Primary Amino Acid Derivatives: Compounds with Anticonvulsant and Neuropathic Pain Protection Activities

Amber M. King,¹ Christophe Salomé,¹ Jason Dinsmore, Elise Salomé-Grosjean,¹ Marc De Ryck,² Rafal Kaminski,² Anne Valade,² and Harold Kohn^{*,1,3}

¹Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA ²UCB Pharma S.A., CNS Research, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium ³Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA

Table of Contents

1.	General Methods and Procedures 4
2.	Preparation of (R) -, (S) -, and (R,S) -N-Benzyl 2-Amino-3-hydroxypropionamide $((R)$ -, (S) -,
	and (<i>R</i> , <i>S</i>)-7)
3.	Preparation of (R) -, (S) -, and (R,S) -N-Benzyl 2-Amino-3-methoxypropionamide $((R)$ -, (S) -,
	and (<i>R</i> , <i>S</i>)-8)13
4.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-ethoxypropionamide ((<i>R</i> , <i>S</i>)-9)16
5.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-propoxypropionamide ((<i>R</i> , <i>S</i>)-10)18
6.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-allyloxypropionamide ((<i>R</i> , <i>S</i>)-11)20
7.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-(prop-2-ynyloxy)propionamide ((<i>R</i> , <i>S</i>)- 12)26
8.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2,3-Diaminopropionamide ((<i>R</i> , <i>S</i>)- 13)29
9.	Preparation of (R,S) -N-Benzyl 2-Amino-3- $(N',N'$ -dimethyl)aminopropionamide $((R,S)$ -15)
10.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-morpholinopropionamide ((<i>R</i> , <i>S</i>)- 16)35
11.	Attempted Synthesis of (R,S)-2-N-(Benzyloxycarbonyl)amino-3-(N'-methylamino)propionic
	Methyl Ester ((<i>R</i> , <i>S</i>)- 53)
12.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Amino-4-hydroxybutanamide ((<i>R</i>)-17)39
13.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Amino-4-(methylthio)butanamide ((<i>R</i>)- 19)41
14.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Aminobutanamide ((<i>R</i>)- 21)43
15.	Preparation of (R) -, (S) -, and (R,S) -N-Benzyl 2-Aminopentanamide $((R)$ -, (S) -, and (R,S) -22)
16.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Amino-2-pentanamide ((<i>R</i>)-23)

17.	Preparation of (R)- and (S)-N-Benzyl 2-N'-Amino-3,3-dimethylbutanamide ((R)- and	(<i>S</i>)-
	25)	58
18.	Preparation of (<i>R</i> , <i>S</i>)- <i>N</i> -Benzyl 2-Amino-3-methylpentanamide ((<i>R</i> , <i>S</i>)- 26)	62
19.	Preparation of (<i>R</i>)-2-Amino- <i>N</i> -benzyl-2-cyclohexylacetamide ((<i>R</i>)-27)	64
20.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Amino-3-phenylpropionamide ((<i>R</i>)-28)	66
21.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Acetamido-3-methylbutanamide ((<i>R</i>)-105)	69
22.	Preparation of (<i>R</i>)- <i>N</i> -Benzyl 2-Acetamido-3,3-dimethylbutanamide ((<i>R</i>)-106)	70
23.	Pharmacological Evaluation	71
24.	Table S1. Comparison of the pharmacological activities of C(2)-hydrocarbon FAAs and	
	their PAAD counterparts in rats (mg/kg)	76
25.	Table S2. Pharmacological activities of $C(2)$ - <i>N</i> -benzylamide PAAD chiral sets in mice	
	(mg/kg) at UCB and the NINDS ASP	77
26.	Table S3. Comparison of the pharmacological activities of PAADs evaluated in mice	
	(mg/kg) at UCB and the NINDS-ASP	79
27.	Table S4. Elemental analysis of prepared compounds	80
28.	Table S5. Mass spectra data of select compounds	81
29.	References	82

1. General Methods and Procedures

General Methods. Melting points were determined in open capillary tubes using a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra (IR) were recorded on an ATI Mattson Genesis FT-IR spectrometer. Absorption values are expressed in wavenumbers (cm⁻¹). Optical rotations were obtained on a Jasco P-1030 polarimeter at the sodium D line (589 nm) using a 1 dm path length cell. NMR spectra were recorded at 300 or 400 MHz (¹H) and 75 or 100 MHz (¹³C) using tetramethylsilane (TMS) as an internal standard. Chemical shifts (δ) are reported in parts per million (ppm) from TMS. Low-resolution mass spectra (LRMS) were recorded with a BioToF-II-Bruker Daltonics spectrometer by Drs. M. Crowe and S. Habibi at the University of North Carolina Department of Chemistry. The high-resolution mass spectra (HRMS) were recorded on a Bruker Apex-Q 12 Telsa FTICR spectrometer by Drs. M. Crowe and S. Habibi. Microanalyses were performed by Atlantic Microlab, Inc. (Norcross, GA). Reactions were monitored by analytical thin-layer chromatography (TLC) plates (Aldrich, catalog no. Z12272-6, or Dynamic Adsorbents Inc., catalog no. 84111) and analyzed with 254 nm light. The reaction mixtures were purified by medium pressure liquid chromatography (MPLC, CombiFlash Rf) with self-packed columns (silica gel from Dynamic Adsorbents Inc., catalog no. 02826-25) or by flash column chromatography using silica gel (Dynamic Adsorbents Inc., catalog no. 02826-25). All chemicals and solvents were reagent grade and used directly from commercial sources without further purification. THF was distilled from blue sodium benzophenone ketyl. Yields reported are for purified products and were not optimized. All compounds were checked by TLC, ¹H and ¹³C NMR, MS, and elemental analyses. The analytical results are within ±0.40% of the theoretical value. The TLC, NMR, and analytical data confirmed the purity of the products was $\geq 95\%$.

