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1.‐ Numerical Simulation of a DGT Sensor 

1.1.‐ The Model 
 

r r+g0

Gel layerResin
layer

Solution

x
 

Figure SI-1. Schematic representation of a DGT device. 
 

The model formulation coincides with that of (Lehto et al. 2006) and (Tusseau-

Vuillemin et al. 2003). 



  3 

Let iD
 
and ,RiD  stand for the diffusion coefficients of species i in the diffusive gel or in 

the resin domain, respectively and let ic  stand for the concentration of species i at a 

given spatial position x and time t. Total concentrations are denoted as T,ic . 

. The transport equations for the different species can be written as: 

• For the metal in the gel layer and in the resin layer: 

2
M M

M,R a M L d ML a,R M R d,R MR2 ,     if     0c cD k c c k c k c c k c x r
t x

∂ ∂
= − + − + < <

∂ ∂
  (SI-1)  

2
M M

M a M L d ML2 ,     if     c cD k c c k c r x r g
t x

∂ ∂
= − + < < +

∂ ∂  
(SI-2) 

• For the ligand: 

2
L,RL L

a M L d ML2
L

,     if     0
Dc c k c c k c x r g
Dt x

⎧ ⎫∂ ∂
= + − < < +⎨ ⎬∂ ∂⎩ ⎭  

 (SI-3) 

where the curly bracket indicates that L,RD  applies when 0 x r< <  and LD  applies 

when r x r g< < +  

• For the complex (assuming the same diffusion coefficient for complex and 

ligand): 

2
L,RML ML

a M L d ML2
L

,     if     0
Dc c k c c k c x r g
Dt x

⎧ ⎫∂ ∂
= + − < < +⎨ ⎬∂ ∂⎩ ⎭  

 (SI-4) 

• For the resin sites free (R) or occupied (MR): 

R
a,R M R d,R MR ,     if     0c k c c k c x r

t
∂

= − + < <
∂  

 (SI-5) 

MR
a,R M R d,R MR , if     0c k c c k c x r

t
∂

= + − < <
∂  

 (SI-6) 

 

There are no resin sites in the gel domain: R MR( , ) ( , ) 0c x t c x t= =  for r x r g< < + . 

Initial conditions correspond to the absence of metal and ligand in the sensor: 
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M L ML if     0( ,0) ( ,0) ( ,0) 0,c x c x c x x r g= = <= < +   (SI-7) 

MR if   ( ,   0) 0 0x xc r= < <    (SI-8) 

R T,R if   ( ,0)   0c x xc r= < <    (SI-9) 

where T,Rc  denotes the total concentration of resin sites (free or occupied). 

Boundary conditions at x r g= +  correspond to bulk concentrations:                     

* * *
M M L L ML ML( , ) , ( , ) , ( , )c r g t c c r g t c c r g t c+ = + = + =    (SI-10) 

Boundary conditions at x r= : 

at the gel-resin interface M L ML( , ), ( , ), and ( , )c x t c x t c x t  and their fluxes must be 

continuous, that is 

M M L L ML ML( , ) ( , ), ( , ) ( , ), ( , ) ( , )c r t c r t c r t c r t c r t c r t− + − + − += = =  and  (SI-11) 

M M L L ML ML
M,R M L,R L L,R L, ,

r r r r r r

c c c c c cD D D D D D
x x x x x x− + − + − +

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
  (SI-12) 

The continuity of the concentrations indicates that no Donnan effects are considered, so 

that charge effects of the resin are screened by the supporting electrolyte. 

Boundary conditions at 0x =  stem from non-flux conditions: 

M L ML

0 0 0

0
x x x

c c c
x x x= = =

∂ ∂ ∂
= = =

∂ ∂ ∂
.   (SI-13) 

Eqns. (SI-1)-(SI-6) with the initial conditions (SI-7 to SI-9) and boundary value 

problem (SI-10-SI-13) form a system of equations for 

M L ML R( , ), ( , ), ( , ), ( , )c x t c x t c x t c x t  and MR ( , )c x t . 

