A Silver Mediated One-Step Synthesis of Oxazoles

Dougal J. Ritson, Christian Spiteri and John E. Moses*

The School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. Fax: (+44) 115-951-3555; Tel: (+44) 115-951-3533; E-mail: john.moses@nottingham.ac.uk.

Supporting Information

Table of Contents

General Experimental	2
Results of Solvent Screen	3
Experimental Procedures and Characterisation	4-7
References	7
¹ H and ¹³ C NMR Spectra for unknown compounds and bis-oxazole 29	8-13

General Experimental

Melting points were recorded using a Stuart Scientific SMP3 melting point apparatus and are uncorrected. High Resolution Mass Spectra were recorded on VG micron Autospec or Bruker microTOF. Fourier Transform Infrared Spectroscopy (FT-IR) spectra were obtained on Perkin Elmer 1600 series or Bruker Tensor 27 spectrometer. All IR were taken in dry chloroform, unless specified. NMR spectra were recorded at 400 and 100 MHz, for ¹H and ¹³C NMR respectively. Coupling constant are given in hertz (Hz), the shifts (δ) are given as parts per million (ppm) using tetramethylsilane as an internal standard. The following notations indicate the multiplicity of the signals: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), app (apparent). Thin layer chromatography was performed on precoated silica gel aluminium plates (60F-254) and visualised using UV absorption and/or an appropriate stain. Column chromatography was performed using silica gel 60 (230-400 mesh). All reagents were used as received from commercial suppliers. Ethyl bromopyruvate was 90% pure, as indicated by GC, and this was taken into account (weight for weight) when calculating stoichiometery. Petrol ethers refer to petroleum ethers 40 - 60 °C. Anhydrous THF was distilled from sodium wire/benzophenone and anhydrous DCM from CaH2 immediately prior to use. MeCN and CHCl₃ were distilled from CaH₂ and stored over activated 4 Å MS. Toluene was dried by passing the solvent over an activated alumina column which was pressurised with dry N₂. Anhydrous DMF and 1,2-DCE were purchased and used as received. Microwave reactions were conducted on a CEM Discover Explorer microwave reactor in sealed tubes with stirring at a constant temperature for the indicated time. The reaction mixture temperatures were recorded using vertically-focused IR temperature sensor.

Results of Solvent Screen

Table S1. Results of the solvent screen

entry	solvent	yield (%) ^a
1	DMF	17
2	THF	22
3	MeCN	54
4	toluene	59
5	DCM	70
6	CHCl ₃	69
7	DCE	74
8	H_2O	nd^b

 $[^]a$ Isolated yield of **4**. b Not determined – complex mixture after the reaction. Conditions: **1** (0.3 mmol), **2** (1.8 equiv), anhydrous solvent (0.45 mL), AgClO₄ (1.0 equiv), 90 °C for 2 h in a sealed tube in a microwave.

Table S2. Optimization of reaction conditions

		NH ₂ + Br	OEt		IO ₄ (Χ equiv. ΣΕ, <i>Τ</i> , <i>t</i> , μW	→ [) N	OEt
Br´ `	<u> </u>	2	(X equiv.)			Br∕ ▽	4	
	entr y	vol. (mL) ^a	temp	tim e	equiv . 2	equiv. AgCl	yield (%) ^b	
				(h)		O_4		
	1	0.3	90	0.5	1.8	1	61	
	2	0.6	90	0.5	1.8	1	61	
	3	1.2	90	0.5	1.8	1	50	
	4	0.45	90	0.5	1.8	1	69	
	5	0.45	130	0.5	1.8	1	48	
	6	0.45	110	0.5	1.8	1	63	
	7	0.45	90	1.5	1.8	1	72	
	8	0.45	90	2	1.8	1	74	
	9	0.45	90	2	1.8	0.5	52	
	10	0.45	90	2	1.8	1.1	70	
	11	0.45	90	2	1.0	1	74	

^a Refers to volume of anhydrous DCE. ^b Isolated yield of **4**. Conditions: all reactions performed on 0.300 mmol of **1** in a sealed tube in a microwave.

