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Section 6.- Parameter values of all the figures of the manuscript

1.- Numerical Simulation of a DGT Sensor

1.1.- The Model
Resin Gel layer Solution
layer
>
0 r r+g X

Figure SI-1. Schematic representation of a DGT device.

The model formulation coincides with that of (Lehto et al. 2006) and (Tusseau-

Vuillemin et al. 2003).



Let D, and D, stand for the diffusion coefficients of species i in the diffusive gel or in
the resin domain, respectively and let c, stand for the concentration of species i at a
given spatial position x and time t. Total concentrations are denoted as ¢, .

. The transport equations for the different species can be written as:

e For the metal in the gel layer and in the resin layer:

oCy, o’c,, :

ra Dur v K.CuCL +KiCy —KarCiCr +KyrCur, 1T O<x<r (SI-1)
2

agtm _D, aa;:y KOO +KyCy, f T<X<F4g (SI-2)

e For the ligand:

D 2
% :{ SYR}(Z)::ZL +K,CuC —KiCy,  If O<x<r+g (SI-3)
L

where the curly bracket indicates that D _. applies when O<x<r and D, applies

when r<x<r+g

e For the complex (assuming the same diffusion coefficient for complex and

ligand):
D 2
GZE[AL ={ DLR}%JFkaCMCL_kchL, if O<x<r+g (S1-4)
L

e For the resin sites free (R) or occupied (MR):

%R = K, 1 CuCx + KynCurs If 0<X<T (SI-5)
OCyr .
e +K,rCuCr —KyrCyr: If O<Xx<T (SI-6)

There are no resin sites in the gel domain: c,(x,t) =c,z(x,t)=0 for r<x<r+g.

Initial conditions correspond to the absence of metal and ligand in the sensor:



cu(x,0)=c (x,0)=c,, (x,00=0, if O<x<r+g (SI-7)
Cyr(X,0)=0 if O<x<r (SI-8)
Cr(x,0)=c;p if O<x<r (SI-9)

where ¢, . denotes the total concentration of resin sites (free or occupied).
Boundary conditions at x =r+ g correspond to bulk concentrations:

cy(r+g,t)=c,, c(r+g,t)=c, ¢, (r+g,t)=c,, (SI-10)

Boundary conditions at x=r:

at the gel-resin interface c,,(x,t), c (x,t), and c,, (x,t) and their fluxes must be

continuous, that is

Cu(r t)=cy,(r',t), c (r,t)=c. (r',t), cyu (r,t)=cy (r’,t) and (SI-11)
oc oc oc oc oc oc

Dygr—2 =D,— ,Dr—= =D —4 , D ML =D —ME SI-12

MReox |- Moex . "Mox|- tex|.n N ooax |- " oox |- ( )

The continuity of the concentrations indicates that no Donnan effects are considered, so
that charge effects of the resin are screened by the supporting electrolyte.

Boundary conditions at x =0 stem from non-flux conditions:

| _oo| _dw| _q (SI-13)
6X |x:0 aX |x:0 6X |x:0

Egns. (SI-1)-(SI-6) with the initial conditions (SI-7 to SI-9) and boundary value
problem (SI-10-SI-13) form a system of equations for
Cy (X, 1), c (x1t), cy (X1), ca(x,t) and c,(X,t).

It could be useful to introduce the total ligand concentration, c; . Adding equations

(SI-3) and (SI-4), the transport equation for ¢, becomes:

D 2
8cT’L:{ LvR}ach' . { O<x<r } (SL-14)
ot D, | ox r<x<r+g

with initial and boundary conditions given by:



0 .
¢ (x,0)=0, Cr =0, ¢ (r+g,t)=c;, and (SI-15)
x=0
oc oc
¢, (rt)y=c. (r',t), D L = L SI-16
wlr D= (0, D) =D (SI-16)
Additionally, we can introduce the total resin concentration:
Cr (X, 1) +Cpyr (X,1) = Cr 4 (SI-17)

The addition of Egs. (SI-5) and (SI-6) indicates, as physically expected, that ¢, is time
independent. Thus the finding of c,,(x,t), c_(xt), ¢, (X.t), cx(Xt) and c,(X,1)
can be reduced to the finding of c,(x,t), c (x,t), ¢ (x,t), and cg(xt) in the

domain 0<x<r+g.