It could be useful to introduce the total ligand concentration, T,Lc . Adding equations 

(SI-3) and (SI-4), the transport equation for T,Lc  becomes: 
 

2
L,RT,L T,L

2
L

0
,     if     ,

D x rc c
D r x r gt x

< <∂ ∂⎧ ⎫ ⎧ ⎫
= ⎨ ⎬ ⎨ ⎬< < +∂ ∂ ⎩ ⎭⎩ ⎭

 (SI-14) 

with initial and boundary conditions given by: 
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T,L *
T,L T,L T,L

0

( ,0) 0, 0, ( , )
x

c
c x c r g t c

x =

∂
= = + =

∂
   and  (SI-15) 

T,L T,L
T,L T,L L,R L( , ) ( , ),

r r

c c
c r t c r t D D

x x− +

− + ∂ ∂
= =

∂ ∂
  (SI-16) 

Additionally, we can introduce the total resin concentration: 

R MR T,R( , ) ( , )c x t c x t c+ =  (SI-17) 

The addition of Eqs. (SI-5) and (SI-6) indicates, as physically expected, that T,Rc  is time 

independent. Thus the finding of M L ML R MR( , ), ( , ), ( , ), ( , ) and ( , )c x t c x t c x t c x t c x t   

can be reduced to the finding of ( )M L T,L R( , ), ( , ), ( , ), and ,c x t c x t c x t c x t  in the 

domain  0 x r g< < + . 

1.2.‐ Dimensionless Reformulation 
 

Let us reformulate the problem in terms of dimensionless functions and normalized 

variables.  

Let z be the spatial normalized variable. Its relationship with x and with its derivatives 

is: 

2 2

2 2
MM

1z
z D xD

x ∂ ∂
= → =

∂ ∂
  (SI-18) 

Then 

* *

M M

,r g
D
r r g

D
=

+
=  (SI-19) 

The dimensionless diffusion coefficients: 

M

, M, R; L; L, R .i
i

Dd i
D

= =
 
 (SI-20) 

The dimensionless concentrations: 
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T,LM L R
M L TL M* * * *

M L T,L T,R

, , ,
cc c cq q q q

c c c c
= = = =

 
 (SI-21) 

With these definitions, the transport equations become: 

• For the dimensionless metal: 

* *2 *
* T,L * d,R T,RM M L

M,R a L M L d T,L L a,R T,R M R R2 * * *
M M M

(1 ),
c cq q cd k c q q k q q k c q q q

t z c c
k

c
⎛ ⎞∂ ∂

= − + − − + −⎜ ⎟∂ ∂ ⎝ ⎠
 

 (SI-22) 

for *0 z r< < , and 

*2 *
T,L * *M M L

a M L d T,L L2 * *
M M

*
L ,     forc

cq q ck q q k q q r z g
t z c c

⎛ ⎞∂ ∂
= − + − < <⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠  

 (SI-23) 

with initial and boundary conditions: 

*M
M M

0

( ,0) 0,   0,    ( , ) 1,
z

qq z q g t
z =

∂
= = =

∂
 (SI-24) 

* *

* * M
M M M,R( , ) ( , ),    .M

z r z r

q qq r t q r t d
z z− +

− +

= =

∂ ∂
= =

∂ ∂  
 (SI-25) 

• Equations for the dimensionless ligand: 

*2
L,R T,L*L L

a M M L d T,L L2 *
L L

,
cq q k c q q k q

d
q

t z cd
⎛ ⎞⎧ ⎫∂ ∂

= − + −⎜ ⎟⎨ ⎬ ⎜ ⎟∂ ∂⎩ ⎭ ⎝ ⎠  
 (SI-26) 

*L
L L

0

( ,0) 0,   0,    ( , ) 1,
z

qq z q g t
z =

∂
= = =

∂  
 (SI-27) 

* *

* * L,R L
L L

L

( , ) ( , ),    .L

z r z r

d q qq r t q r t
d z z− +

− +

= =

∂ ∂
= =

∂ ∂  
 (SI-28) 

• Equations for the dimensionless total ligand: 

2
L,RT,L T,L

2
L

,
d
d

q q
t z

∂ ∂⎧ ⎫
= ⎨ ⎬∂ ∂⎩ ⎭

  (SI-29) 

T,L *
T,L T,L

0

( ,0) 0,   0,    ( , ) 1,
z

q
q z q g t

z =

∂
= = =

∂
  (SI-30) 

* *

* * L,R T,L T,L
T,L T,L

L

( , ) ( , ),    .
z r z r

d q q
q r t q r t

d z z− +

− +

= =

∂ ∂
= =

∂ ∂  
 (SI-31) 
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• Equation for the dimensionless free resin concentration: 

* *R
a,R M M R d,R R(1 ), if   0 ,q k c q q k q z r

t
∂

= − + − < <
∂  

 (SI-32) 

with initial condition R ( ,0) 1q z = . 

 
 

 

 

1.3.‐ Discretization 
 

rh gh

1 0z z= = nz z= mz z=

RESIN GEL

 

Figure SI-2.  Schematic representation of spatial grid. 
 

The resin layer domain will be divided into 1n −  equal parts of length r 1
rh

n
=

−
. The 

gel domain will be divided into 1m −  parts of length 
1g

gh
m n

=
− −  as shown in figure 

SI-2. The partial differential equations are discretized using spatial finite differences and 

a temporal Inverse-Euler scheme with constant t∆ . 