Experimental Procedures

General microwave procedure for optimised conditions:

To a dry tube under Ar atmosphere was added the amide (0.30 mmol), β -bromo- α -oxoester (0.30 mmol), anhydrous 1,2-dichloroethane (0.45 mL) and AgSbF₆ (0.30 mmol, 103 mg). The mixture was stirred for 1 min then heated to 90 °C in a sealed tube in a microwave reactor for 2 h (3 h in the case of **27**) with stirring. After this time the reaction was cooled to room temperature and a saturated solution of NaHCO₃ (5 mL) was added and the product was extracted with EtOAc (2 × 7 mL). The combined organics were washed with a saturated solution of brine (4 mL), dried (Na₂SO₄), filtered and purified by flash chromatography or preparative TLC.

Ethyl 2-phenyloxazole-4-carboxylate (15)¹

Colourless solid, 89%. Mp = 64-65 °C [Lit.¹ 66-67 °C]; R_F = 0.26 (4:1, petrol-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1 H), 8.12 (m, 2 H), 7.47 (m, 3 H), 4.44 (q, J = 7.1 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 161.4, 143.7, 134.7, 131.1, 128.8, 126.9, 126.4, 61.3, 14.3; HRMS (ESI) calcd for C₁₂H₁₁NNaO₃ [M+Na]⁺ 240.0637, found 240.0621.

Ethyl 2-(4-methoxyphenyl)oxazole-4-carboxylate (16)¹

Colourless solid, 97%. Mp = 100-101 °C [Lit.¹ 102-103 °C]; R_F = 0.17 (4:1, petrol-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.09 (d, J = 9.0 Hz, 2 H), 7.01 (d, J = 9.0 Hz, 2 H), 4.46 (q, J = 7.1 Hz, 2 H), 3.90 (s, 3 H), 1.44 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 161.9, 161.5, 143.2, 134.5, 128.6, 119.1, 114.2, 61.2, 55.4, 14.3; HRMS (ESI) calcd for C₁₃H₁₃NNaO₄ [M+Na]⁺ 270.0742, found 270.0734.

Ethyl 2-(3-methoxyphenyl)oxazole-4-carboxylate (17)²

Colourless solid, 90%. Mp = 73.5-74.5 °C [Lit.² 76.7-77.8 °C]; R_F = 0.25 (4:1, petrol-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1 H), 7.72 (m, 1 H), 7.68 (m, 1 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.07 (ddd, J = 8.3, 2.6, 0.7 Hz, 1 H), 4.47 (q, J = 7.1 Hz, 2 H), 3.91 (s, 3 H), 1.44 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 161.4, 159.9, 143.7, 134.6, 129.9, 127.6, 119.3, 117.9, 111.3, 61.3, 55.5, 14.3; HRMS (ESI) calcd for C₁₃H₁₃NNaO₄ [M+Na]⁺ 270.0742, found 270.0725.

Ethyl 2-(thiophen-2-yl)oxazole-4-carboxylate (20)¹

Colourless solid, 90%. Mp = 101-103 °C [Lit.¹ 100-101 °C]; R_F = 0.22 (4:1, petrol-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1 H), 7.81 (dd, J = 3.7, 1.2 Hz, 1 H), 7.51 (dd, J = 5.0, 1.1 Hz, 1 H), 7.16 (dd, J = 5.0, 3.7 Hz, 1 H), 4.45 (q, J = 7.1 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 158.6, 143.1, 134.6, 129.5, 129.2, 128.6, 128.0, 61.3, 14.3; HRMS (ESI) calcd for C₁₀H₉NNaO₃S [M+Na]⁺ 246.0201, found 246.0196.

Ethyl (E)-2-cinnamyloxazole-4-carboxylate (25)³

Colourless solid, 60%. Mp = 110-111 °C [Lit.⁴ 110-112 °C]; R_F = 0.31 (4:1, petrol-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1 H), 7.65 (d, J = 16.5 Hz, 1 H); 7.55 (m, 2 H), 7.41 (m, 3 H), 6.97 (d, J = 16.4 Hz, 1 H), 4.44 (q, J = 7.1 Hz, 2 H), 1.43 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 161.3, 143.3, 138.3, 135.0, 134.7, 129.7, 129.0, 127.4, 112.9, 61.3, 14.4; HRMS (ESI) calcd for C₁₄H₁₃NNaO₃ [M+Na]⁺ 266.0793, found 266.0775.