General Procedure for the Preparation of *N*-Benzyloxycarbonyl Amino Acids and *N*-Benzyloxycarbonyl Amino Methyl Esters (Method A). NaHCO₃ (2.5–3.3 equiv) was added to an aqueous solution of amino acid (0.4–0.5 M) and the solution was cooled to 0 °C in an ice bath under an inert atmosphere (Ar or N₂) before benzylchloroformate (1.1–1.5 equiv) was added dropwise. The reaction proceeded for 45 min at 0 °C and then allowed to warm to room temperature (24 h). Amino acid derivatives: The aqueous layer was washed with EtOAc (3x), acidified to pH ~1 with aqueous concentrated HCl, and extracted with EtOAc (3x). The second set of organic layers were combined, dried (MgSO₄), and concentrated in vacuo. The crude product was used for the next step without further purification or purified by recrystallization from hot EtOAc/hexanes. Amino methyl ester derivatives: The aqueous layer was extracted with CH₂Cl₂ (3x), dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (SiO₂).

General Procedure for the Preparation of *N*-Benzylamide Amino Acid Derivatives Using the Mixed Anhydride Coupling (MAC) Method (Method B). An anhydrous THF solution of carboxylic acid (0.5–2.0 M) was cooled to -78 °C in a dry ice/acetone bath under an inert atmosphere (Ar or N₂), and 4-methylmorpholine (NMM) (1.3–1.5 equiv) was added. After the mixture was stirred (2–10 min), isobutyl chloroformate (IBCF) (1.1–1.5 equiv) was added leading to the precipitation of a white solid. The reaction was allowed to proceed for an additional 15–25 min, and then benzylamine (1.05–1.36 equiv) was added at -78 °C. The reaction mixture was allowed to stir at room temperature (1.5 h), and then the insoluble salts were filtered. The organic layer was concentrated in vacuo, and the product was purified by column chromatography (SiO₅).

5

General Procedure for the Conversion of Cbz-Protected PAADs to PAADs Using Pd-

Catalyzed Hydrogenation (Method C). A MeOH solution of Cbz-protected PAAD (0.05-0.1 M) was hydrogenated (1 atm) in the presence of 10% Pd-C at room temperature (3 h–7 d). The mixture was filtered through a bed of Celite[®], the filtrate was evaporated in vacuo, and the product was purified by column chromatography (SiO₂).

General Procedure for the Preparation of Alkoxy-Substituted Cbz-PAADs Using Silver (I) Oxide-Mediated Alkylation (Method D). To a CH_3CN solution of Cbz-protected PAAD (0.01– 0.1 M) were successively added Ag_2O (5 equiv) and the alkyl iodide (10 equiv) at room temperature. The reaction mixture was stirred (room temperature–50 °C, 5–7 d) and then the insoluble salts were filtered and the filtrate evaporated in vacuo. The product was purified by column chromatography (SiO₂) followed by recrystallization.

General Procedure for the Conversion of *t*Boc-Protected PAADs to PAADs Using TFA Deprotection (Method E). TFA (15 equiv) was added to an anhydrous CH₂Cl₂ solution of the *t*Boc-protected PAAD (0.3 M) at room temperature. The solution was stirred (1 h) and then the solvent was evaporated in vacuo. The crude product was diluted with CH₂Cl₂ and extracted with aqueous 1 M HCl (3x). The combined aqueous layers were washed with CH₂Cl₂ (2x), basified (pH 10–12) with aqueous 4 M NaOH, and extracted with CH₂Cl₂ (3x). The combined organic layers were washed with brine (2x), dried (Na₂SO₄), evaporated in vacuo, and purified by column chromatography (SiO₂).

General Procedure for the Preparation of *N*-(Benzyloxycarbonyl)-3-*N*-Aminopropanoic Methyl Ester Derivatives Using the Michael Addition of Amines to Dehydroalanine Derivatives (Method F). An anhydrous CH_2Cl_2 solution of serine methyl ester (0.2 M) was cooled to 0 °C under an inert atmosphere (Ar or N₂), and triethylamine (Et₃N) (1.2 equiv) was added. After the mixture was stirred (10 min), methanesulfonyl chloride (MsCl) (1.2 equiv) was added. The reaction was allowed to proceed for an additional 1 h, and then Et₃N (1.2 equiv) was added at 0 °C. The reaction was allowed to stir at room temperature (3 h), and then the solvent was evaporated in vacuo to give the crude Cbz-dehydroalanine-methyl ester. An anhydrous primary, secondary, or tertiary amine solution in THF (5–20 equiv) and MeOH (1:1) was added directly to the crude material and stirred overnight. The organic layer was concentrated in vacuo to give the crude product, which was diluted with CH_2Cl_2 , successively washed with saturated aqueous Na₂CO₃ (3x) and brine (2x), dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (SiO₂).

General Procedure for the Preparation of *N*-Benzylamide Amino Acid Derivatives Using the LiOH Hydrolysis/DMTMM Amide Coupling Method (Method G). Methyl ester (0.1 M) was dissolved in THF and H₂O (1:2) and LiOH (1 equiv) was added. The reaction was stirred at room temperature (1.5 h) and then benzylamine hydrochloride (1.2 equiv) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) (1.2 equiv) were added and the solution stirred overnight (18 h). The organic layer was evaporated in vacuo, and CH₂Cl₂ was added to the remaining aqueous layer. The binary mixture was basified (pH 9–10) with aqueous 1 M NaOH, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂

(3x). The organic layers were combined, washed with brine (3x), dried (Na_2SO_4), and purified by column chromatography.

2. Preparation of (R)-, (S)-, and (R,S)-*N*-Benzyl 2-Amino-3hydroxypropionamide ((R)-, (S)-, and (R,S)-7)

(*R*)-*N*-(**Benzyloxycarbonyl**)-2-amino-3-hydroxypropionic Acid ((*R*)-30).¹ Utilizing Method A with D-serine (5.00 g, 47.6 mmol), NaHCO₃ (10.0 g, 118.9 mmol), H₂O (100 mL) and benzyl chloroformate (10.0 mL, 71.4 mmol) gave the crude product after workup that was further purified by recrystallization from hot EtOAc/hexanes to give the desired product (7.38 g, 65%) as a white solid: mp 115–116 °C (lit.¹ mp 117–119 °C); $[\alpha]^{25}_{D}$ –5.12° (*c* 6.0, acetic acid) (lit.² (*S*): $[\alpha]^{12}_{D}$ +5.8° (*c* 6, acetic acid)); *R_f* 0.43 (1:3 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.67 (d, *J* = 4.2 Hz, CH₂OH), 4.03–4.09 (m, CH), 4.83–4.96 (br s, NH), 5.04 (s, CH₂Ph), 7.32–7.38 (m, PhH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 56.7 (CH), 61.4 (CH₂OH), 65.5 (CH₂Ph), 127.7, 127.8, 128.4, 137.0 (C₆H₅), 156.1 (OC(O)NH), 172.2 (C(O)OH).