1.3.1.‐ Resin sites concentration 
The discretization of equation (SI-32) becomes:  
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*
R R a,R M M R d,R R( , ) ( , ) ( , ) ( , ) (1 ( , ))q z t t q z t tk c q z t t q z t t tk q z t t+ ∆ − = −∆ + ∆ + ∆ + ∆ − + ∆

 
  

 (SI-33) 

which leads to: 

R d,R
R *

a,R M M d,R

( , )
( , )

1 ( , )
q z t tk

q z t t
tk c q z t t tk

+ ∆
+ ∆ =

+ ∆ + ∆ + ∆
 (SI-34) 

 

1.3.2.‐ Total ligand concentration 
Although equation (SI-29) could be analytically solved, its computational cost is greater 

than the cost of its numerical solution. The discretized form of equation (SI-29) is: 

L
T,L T,L T,L TL T,L

L,R

( , ) ( , ) ( , ) 2 ( , ) ( , )i iq z t t q z t q z h t t q z t t q z h t t
α
α
⎧ ⎫

+ ∆ − = + + ∆ − + ∆ + − + ∆⎡ ⎤⎨ ⎬ ⎣ ⎦
⎩ ⎭

 
  

 (SI-35) 

Where ih  is equal to rh  or gh  depending on the domain, 2/L L gd t hα = ∆  and 

2
, , /L R L R rd t hα = ∆ . 

Equation (SI-35) can be rewritten as:  

L L L,R
T,L T,L T,L T,L

L,R L,R L

( , ) 1 2 ( , ) ( , ) ( , ).i iq z h t t q z t t q z h t t q z t
α α α
α α α

⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫
− − + ∆ + + + ∆ − + + ∆ =⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠
 (SI-36) 

which enables the equation system for ( )T,L ,iq z t t+ ∆  to be built: 

• For 1z , the equation for ( )T,L 1,q z t t+ ∆  is obtained from equation (SI-30), 

corresponding to the null flux condition at the origin, 

T,L 2 T,L 1( , ) ( , ) 0.q z t t q z t t+ ∆ − + ∆ =
 
 (SI-37) 

• For 2j =  to 1n − , the equations are obtained from (SI-36) considering the resin 

layer domain: 

( )L,R T,L r L,R T,L L,R T,L r T,L( , ) 1 2 ( , ) ( , ) ( , )j j j jq z h t t q z t t q z h t t q z tα α α− − + ∆ + + + ∆ − + + ∆ =
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 (SI-38) 

• At nz , that is *rz = , the equation is obtained from the boundary condition (SI-

31): 

L,R T,L n T,L n 1 T,L n 1 T,L n

L r g

( , ) ( , ) ( , ) ( , )
,

d q z t t q z t t q z t t q z t t
d h h

− ++ ∆ − + ∆ + ∆ − + ∆
=

 
 (SI-39) 

which can be rewritten as 

T,L n 1 T,L n T,L n 1( , ) ( 1) ( , ) ( , ) 0q z t t q z t t q z t tσ σ− −− + ∆ + + + ∆ − + ∆ =
 
 (SI-40) 

where g LR

r L

h d
h d

σ =   

• For 1j n= +  to 1m − , we are in the gel domain and the equations for 
( )T,L ,iq z t t+ ∆  are obtained from (SI-36): 

( )L T,L g L T,L L T,L g T,L( , ) 1 2 ( , ) ( , ) ( , )j j j jq z h t t q z t t q z h t t q z tα α α− − + ∆ + + + ∆ − + + ∆ =
 
  

 (SI-41) 

• Finally, for *gz =  the equation is obtained from condition in (SI-30): 

*
T,L ( , ) 1q g t t+ ∆ =  (SI-42) 

 

1.3.3.‐ Dimensionless ligand concentration 
In the same way, the discretized form of equation (SI-26) is: 

[ ]L,R
L L L L L

L

( , ) ( , ) ( , ) 2 ( , ) ( , )i iq z t t q z t q z h t t q z t t q z h t t
α
α

⎧ ⎫
+ ∆ − = + + ∆ − + ∆ + − + ∆⎨ ⎬

⎩ ⎭  
  

T,L
a M M L d T,L d L

L

( , ) ( , ) ( , ) ( , ),
c

tk c q z t t q z t t tk q z t t tk q z t t
c

∗
∗

∗−∆ + ∆ + ∆ + ∆ + ∆ − ∆ + ∆   (SI-43) 

or  

L,R L,R *
L a M M d L

L L

( , ) 1 2 ( , ) ( , )iq z h t t tk c q z t t tk q z t t
α α
α α

⎡ ⎤⎧ ⎫ ⎧ ⎫
− − + ∆ + + + ∆ + ∆ + ∆ + ∆⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

   

*
L,R T,L

L L d T,L*
L L

( , ) ( , ) ( , ).i

c
q z h t t q z t tk q z t t

c
α
α

⎧ ⎫
− + + ∆ = + ∆ + ∆⎨ ⎬
⎩ ⎭

   (SI-44) 
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Particular equations for each L ( , )iq z t t+ ∆  can be written.  