2-(4-Bromo-phenyl)-4-phenyl-oxazole (26)⁵

White solid, 81%. $R_F = 0.48$ (9:1, petrol-EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 8.7, 2 H), 7.99 (s, 1 H), 7.83 (dd, J = 8.4, 1.2, 2 H), 7.64 (d, J = 7.6, 2 H), 7.45 (m, 2 H), 7.36 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 142.3, 133.7, 132.1, 130.9, 128.8, 128.3, 128.0, 126.4, 125.7, 124.9; HRMS (ESI) calcd for $C_{15}H_{11}BrNO$ [M+H]⁺ 300.0024, found 300.0017.

Ethyl 3-bromo-2-oxobutanoate (27)

Prepared as previously reported.⁶

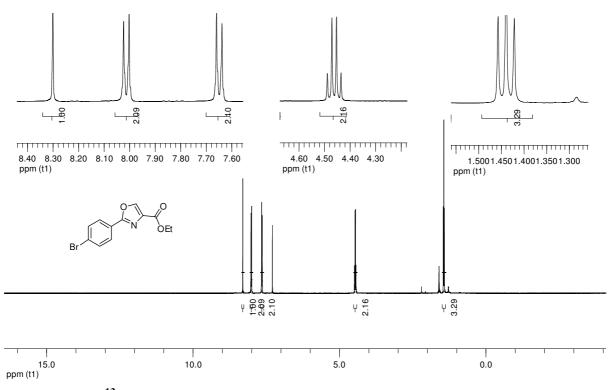
Ethyl 2-(4-bromophenyl)oxazole-4-carboxylate (28)⁷

Colourless solid, 74%. Mp = 131-134 °C; $R_F = 0.27$ (4:1, petrol-EtOAc); v_{max}/cm^{-1} 3010, 2930, 2254, 1716, 1616; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2 H), 7.61 (d, J = 8.8 Hz, 2 H), 4.45 (q, J = 7.2 Hz, 2 H), 2.73 (s, 3 H), 1.45 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 158.7, 156.3, 132.0, 129.0, 128.0, 125.5, 125.2, 61.1, 14.4, 12.2; HRMS (ESI) calcd for $C_{13}H_{12}BrNNaO_3 [M+Na]^+$ 331.9898, found 331.9888.

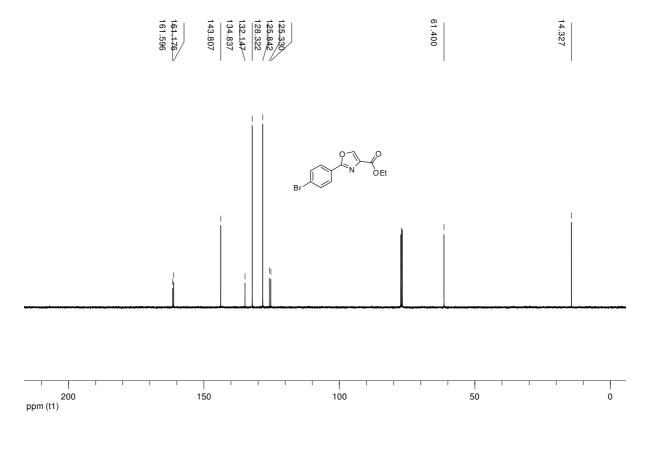
$Synthesis\ of\ bis-oxazole-synthesis\ of\ 2,2'-bis-(4-methoxy-phenyl)-[4,4'] bioxazolyl\ (29)^8$

4-Methoxybenzamide (0.6 mmol, 2.0 equiv) and AgSbF₆ (2.0 equiv) were transferred in a dry 5 mL microwave vial, equipped with a magnetic stirrer and kept under Argon. Then anhydrous 1,2-dichloroethane (0.9 mL) was added followed by 1,4-dibromo-2,3-butanedione