1.2.- Dimensionless Reformulation

Let us reformulate the problem in terms of dimensionless functions and normalized
variables.

Let z be the spatial normalized variable. Its relationship with x and with its derivatives

is:
2 2

=X 5, .1 (SI-18)
/Dy, oz" Dy, ox

Then

. r « r+g

r= , g = (SI-19)
\/Dy, /Dy,

The dimensionless diffusion coefficients:
D. .

d=—, i=M,R; L; L,R. (S1-20)
DM

The dimensionless concentrations:



_Cu _S _ G _ Cr SI-21
O . a. 3 O, c, Oy c. ( )

With these definitions, the transport equations become:

e For the dimensionless metal:

* *

0 0° . C C . K, -Cy
gt“” =dyg 8?2“ —K,C Ay aL + K [CL::qT,L—ﬁqLJ—ka,RCT,RquR+ "'z:ﬂT’R (1-dg),
(S1-22)
for0<z<r’,and
oq,,  0%q . Cr c . .
atM _ azzM —-k,c qua, +k, (C_;}LqT’L_iqL} for rr<z<g (SI-23)
with initial and boundary conditions:
0 .
0,(20)=0, T =0, q,(g")=1 (SI-24)
z=0
. -, 0 0
G D=0 (0, e T =T (SI-25)
e Equations for the dimensionless ligand:
aq, |d.gr|é%g . Cr
T;Z{dLLR}aT;_kaCMquL"‘kd CT_:LqT,L_qL ' (SI'26)
0.(2,00=0, DL _o, g (g"0)=1 (SI-27)
0z |,
“ . d g oq oq
rt=q (r-t, =24 =24 SI-28
W =a 0", AT =5 (S1-28)
e Equations for the dimensionless total ligand:
aqT,l_ _ dL,R aZqT,l_ (SI—29)
ot d, | a2’
0 .
& @0)=0, L =0, 4 (gD =1 (SI-30)
z=0
. . d . oq aq
qT,L(r ,t):qT,L(r ,t), =R T'L| = T’L| . (SI-31)

d, oz

0z

z=r"" 7=r""



e Equation for the dimensionless free resin concentration:

aaitR =K, 2CuOnlr + Kz (1—0g), if O<z<r, (S1-32)

with initial condition g,(z,0)=1.

1.3.- Discretization

RESIN GEL

h h,
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z2=2,=0 z=1 =1,

n

Figure SI-2. Schematic representation of spatial grid.

The resin layer domain will be divided into n—1 equal parts of length h, =ﬁ. The

as shown in figure

gel domain will be divided into m—1 parts of length h, =+

m 1
SI-2. The partial differential equations are discretized using spatial finite differences and

a temporal Inverse-Euler scheme with constant At

1.3.1.- Resin sites concentration

The discretization of equation (SI-32) becomes:



Og(Z,t+At) —0gg(z,t) = —AtkayRc’,\‘,,qM (z,t+At)gs (z,t+ At) + Atk (1- g (2,1 + AL))
(SI-33)

which leads to:

O (Z,1) + Atk o

d (SI-34)
1+ Atk, .C\ Oy (2,1 + At) + Atk o

Og(Z,t+At) =

1.3.2.- Total ligand concentration

Although equation (S1-29) could be analytically solved, its computational cost is greater

than the cost of its numerical solution. The discretized form of equation (SI-29) is:

o,

%L&i+Ao—qn(L0={ }Dh42+hi+AU—2%1Ui+A0+qn(z—hi+A0]
, , o , ,

LR

(SI-35)

Where h, is equal to h or h, depending on the domain, o =d At/h} and
a g =d, zAt/hZ.