(*S*)-*N*-(**Benzyloxycarbonyl**)-2-amino-3-hydroxypropionic Acid ((*S*)-30).² The previous procedure was repeated using L-serine (5.00 g, 47.6 mmol), NaHCO₃ (10.0 g, 118.9 mmol), H₂O (100 mL), and benzyl chloroformate (10.0 mL, 71.4 mmol) to give the desired product (7.94 g,

70%) as a white solid: mp 116–117 °C (lit.² mp 117–119 °C); $[\alpha]^{25}_{D}$ +5.51° (*c* 6.0, acetic acid) (lit.² $[\alpha]^{12}_{D}$ +5.8° (*c* 6, acetic acid)); R_f 0.41 (1:3 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.66 (d, *J* = 4.5 Hz, CH₂OH), 4.02–4.09 (m, CH), 4.83–4.94 (br s, NH), 5.04 (s, CH₂Ph), 7.29– 7.38 (m, PhH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 56.6 (CH), 61.3 (CH₂OH), 65.4 (CH₂Ph), 127.7, 127.8, 128.3, 137.0 (C₆H₅), 156.0 (OC(O)NH), 172.1 (C(O)OH).

(*R*,*S*)-*N*-(Benzyloxycarbonyl)-2-amino-3-hydroxypropionic Acid ((*R*,*S*)-30).³ The previous procedure was repeated using DL-serine (20.00 g, 0.19 mol), NaHCO₃ (40.00 g, 0.48 mol), H₂O (400 mL), and benzyl chloroformate (40.0 mL, 0.29 mol) to give the desired product (38.04 g, 84%) as a white solid: mp 124–125 °C (lit.³ mp 120–122 °C); *R_f* 0.39 (1:3 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.66 (d, *J* = 4.8 Hz, CH₂OH), 4.03–4.09 (m, CH), 4.72–4.97 (br s, NH), 5.04 (s, CH₂Ph), 7.28–7.40 (m, PhH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 56.6 (CH), 61.3 (CH₂OH), 65.4 (CH₂Ph), 127.7, 127.8, 128.3, 137.0 (C₆H₅), 156.0 (OC(O)NH), 172.1 (C(O)OH).

(*R*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)amino-3-hydroxypropionamide ((*R*)-31).⁴ Utilizing Method B with (*R*)-30 (5.00 g, 20.9 mmol), NMM (2.98 mL, 27.2 mmol), IBCF (2.98 mL, 23.0 mmol), and benzylamine (2.40 mL, 21.9 mmol) gave the crude product that was purified by flash

column chromatography (SiO₂; 1:20 MeOH/CHCl₃) to give the desired product (5.16 g, 75%) as a white solid: mp 146–147 °C (lit.⁴ mp 147–149 °C); $[\alpha]^{25}_{D}$ +5.1° (*c* 2.1, MeOH) (lit.⁴ $[\alpha]^{23}_{D}$ +4.6° (*c* 2.0, MeOH); *R_f* 0.44 (1:20 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.50–3.67 (m, CH₂OH), 4.06–4.13 (m, CH), 4.30 (d, *J* = 6.3 Hz, NHCH₂), 4.90 (t, *J* = 5.7 Hz, OH), 5.04 (s, CH₂OC(O)), 7.20–7.38 (m, PhH and OC(O)NH), 8.42 (t, *J* = 6.0 Hz, C(O)NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 42.0 (CH₂NH), 57.4 (CH), 61.8 (CH₂OH), 65.5 (OCH₂Ph), 126.6, 127.0, 127.7, 127.8, 128.2, 128.3, 137.0, 139.3 (2 C₆H₅), 155.9 (C(O)O), 170.2 (C(O)NH).

(*S*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)amino-3-hydroxypropionamide ((*S*)-31).⁵ The previous procedure was repeated using (*S*)-30 (5.00 g, 20.9 mmol), NMM (2.98 mL, 27.2 mmol), IBCF (2.98 mL, 23.0 mmol), and benzylamine (2.40 mL, 21.9 mmol) to give the desired product (4.84 g, 71%) as a white solid: mp 148–149 °C (lit.⁵ mp 148–149.5 °C); $[\alpha]^{25}_{D}$ –5.8° (*c* 2.1, MeOH) (lit.⁵ $[\alpha]^{23}_{D}$ –5.4° (*c* 1.04, MeOH)); *R_f* 0.45 (1:20 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.54–3.68 (m, CH₂OH), 4.06–4.13 (m, CH), 4.30 (d, *J* = 6.0 Hz, NHCH₂), 4.90 (t, *J* = 5.4 Hz, OH), 5.04 (s, CH₂OC(O)), 7.20–7.38 (m, PhH and OC(O)NH), 8.42 (t, *J* = 6.3 Hz, C(O)NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 42.0 (CH₂NH), 57.3 (CH), 61.8 (CH₂OH), 65.5 (OCH₂Ph), 126.6, 127.0, 127.7, 127.8, 128.2, 128.3, 137.0, 139.3 (2 C₆H₅), 155.9 (C(O)O), 170.1 (C(O)NH).

(*R*,*S*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)amino-3-hydroxypropionamide ((*R*,*S*)-31).⁶ The previous procedure was repeated using (*R*,*S*)-30 (10.00 g, 41.8 mmol), NMM (5.97 mL, 54.4 mmol), IBCF (5.96 mL, 46.0 mmol), and benzylamine (4.79 mL, 43.9 mmol) to give the desired product (12.25 g, 89%) as a white solid: mp 140–141 °C (lit.⁶ mp 142 °C); *R*_f 0.33 (1:20 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.54–3.67 (m, CH₂OH), 4.06–4.13 (m, CH), 4.30 (d, *J* = 6.0 Hz, NHCH₂), 4.90 (t, *J* = 5.7 Hz, OH), 5.02 (s, CH₂OC(O)), 7.20–7.38 (m, PhH and OC(O)NH), 8.42 (t, *J* = 6.0 Hz, C(O)NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 42.0 (CH₂NH), 57.3 (CH), 61.8 (CH₂OH), 65.5 (OCH₂Ph), 126.6, 127.0, 127.7, 128.2, 128.3, 137.0, 139.3 (2 C₆H₅), 155.9 (C(O)O), 170.1 (C(O)NH), one aromatic peak was not detected and is believed to overlap with nearby signals.

