⁷⁷Se Solid-State NMR of Inorganic and Organoselenium Systems: A Combined Experimental and Computational Study

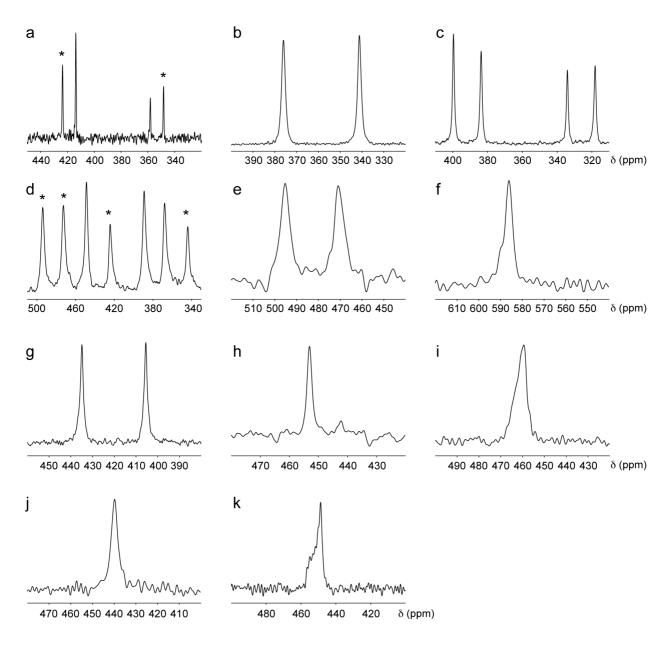
John M. Griffin, Fergus R. Knight, Guoxiong Hua, Jeanette S. Ferrara, Simon W. L. Hogan,
J. Derek Woollins and Sharon E. Ashbrook

Supporting Information

- S1. Further experimental details and centreband expansions for ⁷⁷Se solid-state NMR experiments
- S2. Powder X-ray diffraction data for SeO₂ (2)
- S3. ¹³C CP MAS NMR spectra for compounds 6 17
- S4. ³¹P MAS NMR spectrum for 6
- S5. ²⁷Al NMR spectra of Al₂Se₃ (4)
- **S6.** References

S1. Further experimental details and centreband expansions for ⁷⁷Se solid-state NMR experiments

Table S1.1 summarises the number of coadded transients, recycle intervals and cross-polarisation contact times (where appropriate) used for recording the 77 Se solid-state NMR spectra shown in Figures 2, 4, 6 and 8.


Table S1.1 Experimental parameters for 77 Se solid-state NMR experiments performed for samples 1-17.

Sample	Experiment	Magnetic	Number of	Recycle	Contact time
		field (T)	transients	interval / s	/ ms
1	MAS	14.1	32	300	-
1	Static	14.1	208	300	-
2	MAS	14.1	4	300	-
2	Static	14.1	12	300	-
3	MAS	14.1	4	240	-
3	Static	14.1	192	240	-
4	MAS	14.1	240	240	-
5	MAS	14.1	8	300	-
5	Static	14.1	4	300	-
6	CPMAS	9.4	666	30	15.0
	(5 kHz)				
6	CPMAS	9.4	1240	30	15.0
	(12.5 kHz)				
7	CPMAS	9.4	440	120	18.0
8	CPMAS	9.4	640	120	18.0
9	CPMAS	9.4	74	120	15.0
10	CPMAS	9.4	696	120	15.0
11	CPMAS	9.4	2598	120	18.0
12	CPMAS	9.4	656	120	18.0
13	CPMAS	9.4	102	120	15.0
14	CPMAS	9.4	492	120	15.0
15	CPMAS	9.4	474	120	15.0
16	CPMAS	9.4	114	120	15.0
17	CPMAS	9.4	694	120	10.0

The ⁷⁷Se static NMR spectra of samples 1 and 3, and MAS NMR spectrum of sample 4 were recorded using a spin-echo pulse sequence (90°- τ -180°- τ -acquire) to remove baseline and lineshape distortions due to the short T_2 relaxation times. Spin-echo τ delays were 50 μ s for 1, 40 μ s for 3, and 71.4 μ s for 4.