Equation (SI-35) can be rewritten as:

o o aL,R
_{ }qT’L(z—hi,t+At)+[1+2{ }]qTVL(z,HAt)—{ }qT’L(z+hi,t+At):qT]L(z,t).
o a g a

R L, L

(SI-36)

which enables the equation system for q;, (z,,t+At) to be built:
e For z,, the equation for g, (z,t+At) is obtained from equation (SI-30),

corresponding to the null flux condition at the origin,

O, (2,,t+ At) =y, (7, t+ At) = 0. (SI-37)

e For j=2 to n-1, the equations are obtained from (SI-36) considering the resin

layer domain:

_aL,RqT,L(Zj —h,,t+At)+ (1+ zaL,R)qT,L(Zj T+ AL) - aL,RqT,L(Zj +h,t+At)= qT,L(Zj’t)



(SI-38)

e Atz thatis z=r", the equation is obtained from the boundary condition (SI-

31):
dL,R qT,L(Zn 1t + At) - qT,L(Zn—l’t + At) — qT,L(Zn+1’t + At) - qT,L(Zn ! t + At) ’ (SI-39)
d, h, hg
which can be rewritten as
—00 (Z,, t+A) + (o +1)0; (2, t+At) —0; (z,,,t+AL) =0 (SI-40)
hd
where o = 2=
hrdL

e For j=n+1 to m-1, we are in the gel domain and the equations for
0r, (z,,t+At) are obtained from (SI-36):

—o Or (2, —hy, t+ A + (1420, ) 0 (2;,t+ At) -, G (z; + h T+ AL) = 0 (2;,1)
(S1-41)

e Finally, for z=g" the equation is obtained from condition in (SI-30):

G, (97, t+At) =1 (S1-42)

1.3.3.- Dimensionless ligand concentration

In the same way, the discretized form of equation (S1-26) is:

a R

q, (z,t+At) —q, (z,t) ={ }[qL(z+hi,t+At)—2qL(z,t+At)+qL(z—hi,t+At)]

L
—Atk.cr, 0y, (Z,t+ At)q, (z,t + At) + Atk CT—;}qTL(z,t +At) - Atk,q, (z,t +At),  (SI-43)
o o

L

or

_{aL’R}qL(z —h,,t+At) +[1+ 2{“L'R}+Atkac;qM(z,t+At) + ALK, g, (z,t+At)

L L

*

—{aL*R}qL(z +h,t+ AL = 4 (2,1) + Atk, Cg—;LqT,L(Z,t +AL). (51-44)

L L



Particular equations for each q, (z,,t+ At) can be written.

e The first equation, for z, reads:

q.(z,,t+At)—q, (z,,t+ At) =0.

e From j=2ton-1:

—at 0 (2; =y t+ A +[ 1+ 201,  + Atk Cy 0y (2, T+ A) + Atk [q (2;,t+AL)

*

C
—a oQ (2, +h,, t+AD) = qL(zj,t)+Atkd%quL(2j,t+At).
L

e Atz=z =r":

dL,R qL(Zn1t+At)_qL(Zn—l’t+At) _ qL(Zn+11t+At)_q|_(zn1t+At)
d, h - h ’

r 9

which rewrites as

-00,(z,,,t+At)+(c+1)q, (z,,t+At)—q,(z,,,t + At) =0,

e For j=n+1tom-1:

—0, Gy (2; —hy, t+ A+ 1+ 20, + AtK,Cy, 0l (2;,t+ AL) + Atk | (z;,t+At)

C*
—a O (2, +hy, t+ At) = g (7;,t) + Atk, —= 0 (2, E+AL).
C. ’
e Atz=z,=9":

q.(z, . t+At)=1.

1.3.4.- Dimensionless metal concentration

. At
Let us define ¢, =z and o, =d,z -
» : ,

Discretization of equation (S1-22) becomes:

O (Z;,t+ A =04y (Z;,1) = @y [ G (Z; + 1, t+ A =20, (2, t+ AL + 0y (2 -

(SI-46)

(S1-47)

(SI-48)

(SI-49)

(SI-50)

h,t+At)]

10



* *

—Atk.clay (z;,t+At)q, (z; t+At)+Atk : qTL(zJ,t+At) Atk qL(zJ,t+At)

—AtK, 1 C; 1Oy (2, + At)0s (2 t+At)+Atde x [1-0e(z;,t+AY) |, (SI-51)

M

and for equation (SI-23):

O (Z;,t+ A =04y (2;,1) = @y | Gy (2; +hy, t+ At) = 20y, (2;,t+ At) + Gy (2, — hy, t+ AL) |

* *

—Atk,C gy, (z;,t+At)q,(z;, t+At) + Atk, o qTL(zJ,t+At) Atk - —=0,(z;, t+At).