• The first equation, for 1z  reads: 

L 2 L 1( , ) ( , ) 0.q z t t q z t t+ ∆ − + ∆ =   
• From 2j =  to 1n − : 

L,R L r L,R a M M d L( , ) 1 2 ( , ) ( , )j j jq z h t t tk c q z t t tk q z t tα α ∗⎡ ⎤− − + ∆ + + + ∆ + ∆ + ∆ + ∆⎣ ⎦   
T,L

L,R L r L d T,L
L

( , ) ( , ) ( , ).j j j

c
q z h t t q z t tk q z t t

c
α

∗

∗− + + ∆ = + ∆ + ∆
 
  (SI-46) 

• At *
nz z r= = : 

L,R L n L n 1 L n 1 n

L r g

( , ) ( , ) ( , ) ( , ) ,Ld q z t t q z t t q z t t q z t t
d h h

− ++ ∆ − + ∆ + ∆ − + ∆
=   (SI-47) 

which rewrites as  

L n-1 L n L n-1( , ) ( 1) ( , ) ( , ) 0.q z t t q z t t q z t tσ σ− + ∆ + + + ∆ − + ∆ =   (SI-48) 

• For 1j n= +  to 1m − : 

L L g L a M M d L( , ) 1 2 ( , ) ( , )j j jq z h t t tk c q z t t tk q z t tα α ∗⎡ ⎤− − + ∆ + + + ∆ + ∆ + ∆ + ∆⎣ ⎦

T,L
L L g L d T,L

L

( , ) ( , ) ( , ).j j j

c
q z h t t q z t tk q z t t

c
α

∗

∗− + + ∆ = + ∆ + ∆
 
 (SI-49) 

• At mz z g∗= = : 

L m( , ) 1.q z t t+ ∆ =   (SI-50) 

 

1.3.4.‐ Dimensionless metal concentration 

Let us define M 2

t
x

α ∆
=
∆

 and M,R M,R Mdα α= . 

Discretization of equation (SI-22) becomes: 

M M M,R M r M M r( , ) ( , ) ( , ) 2 ( , ) ( , )j j j j jq z t t q z t q z h t t q z t t q z h t tα ⎡ ⎤+ ∆ − = + + ∆ − + ∆ + − + ∆⎣ ⎦  
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T,L L
a L M L d T,L d L

M M

( , ) ( , ) ( , ) ( , )j j j j

c ctk c q z t t q z t t tk q z t t tk q z t t
c c

∗ ∗
∗

∗ ∗−∆ + ∆ + ∆ + ∆ + ∆ − ∆ + ∆  

T,R
a,R T,R M R d,R R

M

( , ) ( , ) 1 ( , ) ,j j j

c
tk c q z t t q z t t tk q z t t

c

∗
∗

∗
⎡ ⎤−∆ + ∆ + ∆ + ∆ − + ∆⎣ ⎦  (SI-51) 

and for equation (SI-23):
 

M M M M g M M g( , ) ( , ) ( , ) 2 ( , ) ( , )j j j j jq z t t q z t q z h t t q z t t q z h t tα ⎡ ⎤+ ∆ − = + + ∆ − + ∆ + − + ∆⎣ ⎦  

T,L L
a L M L T,L d L

M M

( , ) ( , ) ( , ) ( , ).j j d j j

c ctk c q z t t q z t t tk q z t t tk q z t t
c c

∗ ∗
∗

∗ ∗−∆ + ∆ + ∆ + ∆ + ∆ − ∆ + ∆   

 (SI-52)  

The equations for each spatial node can be constructed with the same procedure as 

before. 