(*R*)-*N*-Benzyl 2-Amino-3-hydroxypropionamide ((*R*)-7).⁴ Utilizing Method C with (*R*)-31 (1.82 g, 5.53 mmol), 10% Pd-C (180 mg), and MeOH (200 mL) (8 h) gave the crude product that was purified by MPLC to give the desired product (0.56 g, 53%) as a white solid: mp 95–96 °C (lit.⁴ mp 88–90 °C); $[\alpha]^{25}_{D}$ –0.48° (*c* 1.5, MeOH); ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.84 (br s, NH₂), 3.25 (dd, *J* = 4.8, 4.8 Hz, CH), 3.42–3.56 (m, CH₂OH), 4.29 (d, *J* = 6.0 Hz, CH₂NH), 4.72–4.86 (br s, OH), 7.20–7.33 (m, PhH), 8.35 (t, *J* = 6.0 Hz, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.8 (NHCH₂), 57.0 (CH), 64.4 (CH₂OH), 126.6, 127.1, 128.2, 139.6 (C₆H₅),

173.4 (**C**(O)NH); HRMS (ESI) 217.0953 [M + Na⁺] (calcd for C₁₀H₁₄N₂O₂Na⁺ 217.0953); Anal. Calcd for C₁₀H₁₄N₂O₂: C, 61.84; H, 7.27; N, 14.42. Found C, 61.94; H, 7.27; N, 14.31.

(*S*)-*N*-Benzyl 2-Amino-3-hydroxypropionamide ((*S*)-7). The previous procedure was repeated using (*S*)-31 (1.46 g, 4.44 mmol), 10% Pd-C (140 mg), and MeOH (200 mL) (8 h) to give the desired product (0.54 g, 63%) as a white solid: mp 91–92 °C; $[\alpha]^{25}_{D}$ +4.88° (*c* 1.5, MeOH); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.27 (dd, *J* = 5.1, 5.1 Hz, CH), 3.42–3.57 (m, CH₂OH), 4.30 (d, *J* = 6.2 Hz, CH₂NH), 7.19–7.34 (m, PhH), 8.37 (t, *J* = 6.2 Hz, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.8 (NHCH₂), 57.0 (CH), 64.3 (CH₂OH), 126.6, 127.1, 128.2, 139.6 (C₆H₅), 173.2 (C(O)NH); HRMS (ESI) 217.0953 [M + Na⁺] (calcd for C₁₀H₁₄N₂O₂Na⁺ 217.0953); Anal. Calcd for C₁₀H₁₄N₂O₂: C, 61.84; H, 7.27; N, 14.42. Found C, 61.91; H, 7.31; N, 14.21.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-hydroxypropionamide ((*R*,*S*)-7). The previous procedure was repeated using (*R*,*S*)-31 (1.33 g, 4.07 mmol), 10% Pd-C (130 mg), and MeOH (200 mL) (8 h) to give the desired product (0.52 g, 66%) as a white solid: mp 90–91 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.14 (br s, NH₂), 3.27 (dd, *J* = 4.5, 4.8 Hz, CH), 3.42–3.57 (m, CH₂OH), 4.30 (d, *J* = 6.5 Hz, CH₂NH), 4.62–4.88 (br s, OH), 7.19–7.34 (m, PhH), 8.37 (t, *J* = 6.5 Hz, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.8 (NHCH₂), 57.0 (CH), 64.2 (CH₂OH), 126.6, 127.1, 128.2, 139.5 (C₆H₅), 173.2 (C(O)NH); HRMS (ESI) 217.0953 [M + Na⁺] (calcd for C₁₀H₁₄N₂O₂Na⁺

217.0953); Anal. Calcd for C₁₀H₁₄N₂O₂: C, 61.84; H, 7.27; N, 14.42. Found C, 61.69; H, 7.33; N, 14.41.

3. Preparation of (R)-, (S)-, and (R,S)-*N*-Benzyl 2-Amino-3methoxypropionamide ((R)-, (S)-, and (R,S)-8)

(*R*)-*N*-Benzyl 2-*N*-(Benzylcarboxycarbonyl)amino-3-methoxypropionamide ((*R*)-35).⁴ Utilizing Method D with (*R*)-31 (4.00 g, 12.2 mmol), Ag₂O (14.12 g, 60.9 mmol), MeI (7.59 mL, 121.9 mmol), and CH₃CN (400 mL) at room temperature (5 d) gave the crude product that was purified by flash column chromatography (SiO₂, 1:10 MeOH/CH₂Cl₂) followed by recrystallization from hot EtOAc to give the desired product (2.86 g, 69%) as a white crystalline solid: mp 129–130 °C (lit.⁴ mp 128–130 °C); $[\alpha]^{25}_{D}$ +2.8° (*c* 1.0, MeOH) (lit.⁴ $[\alpha]^{23}_{D}$ +2.8° (*c* 1.1, MeOH)); *R_f* 0.39 (1:1 EtOAc/hexanes); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.25 (s, OCH₃), 3.46–3.55 (m, CH₂OCH₃), 4.24–4.30 (m, CH, NHCH₂Ph), 5.04 (s, OCH₂Ph), 7.22–7.38 (m, 2 PhH), 7.47 (d, *J* = 8.1 Hz, NHC(O)O), 8.53 (t, *J* = 5.7 Hz, NHC(O)); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.7 (NHCH₂), 54.3 (CH), 57.7 (OCH₃), 65.1 (OCH₂Ph), 71.6 (CH₂OCH₃), 126.3, 126.6, 127.3, 127.4, 127.8, 127.9, 136.6, 138.8 (2 C₆H₅), 155.6 (OC(O)), 169.3 (C(O)NH).