M M
(SI-52)
The equations for each spatial node can be constructed with the same procedure as
before.
o Forz:
qM(Zz,t+At)—qM(Zl,t+At):0. (SI‘53)

e From j=2ton-1:

O (2, — Dy, 4 AT)
+[ 1+ 20 + AtK,C G (Z;, 1+ A) + AtK, oCr o Gg (), 1+ AL) 0y (2, 1+ At)

—aMVRqM(zj +h, t+At)

*

= Gy (2;,1) + Atk, Cn I gy (2,04 AL) = Atk =g (2;,t+ AL + Atk T*R [1-0q(z;,t+AY) .
Cy C, C

M M M
(SI-54)
e Atz=z =1
d Qum (ant"' At) — Qu (Zn-1vt + At) _ Om (Zn+l’t+ At) — Qu (Zn U+ At)
M,R h - h ' (SI-SS)

r 9

e From j=n+1tom-1:

0ty Gy (2; =Ny, t+ A +[ 1+ 26, + Atk,Cl 0 (2,1 +AL) |Gy (2;,t+ At) — 2y Oy (2; + Dy, t+ A1)

Cy c
=y (z;,1) + Atk, CL;:qTVL(zj,H At) — Atk, ﬁq,_(zj,tjt At). (SI-56)

11



Oy (Z,,,t+At) =1, (SI1-57)

1.4.- Solution Procedure

The coupled system of non linear equations obtained in the previous section (equations
SI-34 to SI-57) will be solved separately for each species and time. The solution is
obtained after iteration and convergence of the concentration of each species at each
spatial position. This method allows a extremely huge reduction of the computational
time in comparison to the CPU time required for the direct solution of the non-linear
system. Let us comment in more detail on the solution procedure.

The solution process begins by initializing the m+n components of vectors ¢, ,d,,qy
and ¢y with the values reached at the previous time interval. The values of vectors
Gr..0..0y and Gy at t+At are obtained iteratively. For q_(z;,t+At), for example,
the equations system (S1-45)-(S1-50) could be rewritten in a matrix from as,

-1 1 q,(z,,t+At)
—ay 1420, + Atk Cy Oy (2, T+ A + Atk —a g 0, (z,,t+At)

—an 1+ 20, + At GGy (7, t+ A + A, o q, (z,t+At)
-c o+l 1 q.(z,.t+At)

—an 1+ 20, + AKCy 0y (2, T+ A + ALK~y q.(z;,t+At)

1)\ g (z, . t+AD)

° (SI-58)

0 (21) + Atk T (2,4 A1)
L
Q.20 + Ak, T (2, A
L
0

a.(2,.1) + Atk cc%qn(zJ t+ At
L

1

12



This is a tridiagonal system for the unknowns qL(zi,t+At) and it is solved iteratively

through the TRIDAG.FOR subroutine (Press et al. 1986). Notice that this equation

system for q_, requires the values of qy,(z,t+At) and g, (z,t+At) which are also

unknowns. At iteration j, to uncouple (g, ); and (g, ), from (q,); , we use the values

of both (qM (zi,t+At)) , and (qT,L(zi,t+At)) _ Obtained in the previous iteration (j-1)

- j-

in the solution of g, (zi,t+At) at some iteration j. This procedure is applied iteratively
for each species until all the system converges to a solution for each time step. The
time is then increased and the first iteration for the next time starts initializing all the

unknowns with the values obtained at the previous time.

Figure SI-3 shows schematically the algorithm used to solve the system

13



Initialization of all the
unknowns with the
initial values.