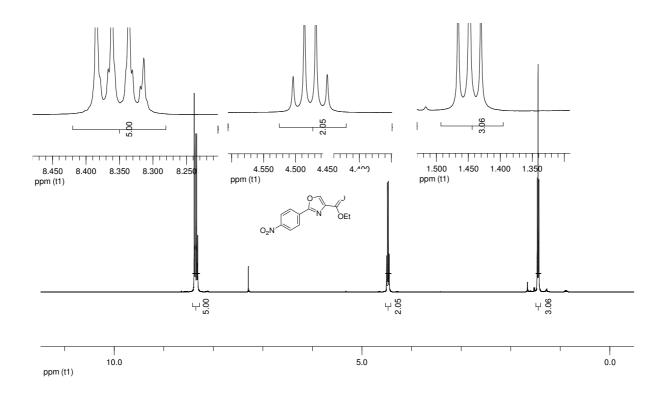
(30, 0.3 mmol, 1.0 equiv.). The resulting mixture was stirred for 5 min at ambient temperature and microwaved at 90 °C for 4 h under stirring conditions. After this time the reaction was cooled to ambient temperature, a saturated solution of NaHCO₃ (5 mL) was added and the product was extracted with EtOAc (2 x 7 mL). The organic layer were combined, dried over anhydrous Na₂SO₄, filtered and concentrated on a rotator evaporator. The crude product was further purified by flash silica-gel chromatography using EtOAc and petroleum-ether 40-60 °C. Pale yellow solid, 37%. Mp = 224-226 °C. v_{max}/cm^{-1} (neat) 2923, 1611, 1499, 1249, 1095, 839; ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.07 (m, 6 H), 6.98-7.02 (m, 4 H), 3.89 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 161.5, 134.6, 134.4, 128.3, 120.1, 114.2, 55.4; HRMS (ESI) calcd for C₂₀H₁₆N₂NaO₄ [M+Na]⁺ 371.1002, found 371.1014.

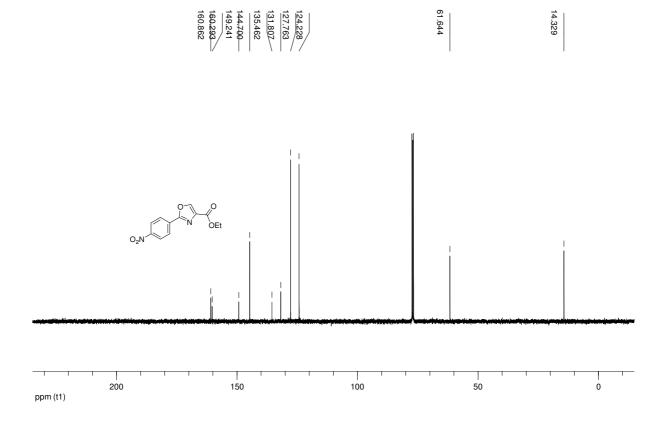

2-Bromo-1-[2-(4-methoxy-phenyl)-oxazol-4-yl]-ethanone (31)

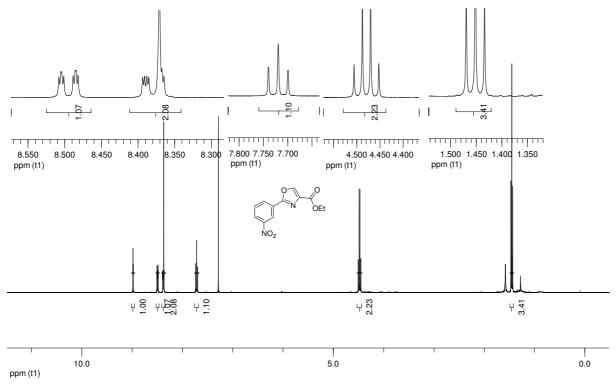
White solid, 47%. Mp = 147-148 °C. v_{max}/cm^{-1} (neat) 3124, 3072, 2956, 1697, 1462; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1 H), 8.01-8.03 (m, 2 H), 6.99-7.01 (m, 2 H), 4.53 (s, 2 H), 3.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 162.3, 162.1, 142.5, 139.2, 128.6, 118.9, 114.3, 55.4, 32.1; HRMS (ESI) calcd for $C_{12}H_{10}BrNNaO_3$ [M+Na]⁺ 317.9736, found 317.9728.