 77 Se static NMR spectra for samples **2** and **5** were recorded using the Carr-Purcell Meilboom-Gill (CPMG) pulse sequence^{S1,S2} with an echo spacing of 500 μs. The number of echoes in the CPMG acquisition was 1000 for **2** and 1500 for **5**. The echoes were coadded prior to Fourier transformation.

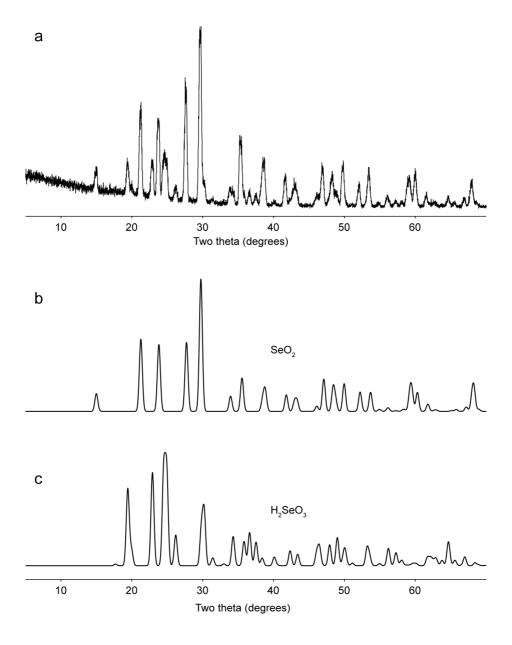
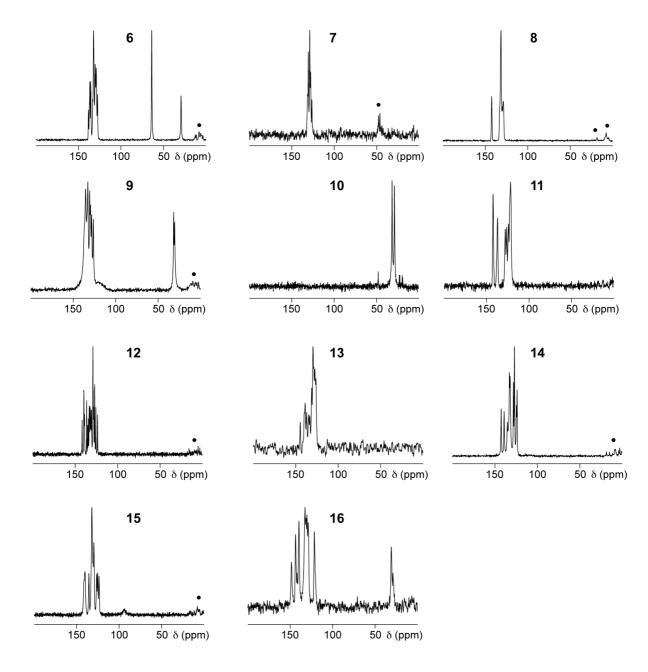

Figure S1.1 shows expanded views of the isotropic resonances in the ⁷⁷Se CPMAS NMR spectra of compounds **7 - 17** shown in Figures 6 and 8.

Figure S1.1. Expanded views of the isotropic resonances in 77 Se CP MAS NMR spectra of (a – k) compounds 7 – 17 shown in Figures 6 and 8.

S2. Powder X-ray diffraction data for SeO₂ (2)

In view of the apparent discrepancy between the ⁷⁷Se isotropic chemical shifts for 2 measured in this study and previous work, ⁵³ powder X-ray diffraction (PXRD) data was recorded to check the structure and purity of our sample. The experimental powder X-ray diffraction pattern for 2 is shown in Figure S2.1a. A simulated PXRD pattern based on the structure of McCullough *et al.*, ⁵⁴ shown in Figure S2.1b, shows good agreement with the experimental data. Additional lower intensity peaks can be attributed to the presence of small amounts of H₂SeO₃ (1) in the sample, which forms upon contact with moisture in the air. Indeed, a simulated PXRD pattern for 1 based on the structure of Larsen *et al.*, ⁵⁵ shown in Figure S2.1c, agrees well with the extra peaks observed in the experimental PXRD pattern. The presence of 1 does not explain the observed discrepancy between our ⁷⁷Se MAS NMR results and the previous study, as the isotropic resonance for 1 would be observed at 1288.1 ppm. For solid-state NMR experiments, a dried sample of SeO₂ was used.