(*S*)-*N*-Benzyl 2-*N*-(Benzylcarboxycarbonyl)amino-3-methoxypropionamide ((*S*)-35).⁵ The previous procedure was repeated using (*S*)-31 (4.00 g, 12.2 mmol), Ag₂O (14.12 g, 60.9 mmol), MeI (7.59 mL, 121.9 mmol), and CH₃CN (400 mL) to give the desired product (3.13 g, 75%) as a white crystalline solid: mp 131–132 °C (lit.⁵ mp 130–132 °C); $[\alpha]^{25}_{D}$ –2.9° (*c* 1.1, MeOH) (lit.⁵ $[\alpha]^{24}_{D}$ –3.3° (*c* 1.1, MeOH)); *R_f* 0.36 (1:1 EtOAc/hexanes); ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.25 (s, OCH₃), 3.47–3.57 (m, CH₂OCH₃), 4.25–4.30 (m, CH, NHCH₂Ph), 5.04 (s, OCH₂Ph), 7.20–7.37 (m, 2 PhH), 7.48 (d, *J* = 8.1 Hz, NHC(O)O), 8.53 (t, *J* = 5.4 Hz, NHC(O)); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.7 (NHCH₂), 54.3 (CH), 57.8 (OCH₃), 65.1 (OCH₂Ph), 71.6 (CH₂OCH₃), 126.3, 126.6, 127.3, 127.4, 127.8, 127.9, 136.6, 138.9 (2 C₆H₅), 155.6 (OC(O)), 169.3 (C(O)NH).

(*R*,*S*)-*N*-Benzyl 2-*N*-(Benzylcarboxycarbonyl)amino-3-methoxypropionamide ((*R*,*S*)-35).⁷ The previous procedure was repeated using (*R*,*S*)-31 (4.00 g, 12.2 mmol), Ag₂O (14.12 g, 60.9 mmol), MeI (7.59 mL, 121.9 mmol), and CH₃CN (400 mL) to give the desired product (2.53 g, 61%) as a white crystalline solid: mp 126–127 °C (lit.⁷ mp 140–141 °C); *R*_f 0.39 (1:1 EtOAc/hexanes); IR (nujol mull) 3220, 2910, 1692, 1639, 1542, 1459, 1376, 1310, 1265, 1125, 1051, 967, 752, 698 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.25 (s, OCH₃), 3.50–3.52 (m, CH₂OCH₃), 4.22–4.34 (m, CH, NHCH₂Ph), 5.04 (s, OCH₂Ph), 7.23–7.36 (m, 2 PhH), 7.48 (d, *J* = 8.1 Hz, NHC(O)O), 8.53 (t, *J* = 5.4 Hz, NHC(O)); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.7 (NHCH₂), 54.3 (CH), 57.7 (OCH₃), 65.1 (OCH₂Ph), 71.6 (CH₂OCH₃), 126.3, 126.6, 127.3, 127.4, 127.8, 127.9, 136.7, 138.9 (2 C₆H₅), 155.6 (OC(O)), 169.3 (C(O)NH).

(*R*)-*N*-Benzyl 2-Amino-3-methoxypropionamide ((*R*)-8).⁴ Utilizing Method C with (*R*)-35 (2.00 g, 5.85 mmol), 10% Pd-C (0.2 g), and MeOH (100 mL) (5 h) gave the crude product that was purified by flash column chromatography (SiO₂; 1:10 MeOH/CHCl₃). The resulting oil was dissolved in CH₂Cl₂ (20 mL) and was extracted with aqueous 0.1 N HCl (3 x 20 mL). The aqueous layers were combined and washed with CH₂Cl₂ (2 x 60 mL). The aqueous layer was basified to pH 10–12 with aqueous 0.1 N NaOH, and then extracted with CH₂Cl₂ (3 x 100 mL). The CH₂Cl₂ layers were combined, dried (MgSO₄), and concentrated in vacuo to give the desired product (0.89 g, 73%) as a waxy solid: mp 39–40 °C; $[\alpha]^{25}_{D}$ –1.5° (*c* 1.6, MeOH) (lit.⁴ $[\alpha]^{23}_{D}$ – 2.0° (*c* 1.5, MeOH)); *R_f* 0.26 (1:20 MeOH/CHCl₃); IR (nujol mull) 3366, 3302, 3140, 2904 (br), 1955, 1886, 1815, 1667, 1457, 1373, 1152, 966, 726 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.82 (s, NH₂), 3.25 (s, OCH₃), 3.35–3.44 (m, CHCH₂), 4.23–4.36 (m, CH₂Ph), 7.20–7.34 (m, PhH), 8.36–8.44 (br t, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.5 (CH₂PH), 54.3 (CH), 57.8 (CH₃), 74.8 (CHCH₂), 126.3, 126.7, 127.8, 139.1 (C₆H₅), 172.6 (C(O)); Anal. Calcd for C₁₁H₁₆N₂O₂·0.18H₂O: C, 62.49; H, 7.80; N, 13.25. Found C, 62.13; H, 7.82; N, 13.10.

(*S*)-*N*-Benzyl 2-Amino-3-methoxypropionamide ((*S*)-8).⁵ The previous procedure was repeated using (*S*)-35 (2.00 g, 5.85 mmol), 10% Pd-C (0.2 g), and MeOH (100 mL) to give the

