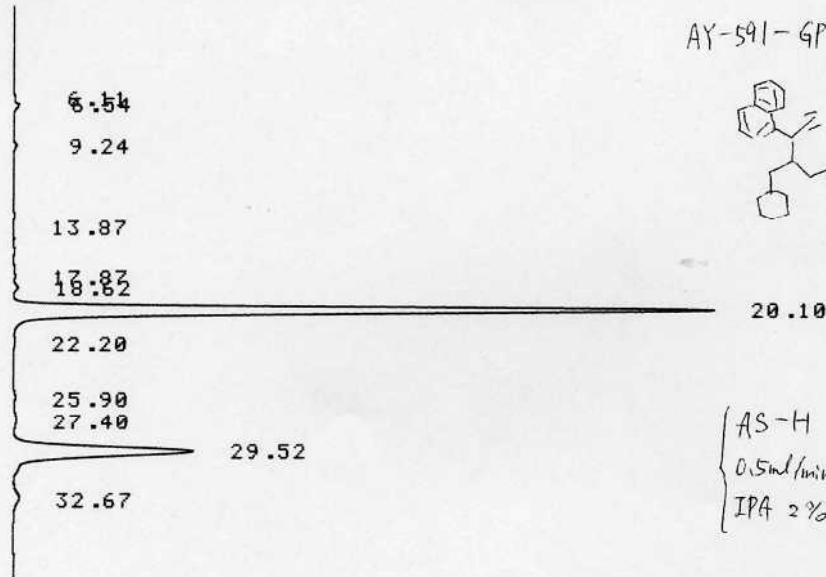

ANTI 97.0%

TOTAL 8020439 100.000

PEAK REJ : 17000

5c (rac)

CH. 1 C.5 2.50 ATT 6 OFFS 0 00/12/00 23:10


D-2500

00/12/00 23:10

METHOD: TAG: 16 CH: 1
FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA
NO. RT AREA CONC BC
14 18.75 436288 21.608 BV
15 20.26 569919 28.227 BV
18 29.98 443872 21.984 UV
19 33.10 568988 28.181 UV
TOTAL 2019067 100.000
PEAK REJ : 20000

CH. 1 C.S 2.50 ATT 6 OFFS 0 00/14/00 18:17

AY-591-GPC

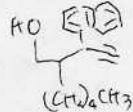
D-2500

00/14/00 18:17

METHOD:

TAG: 18 CH: 1

FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA


NO.	RT	AREA	CONC	BC		
6	18.62	6946	0.346	VB	anti	97.5%
7	20.10	1427082	71.100	BU		
10	27.40	11605	0.578	UU		
11	29.52	540397	26.924	UU		
12	32.67	21116	1.052	TBB	syn	97.1%
TOTAL		2007146	100.000			
PEAK REJ :		6500				

5d (rac)