= At

Initialization of s for each
spatial point

Starts an iterative process for solving
each species using the values of the
previous iteration for the rest of species

Iterative solution of gwm, q, g
and gr

!

Checking the
converaence

Variables

End of iteration t=t+At

End. Saving
results

Figure SlI-4. Flux diagram representing the algorithm used to solve the system

2.- Concentration profiles in a DGT experiment

Let us consider a DGT experiment using the numerical simulation described above. Fig.

SI-5 depicts the concentration profiles of metal and complex through the DGT layers

14



and adjoining solution for different values of the kinetic complexation constants. With
the parameters used in this figure, the metal concentration drops to almost zero at the
resin interface due to the strong and fast resin binding. For low values of the
dissociation rate constants (see panel a), the complex concentration profile is flat and
equal to the complex concentration in solution, while the metal concentration profile is
linear. This indicates the inert behaviour of the complex, which does not contribute to
the flux received by DGT and the quasi-steady-state regime reached (the linear metal
concentration profile indicates a time independent metal flux). On increasing the kinetic
complexation constants (see panel b), the complex is depleted and its contribution to the
metal flux through dissociation is apparent. Notice that the metal concentrations do not
increase linearly with distance and their values at a given x are greater than those of the
inert case, due to the complex dissociation contributing to a higher local metal
concentration. A further increase of the Kkinetic constants leads to a more depleted
complex concentration profile. Metal and complex concentration profiles increasingly
coincide in the gel domain (see panel ¢). When both normalised profiles coincide, metal
and complex are in local equilibrium, indicating that the complex is able to dissociate
sufficiently rapidly to maintain equilibrium conditions with the metal. The thickness of
the layer where both profiles diverge, can be related to the reaction layer. As expected,
the thickness of the reaction layer decreases as the kinetic constants increase. Notice
that at the interface between the resin and gel layers the slope of the complex
concentration profile is not zero and the complex penetrates into the resin layer. The
decrease in the complex concentration as the back plastic wall of the device is
approached continues inside the resin, indicating that the dissociation process does not
cease at the resin interface. A further increase of the kinetic constants (see panel d) leads

to linear metal and complex concentration profiles superimposed throughout the entire

15



gel domain. This corresponds to the labile situation where the dissociation of the
complex is so fast that local equilibrium with the metal is reached at each relevant

spatial and time position.
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Figure SI-5. Normalized concentration profiles of M (Blue line with A markers) and ML
(red line with m markers). Profiles are obtained by numerical simulation described in Sl-

1. Parameters: r =4x107*m, K =10°mol™* m*s*, panel a): k,=10"° s, panel b)
k, =107s™, panel ¢) k, =107*s™ and panel d) k, =10°s™. The rest of parameters as
in figure 1 of the manuscript.

3.- Experimental Section

e DGT sensors
All DGT sensors were purchased from DGT Research Ltd. (Lancaster, U.K.).
Commercially available DGT deployment mouldings made of ABS polymer, based on a

simple, tight-fitting piston design with a 2 cm diameter window, were used for all

16



measurements. A 0.4 mm thick Chelex-gel was placed on the piston surface with the
side packed with resin beads facing upward (i.e. in close contact with the diffusive
layer). On the top of the Chelex-gel, a 0.8 mm thick diffusive agarose polyacrylamide
gel and a cellulose nitrate membrane (Whatman, pore size 0.45 pum, thickness 0.125
mm) were placed. A more detailed description is found at DGT Research’s homepage

(http://www.dgtresearch.com).

e DGT Experiments
A series of experiments were performed to determine the mass of cadmium accumulated
at different times by DGT devices deployed in solutions containing Cd (prepared from

the solid nitrate product, Merck, analytical grade) at a concentration close to

10%?molm™ and NTA (Fluka, analytical grade) at concentrations of 0.249 and

1.8molm™. pH was adjusted by means of small additions of NaOH or HNO3 to 7 or 7.5
before and during the deployment. lonic strength of the solution was adjusted to
0.05mol L™ with NaNOs (Merck, suprapur). Ultra-pure water (Mill-Q plus 185 System,
Millipore) was employed in all the experiments.