• For 1z : 

M 2 M 1( , ) ( , ) 0.q z t t q z t t+ ∆ − + ∆ =   (SI-53) 

• From 2j =  to 1n − : 

MR M r( , )jq z h t tα− − + ∆
  

MR a L L a,R T,R R M1 2 ( , ) ( , ) ( , )j j jtk c q z t t tk c q z t t q z t tα ∗ ∗⎡ ⎤+ + + ∆ + ∆ + ∆ + ∆ + ∆⎣ ⎦  

M,R M r( , )jq z h t tα− + + ∆
  

T,RTL L
M d T,L d L d,R R

M M M

( , ) ( , ) ( , ) 1 ( , ) .j j j j

cc cq z t tk q z t t tk q z t t tk q z t t
c c c

∗∗ ∗

∗ ∗ ∗
⎡ ⎤= + ∆ + ∆ −∆ +∆ +∆ − + ∆⎣ ⎦

 
 (SI-54) 

• At *
n rz z= = : 

 M n M n-1 M n+1 M n
M,R

r g

( , ) ( , ) ( , ) ( , ) .q z t t q z t t q z t t q z t td
h h

+ ∆ − + ∆ + ∆ − + ∆
=   (SI-55) 

• From 1j n= +  to 1m − : 

M M g M a L L M M M g( , ) 1 2 ( , ) ( , ) ( , )j j j jq z h t t tk c q z t t q z t t q z h t tα α α∗⎡ ⎤− − + ∆ + + + ∆ + ∆ + ∆ − + + ∆⎣ ⎦

T,L L
M d T,L d L

M M

( , ) ( , ) ( , ).j j j

c cq z t tk q z t t tk q z t t
c c

∗ ∗

∗ ∗= + ∆ + ∆ − ∆ + ∆
 
 (SI-56) 



  12 

• At mz z g∗= = : 

mM ( , ) 1.q z t t+ ∆ =   (SI-57) 

 

1.4.‐ Solution Procedure  
 

The coupled system of non linear equations obtained in the previous section (equations 

SI-34 to SI-57) will be solved separately for each species and time. The solution is 

obtained after iteration and convergence of the concentration of each species at each 

spatial position. This method allows a extremely huge reduction of the computational 

time in comparison to the CPU time required for the direct solution of the non-linear 

system. Let us comment in more detail on the solution procedure. 

The solution process begins by initializing the m n+  components of vectors T,L L M, ,q q q  

and Rq  with the values reached at the previous time interval. The values of vectors 

T,L L M, ,q q q  and Rq  at t t+ ∆  are obtained iteratively. For ( )L ,iq z t t+ ∆ , for example, 

the equations system (SI-45)-(SI-50) could be rewritten in a matrix from as, 

L 1
*

L 2LR LR a M M 2 d LR

*
LLR LR a M M d LR

*
LR LR a M M d LR

( , )
( , )1 2 ( , )

( ,1 2 ( , )

1 2

1 1

1

)

1

( ,

1

ii

i

q z t t
q z t ttk c q z t t tk

q z t ttk c q z t t tk

tk c q z t t tk

α α α

α α α

α α α

σ σ

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎜ ⎟
⎜ ⎟

−

+ ∆
+ ∆+ + ∆ + ∆ + ∆

+ ∆− + + ∆ + ∆ + ∆

+ + ∆ + ∆ + −⎜ ⎟
⎜ ⎟

⎟⎟
⎝

∆

⎜⎜
⎠

L n

L

L m

)

( , )

( , )

( , )

j

q z t t

q z t t

q z t t

+ ∆

+ ∆

+ ∆

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

  

*
TL

L 2 d TL 2*
L

*
TL

L d TL*
L

*
TL

L d TL*
L

0

( , ) ( , )

( , ) ( , )

( , ) (

0

1

, )

i i

j j
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This is a tridiagonal system for the unknowns ( )L ,iq z t t+ ∆  and it is solved iteratively 

through the TRIDAG.FOR subroutine (Press et al. 1986). Notice that this equation 

system for Lq , requires the values of ( )M ,iq z t t+ ∆  and ( )T,L ,iq z t t+ ∆  which are also 

unknowns. At iteration j, to uncouple ( )M j
q  and ( )T,L j

q  from ( )L j
q , we use the values 

of both ( )( )M 1
,i j

q z t t
−

+ ∆  and ( )( )T,L 1
,i j

q z t t
−

+ ∆  obtained in the previous iteration (j-1) 

in the solution of ( )L ,iq z t t+ ∆  at some iteration j. This procedure is applied iteratively 

for each species until all the system converges to a solution for each time step.  The 

time is then increased and the first iteration for the next time starts initializing all the 

unknowns with the values obtained at the previous time.  

Figure SI-3  shows schematically the algorithm used to solve the system 
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Figure SI-4. Flux diagram representing the algorithm used to solve the system 

2.‐ Concentration profiles in a DGT experiment 
 

Let us consider a DGT experiment using the numerical simulation described above. Fig. 