Figure S2.1. Experimental (a) and simulated (b) PXRD patterns for **2**. (c) Simulated PXRD pattern for H₂SeO₃ (**1**).

S3. ¹³C CP MAS NMR spectra for compounds 6 – 17

 13 C CP MAS NMR spectra for compounds **6** – **17** are shown in Figure S3.1. Spectra were recorded using Bruker Avance III spectrometers operating at magnetic field strengths of 9.4 T (samples **6**, **8**, **9**, **11** – **17**) and 14.1 T (samples **7** and **10**). All experiments were performed using a MAS frequency of 12.5 kHz with samples packed into 4-mm rotors, with the exception of **10**, which was packed into a 2.5-mm rotor. Chemical shifts are referenced relative to $(CH_3)_4Si$ at 0 ppm. All spectra were acquired using cross polarisation from 1H , and 1H TPPM decoupling during acquisition. The number of coadded transients, recycle intervals and cross-polarisation contact times used in each experiment are summarised in Table S3.1.

Table S3.1. Experimental parameters for 13 C CP MAS NMR experiments performed for samples 6-17.

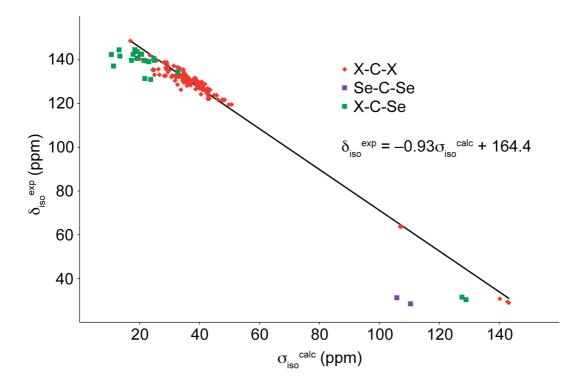

Sample	Magnetic field	Number of	Recycle interval	Contact time /
	(T)	transients	/ s	ms
6	9.4	600	120	1.0
7	14.1	342	60	1.5
8	9.4	112	120	1.0
9	9.4	1048	60	1.0
10	14.1	1000	5	1.0
11	9.4	56	120	1.0
12	9.4	56	120	1.0
13	9.4	32	120	1.5
14	9.4	68	120	1.5
15	9.4	572	120	1.5
16	9.4	152	120	1.5
17	9.4	362	20	1.5

Figure S3.1. ¹³C CP MAS NMR spectra for compounds **6** – **17**. Spinning sidebands or groups of spinning sidebands are indicated by black dots. Low intensity peaks observed in the spectra for **9**, **10** and **15** are attributed to residual solvent or impurity in the samples.

A plot of experimental ¹³C chemical shifts against calculated chemical shieldings, shown in Figure S3.2, reveals a good correlation for most data points. However, data points corresponding to carbons in Se-C-Se environments (shown in purple) are found to lie significantly far from the line of best fit. Indeed, chemical shieldings for carbons with directly-bonded seleniums (shown in green) are found to be slightly less-well reproduced by the calculations in general. This suggests that the carbon chemical shift may be

influenced by relativistic effects when directly bonded to the heavier selenium atom, and that this effect could be amplified for carbons bonded to two selenium species.

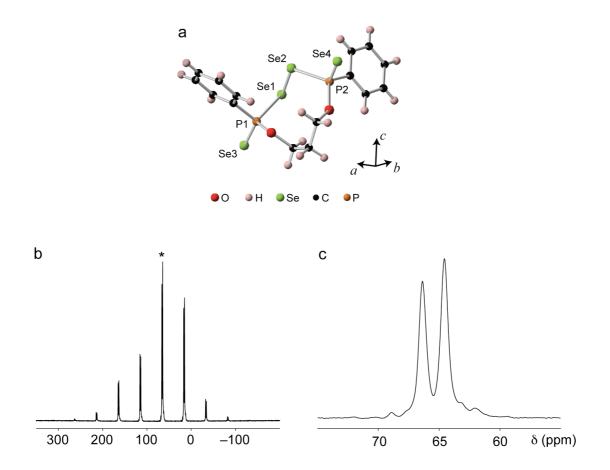


Figure S3.2. Plot of experimental 13 C chemical shifts, δ_{iso}^{exp} , against calculated isotropic chemical shieldings, σ_{iso}^{calc} , for compounds 1 - 17. The solid line represents a linear fit to the data. Data points corresponding to carbons directly bonded to selenium atoms are shown in green. Purple data points correspond to carbons directly bonded to two selenium atoms.