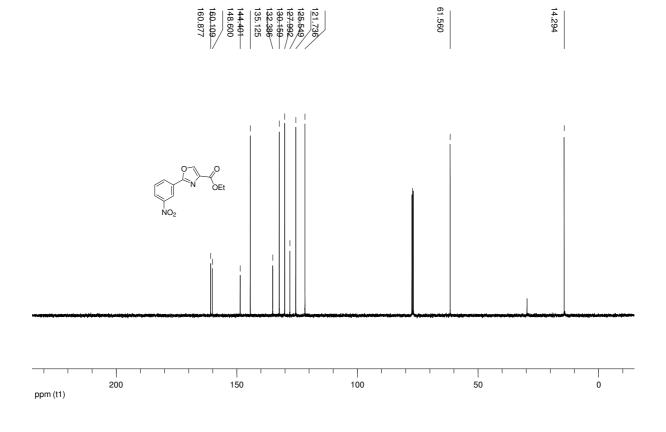

Reference

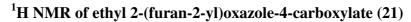
- (1) Verrier, C.; Martin, T.; Hoarau, C.; Marsais, F. J. Org. Chem. 2008, 73, 7383-7386.
- (2) Ackermann, L.; Barfüsser, S.; Pospech, J. Org. Lett. 2010, 12, 724-726.
- (3) Panek, J. S.; Beresis, R. T. J. Org. Chem. 1996, 61, 6496-6497.
- (4) Connell, R. D.; Tebbe, M.; Gangloff, A. R.; Helquist, P.; Akermark, B. *Tetrahedron* **1993**, *49*, 5445-5459.
- (5) Schuh, K.; Glorius, F. Synthesis 2007, 15, 2297-2306
- (6) Okonya, J. F.; Hoffman, R. V.; Johnson, M. C. J. Org. Chem. 2002, 67, 1102-1108.
- (7) Shafiee, A.; Kiaeay, G. J. Het. Chem. 1981, 18, 899-903.
- (8) Flegeau, E. F.; Popkin, M. E.; Greaney, M. F. Org. Lett. 2006, 8, 2495-2498.

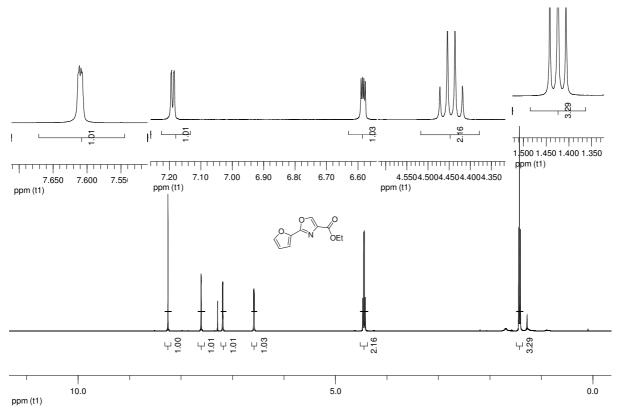

¹H NMR of ethyl 2-(4-bromophenyl)oxazole-4-carboxylate (4)

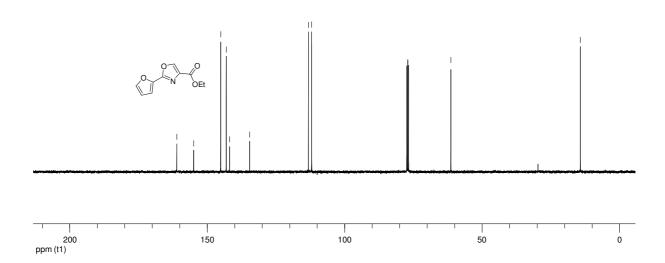

 $^{13}\mathrm{C}$ NMR of ethyl 2-(4-bromophenyl)oxazole-4-carboxylate (4)