SI-5 depicts the concentration profiles of metal and complex through the DGT layers 

Initialization of all the 
unknowns with the 

initial values. 

t= ∆t 

Initialization of q´s for each 
spatial point 

Starts an iterative process for solving 
each species using the values of the 

previous iteration for the rest of species 

Iterative solution of  qM, qL, qTL 
and qR 

Checking the 
convergence

Variables 

Yes

End. Saving 
results 

No

End of iteration t=t+∆t Yes 

No
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and adjoining solution for different values of the kinetic complexation constants. With 

the parameters used in this figure, the metal concentration drops to almost zero at the 

resin interface due to the strong and fast resin binding. For low values of the 

dissociation rate constants (see panel a), the complex concentration profile is flat and 

equal to the complex concentration in solution, while the metal concentration profile is 

linear. This indicates the inert behaviour of the complex, which does not contribute to 

the flux received by DGT and the quasi-steady-state regime reached (the linear metal 

concentration profile indicates a time independent metal flux). On increasing the kinetic 

complexation constants (see panel b), the complex is depleted and its contribution to the 

metal flux through dissociation is apparent. Notice that the metal concentrations do not 

increase linearly with distance and their values at a given x are greater than those of the 

inert case, due to the complex dissociation contributing to a higher local metal 

concentration. A further increase of the kinetic constants leads to a more depleted 

complex concentration profile. Metal and complex concentration profiles increasingly 

coincide in the gel domain (see panel c). When both normalised profiles coincide, metal 

and complex are in local equilibrium, indicating that the complex is able to dissociate 

sufficiently rapidly to maintain equilibrium conditions with the metal. The thickness of 

the layer where both profiles diverge, can be related to the reaction layer. As expected, 

the thickness of the reaction layer decreases as the kinetic constants increase. Notice 

that at the interface between the resin and gel layers the slope of the complex 

concentration profile is not zero and the complex penetrates into the resin layer. The 

decrease in the complex concentration as the back plastic wall of the device is 

approached continues inside the resin, indicating that the dissociation process does not 

cease at the resin interface. A further increase of the kinetic constants (see panel d) leads 

to linear metal and complex concentration profiles superimposed throughout the entire 
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gel domain.  This corresponds to the labile situation where the dissociation of the 

complex is so fast that local equilibrium with the metal is reached at each relevant 

spatial and time position. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

 

  

x (mm)

Solution

  
  

 

Solution
Diffusive gelResin layer

x (mm)

(d)(c)

(b)

Diffusive gelResin layer Resin layerDiffusive gel

 

Solution
Diffusive gelResin layer

 

 
*
i

i

c
c

 
*
i

i

c
c

Solution

(a)

 

Figure SI-5. Normalized concentration profiles of M (Blue line with ▲ markers) and ML 
(red line with ■ markers). Profiles are obtained by numerical simulation described in SI-
1. Parameters: 44 10 mr −= × , 2 -1 3 -110 mol m sK = , panel a):  6 1

d 10 sk − −= , panel b) 
3 1

d 10 sk − −= , panel c) 2 1
d 10 sk − −=  and panel d) 0 1

d 10 sk −= . The rest of parameters as 
in figure 1 of the manuscript.  
 

3.‐ Experimental Section 
 

• DGT sensors 

All DGT sensors were purchased from DGT Research Ltd. (Lancaster, U.K.). 

Commercially available DGT deployment mouldings made of ABS polymer, based on a 

simple, tight-fitting piston design with a 2 cm diameter window, were used for all 
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measurements. A 0.4 mm thick Chelex-gel was placed on the piston surface with the 

side packed with resin beads facing upward (i.e. in close contact with the diffusive 

layer). On the top of the Chelex-gel, a 0.8 mm thick diffusive agarose polyacrylamide 

gel and a cellulose nitrate membrane (Whatman, pore size 0.45 µm, thickness 0.125 

mm) were placed. A more detailed description is found at DGT Research’s homepage 

(http://www.dgtresearch.com).  

• DGT Experiments 

A series of experiments were performed to determine the mass of cadmium accumulated 

at different times by DGT devices deployed in solutions containing Cd (prepared from 

the solid nitrate product, Merck, analytical grade) at a concentration close to 

2 310 mol m− −  and NTA (Fluka, analytical grade) at concentrations of 0.249 and 

31.8mol m− . pH was adjusted by means of small additions of NaOH or HNO3 to 7 or 7.5 

before and during the deployment. Ionic strength of the solution was adjusted to 

10.05mol L−  with NaNO3 (Merck, suprapur). Ultra-pure water (Mill-Q plus 185 System, 

Millipore) was employed in all the experiments.  

• DGT Exposure Chamber 

A 5L polyethylene bucket was used as the exposure chamber. 11 DGTs were fixed by 

press-stud. pH was monitored continuously with a glass electrode. A reference electrode 

Ag/AgCl/3 mol.L-1 KCl, with a 0.05 mol.L-1 NaNO3 jacket was used. The exposure 

chamber was placed in a thermostated bath to keep the deployment solution at constant 

temperature of 25±0.1ºC. The solution was stirred during deployment using an overhead 

stirrer. 