CH. 1 C.S. 2.50 ATT 7 OFFS 0 00/56/00 21:33

A F-508-GPC

6.56
7.26
10.36
13.04
14.16
15.07

18.70

20.88

22.99

25.15

syn

28.07

anti

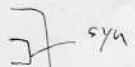
35.52

40.56

48.11

50.11

AS-H
0.5ml/min
IPA 2%

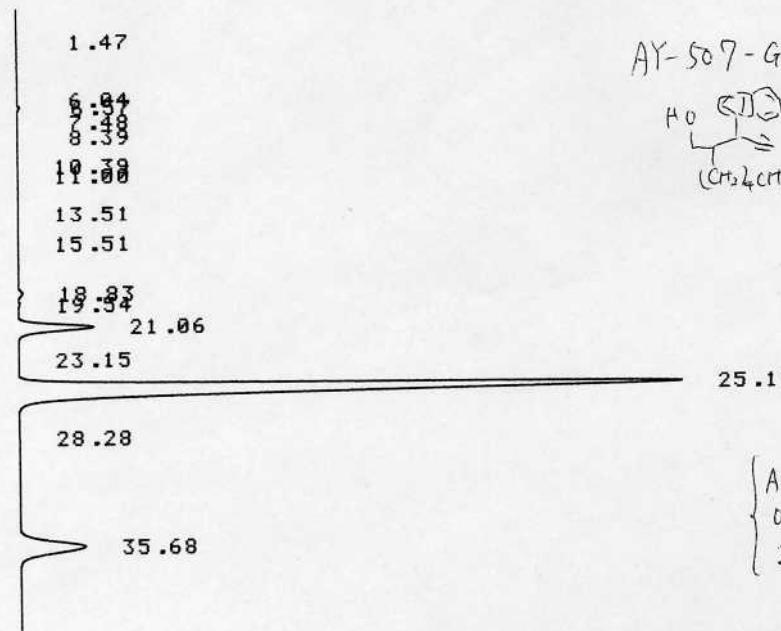

D-2500

00/56/00 21:33

METHOD: TAG: 19 CH: 1

FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA

NO.	RT	AREA	CONC	BC
9	18.70	507216	9.250	BB
10	20.88	2237147	40.800	BU
12	25.15	2237507	40.807	BB
14	35.52	501332	9.143	BB



TOTAL 5483202 100.000

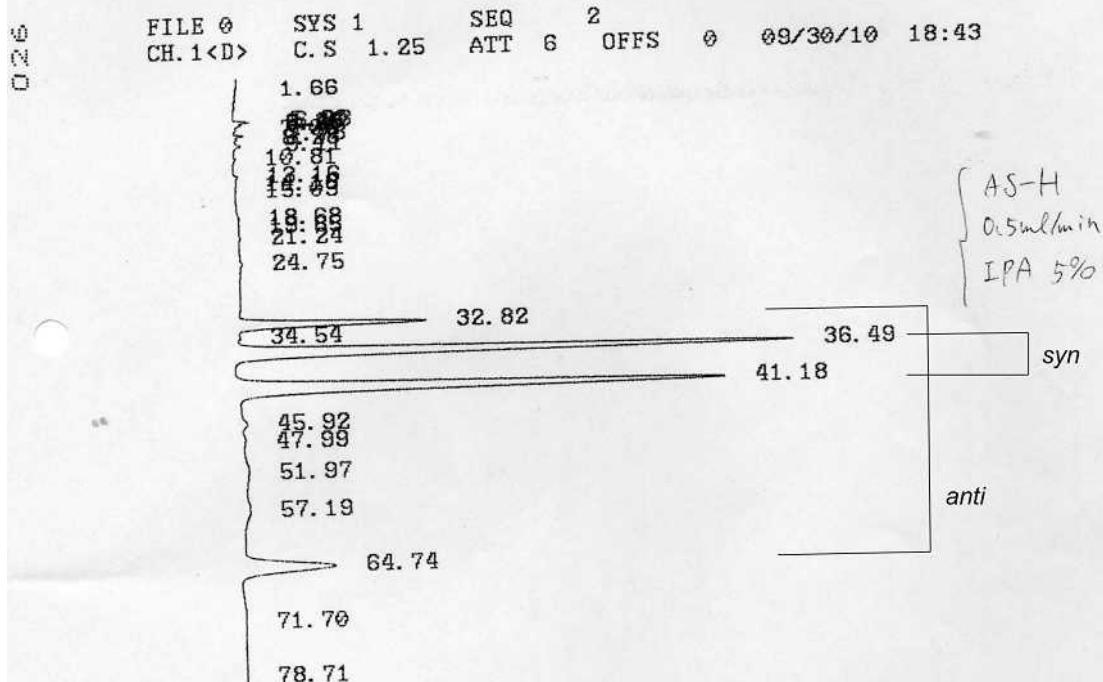
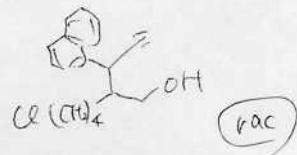
PEAK REJ : 500000

5d

CH. 1 C.5 2.50 ATT 8 OFFS 0 00/56/00 22:42

D-2500

00/56/00 22:42



METHOD: TAG: 20 CH: 1

FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA

NO.	RT	AREA	CONC	BC		
10	18.83	30528	0.364	BU	SYN	83.4%
12	21.06	619677	7.391	BB		
14	25.19	6827663	81.432	BB	anti	93.5%
16	35.68	906587	10.813	BB		
TOTAL		8384455	100.000			
PEAK REJ :		30000				

5e (rac)

AY-565..