e DGT Exposure Chamber
A 5L polyethylene bucket was used as the exposure chamber. 11 DGTs were fixed by
press-stud. pH was monitored continuously with a glass electrode. A reference electrode
Ag/AgCl/3 mol.L? KCI, with a 0.05 mol.L™* NaNOjs jacket was used. The exposure
chamber was placed in a thermostated bath to keep the deployment solution at constant
temperature of 25+0.1°C. The solution was stirred during deployment using an overhead
stirrer.

e Retrieval and analysis
For all experiments, aliquots of the solution were collected at regular intervals to check

the total Cd concentration. DGT devices, once removed from solution, were rinsed with

17



ultrapure water and opened for removal of the resin gels, which were then eluted in 1mL
of concentrated nitric acid for at least 24h. The number of moles of metal in the form of
non dissociated complex due to the complex penetration into the resin domain is
negligible in comparison with those bound to the resin beads All solutions were
analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES)

(Activa-S, Horiba Scientific).

4.- Additional figures

Additional figures that verified the influence of the thickness of the DGT resin layer on
the accumulated mass for the Cd-NTA system.

Conditional stability constants and kinetic parameters for the Cd NTA system at a given
pH, ionic strength and total metal and total ligand concentration were estimated as
reported in the manuscript. Values used in the numerical simulations for the kinetic

association and dissociation constants of the metal to the resin sites are

k., =10° mol*m’™ and k,, =10"°s™ while the total concentration of resin sites in

the resin layer is c,, =50mol m~. These values are high enough to neglect saturation

effects and to reach an almost null metal concentration at the resin interface.

18
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Figure SI-6. Moles of Cd accumulated by DGT in presence of NTA. Markers:
experimental measurements, two deployments (m) and (A). Blue continuous line:
theoretical accumulation predicted by numerical simulation when penetration of the
complex into the resin layer is considered (r=4x10"m). Red dashed line with
markers o: theoretical accumulation predicted by numerical simulation when
penetration of the complex into the resin layer is not allowed (r = 0). Parameters: total

NTA concentration Crnra = 0.249 mol m=, total Cd concentration

Creg =9.96x10°molm™, pH=7.03, 1=0.05M, k" =8.77x10*m’mol’s™ and
keff

k= kj” =—t—= 2.765™ . The rest of parameters as in figure 4 of the manuscript.

CdNTA
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Figure SI-7. Moles of Cd accumulated by DGT in presence of NTA. Marker (m):
experimental measurements. Blue continuous line: theoretical accumulation predicted
by numerical simulation when penetration of the complex into the resin layer is
considered (r=4x10"m). Red line with markers o: theoretical accumulation
predicted by numerical simulation when penetration of the complex into the resin layer

is not allowed (r=0). Parameters: total NTA concentration ¢, =1.8mol m~, total
Cd concentration  C;o =1.08x10?molm™, pH=7.50,ionic strength  0.05M,

eff
ka

k™ =2.58x10° m®mol™s™ and k, =k{" = =2.76s™". The rest of parameters as

in figure 4 of the manuscript.
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5.- Formulation of the Cd-NTA speciation in a DGT sensor as a

system with only one complex and ligand species.

NTA is involved in four acid-base equilibria. Among all these species only NTA® is
known to interact with Cd to give the complex species CANTA and Cd(NTA),. Thus
only NTA?¥ is the ligand in the Cd-NTA system. However, the concentration of NTA*
is not only modified by the presence of Cd, but also by the pH of the system. The

formulation of the Cd-NTA system as

M+ L :: ML (SI-59)

d,L

with a fixed total ligand concentration, c;, , computed as ¢, =c¢, +Cy  is then not

valid. It is the aim of this section of this supporting information to show that the Cd-
NTA system can be reformulated so that equations equivalent to the system represented
with scheme SI1-60 can be applied.

Let us assume that

I) protonated and unprotonated NTA species have the same diffusion coefficient, D,

i) the kinetics of interconversion between the protonated/unprotonated NTA species is
considered instantaneous (i.e. they are always at equilibrium), so that all the protonated

and unprotonated species diffuse and react as one “single species”.