• Retrieval and analysis 

For all experiments, aliquots of the solution were collected at regular intervals to check 

the total Cd concentration. DGT devices, once removed from solution, were rinsed with 
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ultrapure water and opened for removal of the resin gels, which were then eluted in 1mL 

of concentrated nitric acid for at least 24h. The number of moles of metal in the form of 

non dissociated complex due to the complex penetration into the resin domain is 

negligible in comparison with those bound to the resin beads  All solutions were 

analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

(Activa-S, Horiba Scientific). 

4.‐ Additional figures 
 

Additional figures that verified the influence of the thickness of the DGT resin layer on 

the accumulated mass for the Cd-NTA system. 

Conditional stability constants and kinetic parameters for the Cd NTA system at a given 

pH, ionic strength and total metal and total ligand concentration were estimated as 

reported in the manuscript. Values used in the numerical simulations for the kinetic 

association and dissociation constants of the metal to the resin sites are   

15 -1 3 1
a,R 10 mol m s−=k  and  6 1

d,R 10 sk − −=  while the total concentration of resin sites in 

the resin layer is 3
T,R 50 mol m−=c . These values  are high enough to neglect saturation 

effects and to reach an almost null metal concentration at the resin interface.  
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Figure SI-6.  Moles of Cd accumulated by DGT in presence of NTA. Markers: 
experimental measurements, two deployments (■) and (▲). Blue continuous line: 
theoretical accumulation predicted by numerical simulation when penetration of the 
complex into the resin layer is considered ( 44 10 mr −= × ). Red dashed line with 
markers □: theoretical accumulation predicted by numerical simulation when 
penetration of the complex into the resin layer is not allowed ( 0r = ). Parameters: total 
NTA concentration 3

T,NTA 0.249 mol mc −= , total Cd concentration 
3 3

T,Cd 9.96 10 mol mc − −= × , pH=7.03, I=0.05M, eff 4 3 -1 1
a 8.77 10 m mol sk −= ×  and 

eff
eff 1a

d d eff
CdNTA

2.76skk k
K

−= = = . The rest of parameters as in figure 4 of the manuscript. 
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Figure SI-7. Moles of Cd accumulated by DGT in presence of NTA. Marker (■): 
experimental measurements. Blue continuous line: theoretical accumulation predicted 
by numerical simulation when penetration of the complex into the resin layer is 
considered ( 44 10 mr −= × ). Red line with markers □: theoretical accumulation 
predicted by numerical simulation when penetration of the complex into the resin layer 
is not allowed ( 0r = ). Parameters: total NTA concentration 3

T,NTA 1.8mol mc −= , total 

Cd concentration 2 3
T,Cd 1.08 10 mol mc − −= × , pH=7.50,ionic strength 0.05M, 

eff 5 3 -1 1
a 2.58 10 m mol sk −= ×  and 

eff
eff 1a

d d eff
CdNTA

2.76skk k
K

−= = = . The rest of parameters as 

in figure 4 of the manuscript. 
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5.‐ Formulation of the Cd‐NTA speciation in a DGT sensor as a 
system with only one complex and ligand species. 
 

NTA is involved in four acid-base equilibria. Among all these species only NTA3- is 

known to interact with Cd to give the complex species CdNTA and Cd(NTA)2. Thus 

only NTA3- is the ligand in the Cd-NTA system. However, the concentration of NTA3- 

is not only modified by the presence of Cd, but also by the pH of the system. The 

formulation of the Cd-NTA system as  

a,L

d,L
M L MLk

k
+  (SI-59) 

with a fixed total ligand concentration, T,Lc , computed as T,L L M,Lc c c= +  is then not 

valid. It is the aim of this section of this supporting information to show that the Cd-

NTA system can be reformulated so that equations equivalent to the system represented 

with scheme  SI-60 can be applied.  

Let us assume that 

i) protonated and unprotonated NTA species have the same diffusion coefficient, LD  

ii) the kinetics of interconversion between the protonated/unprotonated NTA species is 

considered instantaneous (i.e. they are always at equilibrium), so that all the protonated 

and unprotonated species diffuse and react as one “single species”.  

 

A scheme of the processes in solution is: 
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a,L

d,L

d1,H a1,H

d 2,H a 2,H

4

M L ML

H

HL

H

....
H L

k

k

k k

k k

+

+

↑↓

+

↑↓

 ( SI-60) 

The transport problem can be stated as 

2
M M

M d,L ML a,L M L2
c cD k c k c c
t x

∂ ∂
= + −

∂ ∂
 ( SI-61) 

2
M L ML

L d,L ML a,L M L2
c cD k c k c c

t x
∂ ∂

= − +
∂ ∂

 ( SI-62) 

2
L L

L d,L M,L a,L M L d1,H HL a1,H H L2
c cD k c k c c k c k c c
t x

∂ ∂
= + − + −

∂ ∂
 ( SI-63) 

2

2
H L H L

L d2,H H L a2,H H H L d1,H HL a1,H H L2
c cD k c k c c k c k c c

t x
∂ ∂

= + − − +
∂ ∂

 ( SI-64) 

…. 