desired product (1.12 g, 92%) as a waxy solid: mp 39–40 °C; $[\alpha]^{25}_{D}$ +1.7° (*c* 1.5, MeOH) (lit.⁵ $[\alpha]^{23}_{D}$ +1.8° (*c* 0.8, MeOH)); *R_f* 0.39 (1:20 MeOH/CHCl₃); IR (nujol mull) 3474, 3365, 3125 (br), 1949, 1885, 1817, 1662, 1520, 1457, 1369, 1240, 1189, 1106, 970, 727 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.84 (s, NH₂), 3.25 (s, OCH₃), 3.35–3.44 (m, CHCH₂), 4.23–4.36 (m, CH₂Ph), 7.20–7.34 (m, PhH), 8.36–8.45 (br t, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.5 (CH₂PH), 54.3 (CH), 57.8 (CH₃), 74.8 (CHCH₂), 126.3, 126.7, 127.8, 139.1 (C₆H₅), 172.6 (C(O)); Anal. Calcd for C₁₁H₁₆N₂O₂•0.15H₂O: C, 62.56; H, 7.79; N, 13.28. Found C, 62.25; H, 7.91; N, 13.16.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-methoxypropionamide ((*R*,*S*)-8).⁷ The previous procedure was repeated using (*R*,*S*)-35 (2.00 g, 5.85 mmol), 10% Pd-C (0.2 g), and MeOH (100 mL) to give the desired product (0.42 g, 32%) as a pale yellow oil: R_f 0.37 (1:20 MeOH/CHCl₃); IR (neat) 3227, 3177, 3063, 2900 (br), 1959, 1884, 1814, 1540, 1456, 1361, 1253, 1187, 1110, 927, 739, 701 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.82 (br s, NH₂), 3.25 (s, OCH₃), 3.37–3.44 (m, CHCH₂), 4.23–4.36 (m, CH₂Ph), 7.19–7.34 (m, PhH), 8.36–8.44 (br t, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 41.5 (CH₂PH), 54.3 (CH), 57.8 (CH₃), 74.8 (CHCH₂), 126.3, 126.7, 127.8, 139.1 (C₆H₅), 172.6 (C(O)); Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found C, 63.18; H, 7.66; N, 13.41.

4. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-ethoxypropionamide ((*R*,*S*)-9)

(*R*,*S*)-*N*-Benzyl 2-*N*-(Benzylcarboxycarbonyl)amino-3-ethoxypropionamide ((*R*,*S*)-36).

Utilizing Method D with (*R*,*S*)-**31** (1.88 g, 5.73 mmol), Ag₂O (6.64 g, 8.59 mmol), EtI (6.94 mL, 85.9 mmol), and CH₃CN (400 mL) (40–50 °C, 7 d) gave the crude product that was further purified by flash column chromatography (SiO₂, 1:10 MeOH/CH₂Cl₂) followed by recrystallization from hot toluene to give the desired product (1.04 g, 51%) as a white crystalline solid: mp 100–101 °C; *R_f* 0.48 (1:1 EtOAc/hexanes); IR (nujol mull) 3297, 2941 (br), 2729, 2680, 1688, 1645, 1538, 1457, 1374, 1242, 727 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.08 (t, *J* = 6.9 Hz, CH₃), 3.44 (q, *J* = 6.9 Hz, OCH₂CH₃), 3.50–3.60 (m, CHCH₂), 4.22–4.37 (m, CH, CH₂Ph), 5.04 (s, OCH₂Ph), 7.22–7.46 (m, 2 PhH), 8.53 (t, *J* = 5.7 Hz, NHC(O)); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 14.6 (OCH₂CH₃), 41.6 (NHCH₂), 54.5 (CH), 65.1 (OCH₂CH₃ or OCH₂Ph), 65.3 (OCH₂Ph or OCH₂CH₃), 70.0 (CH₂OCH₂CH₃), 126.3, 126.6, 127.3, 127.4, 127.8, 127.9, 136.6, 138.9 (2 C₆H₅), 155.5 (C(O)O), 169.4 (C(O)NH); HRMS (ESI) 357.1814 [M + H⁺] (calcd for C₂₀H₂₄N₂O₄H⁺ 357.1814); Anal. Calcd for C₂₀H₂₄N₂O₄; C, 67.40; H, 6.79; N, 7.86. Found C, 67.12; H, 6.67; N, 7.89.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-ethoxypropionamide ((*R*,*S*)-9). Utilizing Method C with (*R*,*S*)-36 (1.00 g, 2.81 mmol), 10% Pd-C (0.1 g), and MeOH (30 mL) (18 h) gave the crude product that

was purified by flash column chromatography (SiO₂; 1:10 MeOH/CH₂Cl₂). The resulting oil was dissolved in CH₂Cl₂ (10 mL) and was extracted with aqueous 0.1 N HCl (3 x 10 mL). The aqueous layers were combined and washed with CH₂Cl₂ (2 x 30 mL). The aqueous layer was basified to pH 10–12 with aqueous 0.1 N NaOH, and then extracted with CH₂Cl₂ (3 x 60 mL). The CH₂Cl₂ layers were combined, dried (MgSO₄), and concentrated in vacuo to give the desired product (0.42 g, 68%) as a pale yellow oil: R_f 0.33 (1:1 EtOAc/hexanes); IR (neat) 3319, 3177, 3062, 2865, 1957, 1883, 1812, 1662, 1535, 1455, 1361, 1254, 1107, 1022, 870, 738 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 1.10 (t, J = 7.2 Hz, CH₃), 1.82 (s, NH₂), 3.29–3.49 (m, CHCH₂OCH₂CH₃), 4.22–4.37 (m, CH₂Ph), 7.20–7.33 (m, PhH), 8.36–8.45 (br t, NHC(O)); ¹³C NMR (75 MHz, DMSO- d_6) δ 14.7 (OCH₂CH₃), 41.5 (NHCH₂), 54.5 (CH), 65.3 (OCH₂CH₃), 72.7 (CH₂OCH₂CH₃), 126.3, 126.7, 127.8, 139.2 (C₆H₅), 172.8 (C(O)NH); HRMS (ESI) 223.1450 [M + H⁺] (calcd for C₁₂H₁₈N₂O₂H⁺ 223.1447); Anal. Calcd for C₁₂H₁₈N₂O₂•0.06CH₂Cl₂; C, 63.63; H, 8.02; N, 12.30. Found C, 63.67; H, 8.21; N, 12.32.

5. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-propoxypropionamide ((*R*,*S*)-10)

(*R*,*S*)-*N*-Benzyl 2-*N*-(Benzylcarboxycarbonyl)amino-3-propoxypropionamide ((*R*,*S*)-37). Utilizing Method D with (*R*,*S*)-31 (3.29 g, 10.0 mmol), Ag₂O (11.59 g, 50.1 mmol), propyl iodide (14.7 mL, 150.4 mmol), and CH₃CN (100 mL) (40–50 °C, 7 d) gave the crude product that was further purified by flash column chromatography (SiO₂, 1:10 MeOH/CH₂Cl₂) followed

by recrystallization from hot EtOAc/hexanes gave the desired product (1.71 g, 46%) as a pale orange crystalline solid: mp 101–102 °C; R_f 0.58 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3279, 2927 (br), 2728, 1682, 1644, 1544, 1459, 1377, 1237, 696 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.83 (t, J = 6.9 Hz, CH₃), 1.42–1.53 (m, CH₂CH₃), 3.33 (1/2 AB_q, J = 6.0 Hz, OCHH'CH₂CH₃), 3.35 (1/2 AB_q, J = 6.0 Hz, OCHH'CH₂CH₃), 3.50–3.60 (m, CHCH₂), 4.23– 4.36 (m, CH, CH₂Ph), 5.01 (1/2 AB_q, J = 12.6 Hz, OCHH'Ph), 5.07 (1/2 AB_q, J = 12.6 Hz, OCHH'Ph), 7.23–7.37 (m, 2 C₆H₅), 7.43 (d, J = 8.1 Hz, NHC(O)), 8.52 (t, J = 6.3 Hz, NHCH₂Ph); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 10.0 (CH₃), 21.9 (CH₂CH₃), 41.7 (NHCH₂Ph), 54.5 (CH), 65.1 (OCH₂Ph), 69.8 (CH₂OCH₂ or CH₂OCH₂CH₂), 71.5 (CH₂OCH₂ or CH₂OCH₂CH₂), 126.3, 126.6, 127.3, 127.4, 127.8, 127.9, 136.6, 138.9 (2 C₆H₅), 155.6 (C(O)O), 169.4 (C(O)NH); HRMS (ESI) 393.1790 [M + Na⁺] (calcd for C₂₁H₂₆N₂O₄Na⁺ 393.1790); Anal. Calcd for C₂₁H₂₆N₂O₄; C, 68.09; H, 7.07; N, 7.56. Found C, 68.20; H, 7.19; N, 7.64.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-propoxypropionamide ((*R*,*S*)-10). Utilizing Method C with (*R*,*S*)-37 (1.42 g, 3.85 mmol), 10% Pd-C (0.15 g), and MeOH (50 mL) (6 h) gave the crude product that was purified by flash column chromatography (SiO₂; 1:100 MeOH/CH₂Cl₂). The resulting oil was dissolved in CH₂Cl₂ (10 mL) and extracted with aqueous 0.1 N HCl (3 x 10 mL). The aqueous layers were combined and washed with CH₂Cl₂ (2 x 30 mL). The aqueous layer was basified to pH 10–12 with aqueous 0.1 N NaOH, and then extracted with CH₂Cl₂ (3 x 60 mL). The second set of CH₂Cl₂ layers were combined, dried (NaSO₄), and concentrated in vacuo to give the desired product (0.66 g, 72%) as a pale orange oil: $R_f 0.52$ (1:100 MeOH/CH₂Cl₂); IR (neat) 3338, 3123, 2935, 2868, 1661, 1528, 1457, 1362, 1256, 1108, 699 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) $\delta 0.85$ (t, J = 7.8 Hz, CH₃), 1.44–1.56 (m, CH₂CH₃), 1.82 (br s, NH₂), 3.31– 3.46 (m, CHCH₂OCH₂CH₂), 4.23–4.37 (m, CH₂Ph), 7.19–7.32 (m, C₆H₅), 8.36–8.45 (br t, NHC(O)); ¹³C NMR (75 MHz, DMSO- d_6) δ 10.1 (CH₃), 22.0 (CH₂CH₃), 41.5 (NHCH₂), 54.4 (CH), 71.6 (CH₂OCH₂ or CH₂OCH₂CH₂), 72.8 (CH₂OCH₂ or CH₂OCH₂CH₂), 126.2, 126.6, 127.7, 139.2 (C₆H₅), 172.7 (C(O)NH); Anal. Calcd for C₁₃H₂₀N₂O₂; C, 66.07; H, 8.53; N, 11.85. Found C, 65.80; H, 8.29; N, 11.58.

6. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-allyloxypropionamide ((*R*,*S*)-11)

(*R*,*S*)-Methyl 3-Hydroxy-2-(*N*-tritylamino)propionate ((*R*,*S*)-39).⁸ To a solution of DL-serine methyl ester hydrochloride (20.00 g, 0.13 mol) and Et₃N (35.82 mL, 0.26 mol) in CH₂Cl₂ (80 mL) at 0 °C, was added in one portion a solution of TrCl (36.53 g, 0.13 mol) in CH₂Cl₂ (80 mL). The mixture was allowed to stir at 0 °C (18 h) under N₂ and then successively washed with aqueous 10% citric acid (120 mL) and saturated aqueous brine (120 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo to give the crude product (44.58 g, 96%) as a pale yellow crystalline solid. The product was used in the next step without further purification: R_f 0.72 (1:10 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 2.38–2.54 (br s, 1 H), 2.89–3.02 (br s, 1 H), 3.26 (s, OCH₃), 3.50–3.59 (m, CH, CHH'OH), 3.69–3.73 (m, CHH'OH), 7.15–7.29 (m,

9 Ph**H**), 7.44–7.50 (6 Ph**H**); ¹³C NMR (75 MHz, CDCl₃) δ 52.1 (OCH₃), 58.0 (CH), 65.1 (CH₂OH), 126.8, 128.1, 128.9, 145.8 (3 C₆H₅), 174.1 (C(O)).

(*R*,*S*)-Methyl *N*-Tritylaziridine-2-carboxylate ((*R*,*S*)-40).⁹ Crude (*R*,*S*)-39 (44.00 g, 0.12 mol) was dissolved in CH₂Cl₂ (250 mL) and cooled to 0 °C under N₂. Methanesulfonyl chloride (10.37 mL, 0.13 mol) was added to the cooled solution, followed by the dropwise addition of Et₃N (25.47 mL, 0.18 mol). The resulting solution was allowed to stir at 0 °C (30 min) and then successively washed with aqueous 10% citric acid (250 mL) and saturated aqueous brine (250 mL), dried (Na₂SO₄), and evaporated in vacuo to give the crude mesylate. The crude mesylate was dissolved in DME (250 mL) and Et₃N (33.97 mL, 0.24 mol) was added. The mixture was stirred at 80 °C (72 h) and then concentrated to dryness in vacuo. The crude product was dissolved in EtOAc (250 mL), successively washed with aqueous 10% citric acid (250 mL) and saturated aqueous brine (250 mL), dried (Na₂SO₄), evaporated in vacuo, and purified by recrystallization from hot EtOH to give the desired product (26.43 g, 63%) as an off white solid: mp 131–132 °C (lit.⁹ mp 133 °C); *R*_f 0.16 (1:10 EtOAc/hexanes); IR (nujol mull) 2927, 2859, 1719, 1596, 1454, 1375, 1291, 1216, 1077, 1027, 923, 869, 754, 707, 637 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.41 (dd, J = 1.6, 6.2 Hz, NCHH'CH), 1.89 (dd, J = 2.7, 6.2 Hz, CHH'CHN), 2.26 (dd, J = 1.6, 2.7 Hz, NCHH'CH), 3.75 (s, OCH₃), 7.18–7.30 (9 PhH), 7.48–7.52 (6 PhH); ¹³C NMR (75 MHz, CDCl₃) δ 28.8 (NCH₂CH), 31.9 (CH₂CHN), 52.3 (OCH₃), 74.6 (NCPh₃),