D-7500 INTEGRATOR REPORT

ANALYZED: 09/30/10 18:43

REPORTED: 09/30/10 20:06

SYSTEM : 1

OPERATOR:

METHOD :

SEQ : 2

CHANNEL : 1 <DIGITAL>

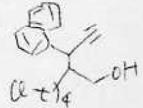
MODULE T-PROG :
COMPONENT TBL : 0

DETECTOR= 1

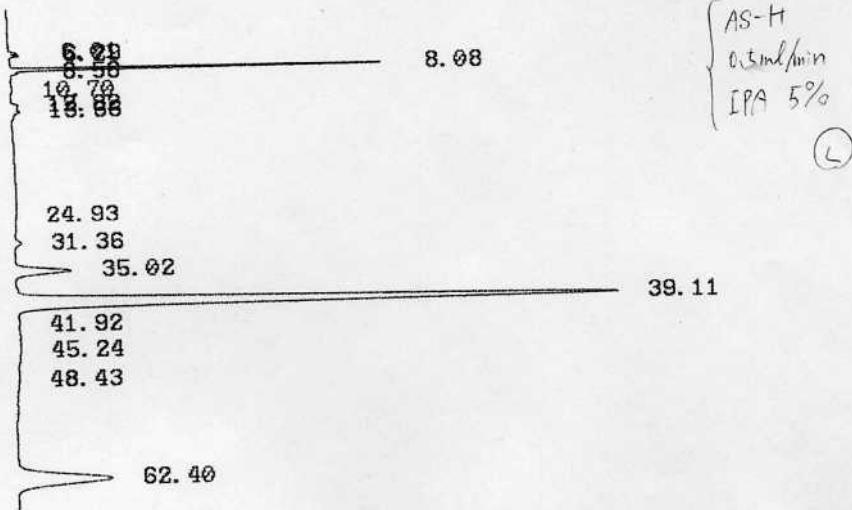
FILE : 0

5354770 100.000

CALC-METHOD: AR/HI% <AREA>


NO.	RT	AREA	CONC	BC	
18	32.82	598853	11.184	BV	anti
20	36.49	2073246	38.718	VB	
21	41.18	2117796	39.550	BB	syn
26	64.74	564875	10.549	BB	

TOTAL


5354770 100.000

PEAK REJ : 500000

AY-566-GPC

FILE 0 SYS 1 SEQ 3
 CH. 1 <D> C. S 1.25 ATT 5 OFFS 0 11/04/10 15:19

D-7500 INTEGRATOR REPORT

ANALYZED: 11/04/10 15:19

REPORTED: 11/04/10 16:27

SYSTEM : 1

OPERATOR:

METHOD :
CHANNEL : 1 <DIGITAL>

SEQ : 3

FILE : 0
CALC-METHOD: AR/HI% <AREA>MODULE T-PROG :
COMPONENT TBL : 0

DETECTOR= 1

NO.	RT	AREA	CONC	BC
3	8.08	157508	8.914	BV
6	12.82	11016	0.623	BV
7	13.66	11360	0.643	VB
8	24.93	14978	0.848	BB
9	31.36	8455	0.478	BB
10	35.02	98517	5.575	BB
11	39.11	1165308	65.948	BB
13	45.24	10304	0.583	BB
15	62.40	289553	16.387	BB
TOTAL		1766999	100.000	
PEAK REJ :		6000		

anti 94.3%
syn 84.4%