A scheme of the processes in solution is:
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M+L == ML

d,L

kdl,H T\L kall,H
HL ( SI-60)

+
H

de,H Ti/ kaZ,H

H,L

The transport problem can be stated as

oc o°c

é’tM =Dy axévl + Ky L Cme —Ka CmCL ( SI-61)
ac o%c

al\tAL =D, aXI\ZAL — kg CmL + Ky CmCL ( SI-62)
oc o°c
EL =D, aTzLJF Ky, LCm.L = Ka . LOMCL + Ky nChi — Kag CHCL ( SI-63)
ac o°c

8TL =D, 8X|;L +Kg21Ch,1 —Ka2 iCrCHL — Kyt nCh + Kag nCHCL ( SI-64)
OCy, L ach4L

a D, ol Kaa1ChH,L + Kaa HCHCH, L ( SI-65)

Adding the transport Eqns. of all the protonated ligand forms (Eqns. ( SI-63)-( SI-65))

oc o%c
aft'P =D, axLZ’P + Ky Con — Ko CrCL ( SI-66)

where ¢, stands for

CLp =CL +Cuy +Cp | +Cph | +Cpy, ¢ ( SI-67)

Since protonation is instantaneous, acid-base equilibria relationship apply:

By =Bt (SI-68)

el

c_ can be rewritten as
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¢ = — ( SI-69)
1+Zﬂi,HCII-|
i=1

Interms of ¢, p, Eqns. ( SI-61), ( SI-62) and ( SI-66) become

oc d’c k
6,[M =Dy axévl + Ky e _+CMCL,P ( SI-70)
1+ Zﬂi,HC;-l
i=1
oc o°c k
a'\t/'L =D, ax’\z/'L —KgLCu = ——CnCLp ( SI-71)
1+ Zﬂi,HCIH
i=1
and
oc o%c k
a%[’P =D, axLZ’P +Kg L~ ——CuCLp ( SI-72)
1+ Zﬂi,HCIH
i=1

Eqgns. ( SI-70)-( SI-72) are formally identical to a system with one ligand with

concentration ¢ _,, that is not involved in any protonation equilibria. The effective

association and dissociation constants of this ligand with the metal are

Tk, (SI-73)
and
eff ka L
ka :4—'- ( SI‘74)
1+ Zﬂi,HC;ﬂ
i=1

The effective stability constant of the metal complexation with this formal ligand ¢,

of concentration given by Eqgn ( SI-67), is

eff
oK (SL-79)
T 1+ Z/Bi,HC:-I
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6.- Parameter values in all the figures of the manuscript

Table SI-1

Parameter

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Units

Resin thickness

4x107*

m

Gel thickness

1.13x10°°

1.13x10°°

1.13x10°°

m

Stability
constant

10°

10°

10°

mollms3

Association
rate constant
between M
andL

Ka

10"

2.58x10°

moll m3st

Dissociation
rate constant
between M
and L

Kd

107

2.76

sl

Association
rate constant
between M
and R

ka,R

1015

1015

1015

1015

moll m3st

Dissociation
rate constant
between M
and R

KdRr

10°

107°

10°

10°

S-l

Diffusion
coefficient of
M in resin and

gel

6.09x107"

6.09x107"°

6.09x107"°

6.09x107"°

m2 s-l

Diffusion
coefficient of L

in the resin and

gel domains

DLr

4.26x107%°
D.r=D1

4.26x107%°
D.r=DL

4.26x107%°
DLr=DL

m2 st

Diffusion
coefficients of
ML in resin and

gel

DwmL

DwmLr

4.26x107%
Dwmir=DwmL

4.26x107"°

4.26x107%°

m2 st

Total
concentration
of M

Cim

0.01

0.01

1.08x1072

mol m-3
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Total CrL 0.249 0.249 0.249 mol m-3
concentration

of L

Total CTR 50 50 50 50 mol m-3
concentration

of R

lonic strength | 0.05 50 M

oH 7.50

All simulations in this manuscript were calculated with a spatial grid of 2000 points and

atime interval At=0.1s.
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