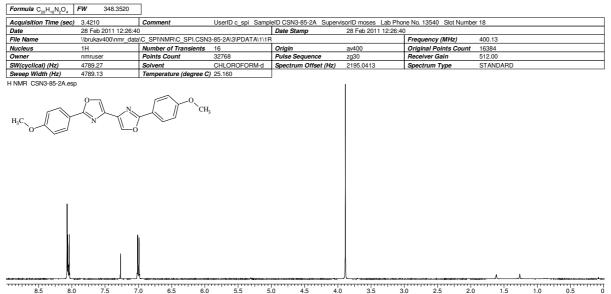

¹H NMR of ethyl 2-(4-nitrophenyl)oxazole-4-carboxylate (18)


¹³C NMR of ethyl 2-(4-nitrophenyl)oxazole-4-carboxylate (18)




¹H NMR of ethyl 2-(3-nitrophenyl)oxazole-4-carboxylate (19)

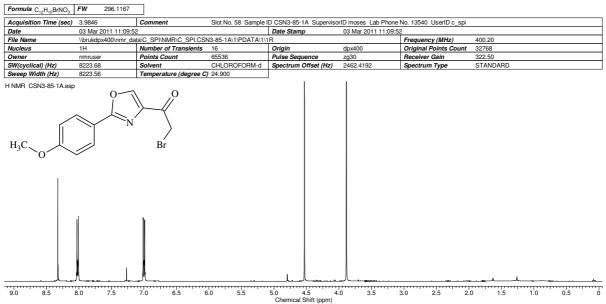

 $^{13}\mathrm{C}$ NMR of ethyl 2-(3-nitrophenyl)oxazole-4-carboxylate (19)



¹³C NMR of ethyl 2-(furan-2-yl)oxazole-4-carboxylate (21)

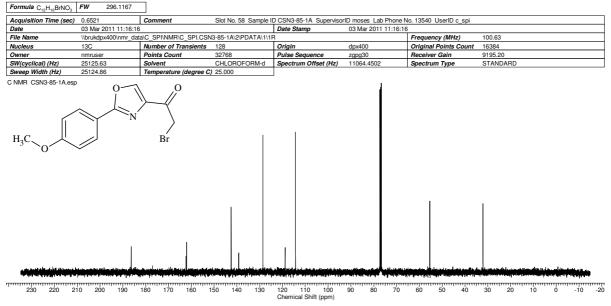
$^1\mathrm{H}\ \mathrm{NMR}\ \mathrm{of}\ 2,2'\text{-bis-}(4\text{-methoxy-phenyl})\text{-}[4,4']\mathrm{bioxazolyl}\ (29)$

04/03/2011 17:40:32


¹³C NMR of 2,2'-bis-(4-methoxy-phenyl)-[4,4']bioxazolyl (29)

22/03/2011 10:38:03

Acquisition Time (sec)	0.6521	0.6521 Comment UserID c_spi SampleID CSN3-85-1A SupervisorID moses Lab Phone No. 13540 Slot Number 30					
Date	18 Mar 2011 02:46:24	Date Stamp	18 Mar 2011 02:46:24				
File Name	\\128.243.125.107PUBLIC\MOSES GROUP WORK\CHRISTIAN SPITERI\OXAZOLE 04 MARCH 2011\CSN3-85-2A LONG CARBON\PDATA\\1\1R						
Frequency (MHz)	100.61	Nucleus	13C	Number of Transients	4096	Origin	av400
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	23170.50	SW(cyclical) (Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11064.6279
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C,	25.160		
Spectrum Type C NMR CSN3-85-2A esp H ₃ C		O CH ₃	25124.86	Temperature (degree C) 25.160		
plantages I shall be the Alk Species and see the shall be					y kisakana, a sa kalamp, a sa kalampana sa kalampana sa kalampana sa kalampana sa kalampana sa kalampana sa ka		
184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)							


¹H NMR of 2-bromo-1-[2-(4-methoxy-phenyl)-oxazol-4-yl]-ethanone (31)

04/03/2011 17:58:17

$^{13}\mathrm{C}\ NMR$ of 2-bromo-1-[2-(4-methoxy-phenyl)-oxazol-4-yl]-ethanone (31)

04/03/2011 18:06:37