4 4

3 3

2
H L H L

L d4,H H L a4,H H H L2

c c
D k c k c c

t x
∂ ∂

= − +
∂ ∂

 ( SI-65) 

Adding the transport Eqns. of  all the protonated ligand forms (Eqns. ( SI-63)-( SI-65)) 

2
L,P L,P

L d,L ML a,L M L2
c c

D k c k c c
t x

∂ ∂
= + −

∂ ∂
 ( SI-66) 

where L,Pc  stands for 

2 3 4L,P L H L H L H L H Lc c c c c c= + + + +  ( SI-67) 

Since protonation is instantaneous, acid-base equilibria relationship apply: 

H L
,H

H L

i
i i

c
c c

β =  ( SI-68) 

Lc  can be rewritten as 
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L,P
L 4

,H H
1

1 i
i

i

c
c

cβ
=

=
+∑

 ( SI-69) 

In terms of L,Pc , Eqns. ( SI-61), ( SI-62) and ( SI-66) become  

2
a,LM M

M d,L ML M L,P2 4

,H H
1

1 i
i

i

kc cD k c c c
t x cβ

=

∂ ∂
= + −

∂ ∂ +∑
 ( SI-70) 

2
a,LM L ML

L d,L ML M L,P2 4

,H H
1

1 i
i

i

kc cD k c c c
t x cβ

=

∂ ∂
= − +

∂ ∂ +∑
 ( SI-71) 

and 

2
L,P L,P a,L

L d,L ML M L,P2 4

,H H
1

1 i
i

i

c c k
D k c c c

t x cβ
=

∂ ∂
= + −

∂ ∂ +∑
 ( SI-72) 

Eqns. ( SI-70)-( SI-72) are formally identical to a system with one ligand with 

concentration L,Pc ,  that is not involved in any protonation equilibria. The effective 

association and dissociation constants of this ligand with the metal are 

eff
d d,Lk k=  ( SI-73) 

and 

a,Leff
a 4

,H H
1

1 i
i

i

k
k

cβ
=

=
+∑

 ( SI-74) 

The effective stability constant of the metal complexation with this formal ligand L,Pc , 

of concentration given by Eqn ( SI-67), is 

eff
eff a

eff 4
d

,H H
1

1 i
i

i

k KK
k cβ

=

= =
+∑

 ( SI-75) 
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6.‐ Parameter values in all the figures of the manuscript  
Table SI-1 

Parameter Fig. 1 Fig. 2 Fig. 3 Fig. 4 Units 

Resin thickness r   44 10−×   m 

Gel thickness g 31.13 10−×  31.13 10−×   31.13 10−×  m 

Stability 
constant 

K 210  210   210  mol-1 m3  

Association 
rate constant 
between M 
and L  

ka  110−   52.58 10×  mol-1 m3 s-1 

Dissociation 
rate constant 
between M 
and L  

kd  310−   2.76  s-1 

Association 
rate constant 
between M 
and R 

ka,R 1510  1510  1510  1510  mol-1 m3 s-1 

Dissociation 
rate constant 
between M 
and R 

kd,R 610−  610−  610−  610−  s-1 

Diffusion 
coefficient of 
M in resin and 
gel 

DM  

DM,R 

106.09 10−×  106.09 10−×
 

106.09 10−×
 

106.09 10−×
 

m2 s-1 

Diffusion 
coefficient of L 
in the resin and 
gel domains 

DL  

DL,R 

104.26 10−×  
DL,R=DL 

104.26 10−×
 DL,R=DL 

 104.26 10−×
 DL,R=DL 

m2 s-1 

Diffusion 
coefficients of 
ML in resin and 
gel 

DML 

 DML,R 

104.26 10−×  
DML,R=DML 

104.26 10−×
 

 104.26 10−×
 

m2 s-1 

Total 
concentration 
of M 

cT,M 0.01  0.01   21.08 10−×  mol m-3  
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Total 
concentration 
of L 

cT,L 0.249  0.249   0.249  mol m-3 

Total 
concentration 
of R 

cT,R 50  50  50  50  mol m-3 

Ionic strength I   0.05  50  M 

pH     7.50   

 

All simulations in this manuscript were calculated with a spatial grid of 2000 points and 

a time interval  0.1t∆ =  s.  
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