S4. ³¹P MAS NMR spectrum for 6

A ³¹P MAS NMR experiment was performed on **6** using a Bruker Avance III spectrometer operating at a magnetic field strength of 9.4 T. The sample was packed into a 4-mm rotor and rotated at a MAS frequency of 8 kHz. The spectrum was acquired using cross polarisation from ¹H with a contact time of 1.5 ms, and ¹H TPPM decoupling during acquisition. The spectrum is the result of averaging 128 transients separated by a recycle interval of 10 s. ³¹P chemical shifts are referenced to the isotropic resonance of BPO₄ at – 29.4 ppm.

The crystal structure of 6, shown in Figure S4.1a, contains two distinct P sites, P1 and P2. These are observed in the 31 P MAS NMR spectrum of 6, shown in Figure S4.1a, at isotropic chemical shifts of $\delta_{iso}^{exp} = 66.4$ and 64.6 ppm. From lineshape analysis of the spinning sideband patterns, it is possible to determine chemical shift tensor parameters for each site. These are summarised in Table S4.1. The experimentally determined values agree well with theoretical values obtained from the GIPAW calculations, summarised in Table S4.2. In an expanded view of the isotropic resonances, shown in Figure S4.1c, low intensity 'shoulders' are observed, corresponding to J couplings to the 7.6% abundant ⁷⁷Se. The magnitudes of the observed splittings are consistent with the values of 430 - 480 Hz and 810 - 830 Hz observed in the ⁷⁷Se CP MAS NMR spectrum of 6.

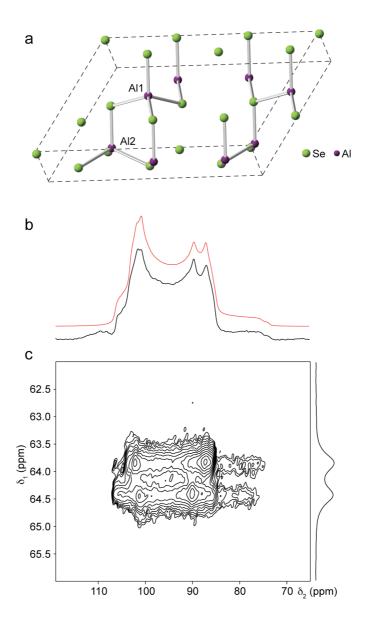
Figure S4.1. (a) Crystal structure of **6** showing the two distinct P sites. (b) 31 P CP MAS NMR spectrum of **6**. Isotropic resonances are indicated by an asterisk. (c) Expanded region of the 31 P CP MAS NMR spectrum shown in (b), showing the isotropic resonances and 'shoulders' resulting from *J* couplings to the directly-bonded, 7.6% abundant 77 Se.

Table S4.1. Experimental ³¹P NMR parameters (isotropic chemical shift, δ_{iso}^{exp} , chemical shift tensor components, δ_{ii}^{exp} , and span, Ω_{CS}^{exp}) for compound **6**, extracted from the spectrum in Figure S4.1a.

Site	$\delta_{ m iso}^{ m \ exp}$	$\delta_{11}^{\;\;\mathrm{exp}}$	$\delta_{22}^{ m \ exp}$	$\delta_{33}^{ m \ exp}$	$\Omega_{ ext{CS}}^{ ext{ exp}}$
P1	66.4(1)	195(2)	18(2)	-13(2)	208(3)
P2	64.6(1)	190(2)	20(2)	-16(2)	206(3)

All values are quoted in ppm.

Table S4.2. Calculated ^{31}P NMR parameters (isotropic chemical shift, δ_{iso}^{calc} , chemical shift tensor components, δ_{ii}^{calc} , and span, Ω_{CS}^{calc}) for compound **6**.


Site	$\delta_{ m iso}^{ m \ calc}$	$\delta_{11}^{ m calc}$	$\delta_{\scriptscriptstyle 22}^{}$ calc	$\delta_{33}^{\mathrm{calc}}$	$\Omega_{ extsf{CS}}^{ ext{ calc}}$
P1	66.1	188.3	48.1	-38.0	226.3
P2	65.3	191.2	54.0	-49.4	240.6

All values are quoted in ppm. Chemical shifts were determined from the calculated chemical shieldings using a reference shielding of 214.4 ppm.

S5. ²⁷Al NMR spectra of Al₂Se₃ (4)

For further insight into the structure of 4, ²⁷Al solid-state NMR spectra were recorded. Experiments were performed using a Bruker Avance III spectrometer operating at a magnetic field strength of 14.1 T. The sample was packed into a 4-mm rotor and rotated at a MAS frequency of 14 kHz. Spectra are referenced relative to 1 M Al(NO₃)₃(aq).

The crystal structure of 4,⁵⁷ shown in Figure S5.1a, features two distinct Al sites, denoted Al1 and Al2. Both sites are tetrahedrally coordinated to four surrounding selenium atoms and have very similar local structural environments with respect to bond lengths and angles. As ²⁷Al (spin I = 5/2) is a quadrupolar nucleus, MAS NMR spectra are typically broadened by the second-order quadrupolar interaction, limiting resolution. A ²⁷Al MAS NMR spectrum shown in Figure S5.1b clearly shows a superposition of two second-order quadrupolar broadened lineshapes, from which quadrupolar and chemical shift parameters can be determined by a fit to the lineshape (shown in red). The second-order quadrupolar broadening can be removed using a two-dimensional multiple-quantum (MQ) MAS NMR experiment. A triple-quantum MAS NMR spectrum for 4, is shown in Figure S5.1c. In this spectrum, the two resonances are clearly resolved in the isotropic dimension.

Figure S5.1. (a) Crystal structure of **4** showing the two crystallographically-distinct Al sites. (b) ²⁷Al MAS NMR spectrum of **4** (shown in black) and a fit to the experimental lineshape (shown in red). The MAS spectrum is the result of averaging 504 transients separated by a recycle interval of 3 s. (c) A two-dimensional triple-quantum MAS NMR spectra of **4**. The MQMAS spectrum was acquired using a phase-modulated split-t₁ shifted-echo pulse sequence and results from averaging 96 transients for each of 326 t₁ increments of 184.4 μs.

Table S5.1 compares the experimental values with calculated values obtained from the GIPAW DFT calculation on the optimised structure. Good agreement is observed between the calculated and experimental NMR parameters, with a slight underestimation of the $C_{\rm Q}$ for both sites.

Table S5.1. Experimental 27 Al NMR parameters (isotropic chemical shift, δ_{iso}^{exp} , quadrupolar coupling, C_Q , and asymmetry, η_Q) for compound **6**, extracted from the spectrum in Figure S5.1b.

	Experimental			(Calculated		
Site	$\delta_{\rm iso}^{\ \ exp}$ (ppm)	C_Q / MHz	$\eta_{\scriptscriptstyle Q}$	$\delta_{\rm iso}^{\rm \ calc} (ppm)^{\dagger}$	$ C_Q / MHz$	η_{Q}	
Al1	110.0(1)	7.49(1)	0.24(5)	109.75	6.82	0.29	
Al2	107.6(1)	7.44(1)	0.13(5)	107.85	7.10	0.32	

[†]Determined from the calculated chemical shieldings using a reference shielding of 511.75 ppm.

S6. References

- S1. Carr, H. Y.; Purcell, E. M. Phys. Rev., 1954, 94, 630.
- S2. Meilboom, S.; Gill, D. Rev. Sci. Instrum., 1958, 29, 688.
- S3. Kemp, T. F.; Wong, A.; Smith, M. E.; Bishop, P. T.; Carthey, N. *Solid State Nucl. Magn. Reson.*, **2008**, *34*, 224.
- S4. McCullough, J. D. J. Am. Chem. Soc., 1937, 59, 789.
- S5. Larsen, F. K.; Lehmann, M. S.; Søtofte, I. Acta Chemica Scandinavica, 1971, 25, 1233.
- S6. Hua, G.; Li, Y.; Slawin, A. M. Z.; Woollins, J. D. Angew. Chem. Int. Ed., 2008, 47, 2857.
- S7. Steigmann, G. A.; Goodyear, J. *Acta Cryst.*, **1966**, 20, 617.