127.1, 127.9, 129.5, 143.8 (3 C_6H_5), 172.1 (C(O)); HRMS (ESI) 344.1663 [M + H⁺] (calcd for $C_{23}H_{21}NO_2H^+$ 344.1651).

(R,S)-Methyl N-(t-Butoxycarbonyl)aziridine-2-carboxylate ((R,S)-41).¹⁰ (R,S)-40 (16.48 g, 48.02 mmol) was dissolved in CH₂Cl₂ (240 mL) and MeOH (1.53 mL, 48.02 mmol) was added and the solution was cooled to 0 °C in an ice bath under N₂ before TFA (7.13 mL, 96.05 mmol) was added dropwise. Et₃N (33.47 mL, 0.24 mol) was added dropwise at 0 °C and the reaction stirred at 0 °C (10 min) before Boc₂O (11.53 g, 52.83 mmol) in CH₂Cl₂ (60 mL) was added dropwise. The reaction was allowed to warm to room temperature (18 h) and then successively washed with aqueous 10% citric acid (3 x 300 mL), H₂O (3 x 300 mL), and saturated aqueous brine (2 x 300 mL), dried (Na₂SO₄), evaporated in vacuo, and purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (6.79 g, 70%) as a pale yellow oil and as a 1:1 mixture of isomers A and B: $R_f 0.47$ (1:10 EtOAc/hexanes); IR (neat) 3483, 3427, 2980, 1737, 1630, 1449, 1378, 1328, 1156, 1029, 965, 853, 801, 751, 686, 597, 530 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.45, 1.46 (2 s, (C(CH₃)₃), 2.52–2.58 (m, NHCH₂CH), 3.03–3.06 (m, NHCH₂CH), 3.78, 3.79 (2 s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 27.6 (C(CH₃)₃), 31.0 (NCH₂CH), 34.6 (CH₂CHN), 52.3 (OCH₃), 81.9 (C(CH₃)₃), 159.3 (NC(O)O), 168.6 (C(O)OCH₃); HRMS (ESI) 224.0909 [M + Na⁺] (calcd for C₉H₁₅NO₄Na⁺) 224.0899).

22

(R,S)-Methyl 2-N'-(t-Butoxycarbonyl)amino-3-allyloxypropionate ((R,S)-44). (R,S)-41 (6.22) g, 30.93 mmol) was dissolved in anhydrous CH₂Cl₂ (30 mL) and cooled to 0 °C in an ice bath. Then, allyl alcohol (6.31 mL, 92.79 mmol) followed by BF₃•Et₂O (3.82 mL, 30.93 mmol) was successively added. The reaction was continued at 0 °C (45 min) and then saturated aqueous NaHCO₃ (30 mL) was added and stirred (30 min). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL). Both sets of organic layers were combined, dried (Na_2SO_4), evaporated in vacuo, and purified by flash column chromatography $(SiO_2; 1:10-1:1 EtOAc/hexanes followed by 1:10 MeOH/CH_2Cl_2)$ to give the desired product (1.52 g, 19%) as a pale yellow oil: $R_f 0.55$ (1:10 EtOAc/hexanes); IR (neat) 3379, 3301, 2930, 1716, 1507, 1453, 1362, 1167, 929, 866, 781, 658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.46 (s, $C(CH_3)_3$, 3.65 (dd, J = 3.6, 9.2 Hz, $CHH'OCH_2$), 3.76 (s, OCH_3), 3.85 (dd, J = 3.2, 9.2 Hz, CHH'OCH₂), 3.93–4.03 (m, CH₂OCH₂), 4.42–4.44 (m, CH), 5.17–5.27 (m, OCH₂CHCH₂), 5.42 (d, J = 9.2 Hz, NH), 5.79–5.95 (m, OCH₂CHCH₂); ¹³C NMR (100 MHz, CDCl₃) δ 28.4 (C(CH₃)₃), 52.5 (OCH₃), 54.1 (CH), 70.0 (CH₂OCH₂), 72.3 (CH₂OCH₂), 80.0 (C(CH₃)₃), 117.4 (OCH₂CHCH₂), 134.2 (OCH₂CHCH₂), 155.6 (C(O)N), 171.3 (C(O)OCH₃).

(*R*,*S*)-Methyl 2-*N*'-(*t*-Butoxycarbonyl)amino-3-allyloxypropionic Acid ((*R*,*S*)-46). (*R*,*S*)-44 (1.13 g, 4.36 mmol) was dissolved in anhydrous THF (44 mL) and a solution of LiOH (0.6 M, 7.27 mL, 4.36 mmol) was added at room temperature (18 h) and then the solvent was evaporated in vacuo. The crude product was diluted with H₂O (25 mL), acidified to pH 3 with aqueous 1 M KHSO₄, and extracted with EtOAc (6 x 25 mL). The combined organic layers were dried (Na₂SO₄) and evaporated in vacuo to give the crude product (1.07 g, 99%) as a pale yellow oil. The product was used for the next step without further purification: R_f 0.44 (1:20 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CD₃OD) δ 1.45 (s, C(CH₃)₃), 3.68 (dd, *J* = 3.4, 9.8 Hz, CHH'OCH₂), 3.79 (dd, *J* = 5.0, 9.8 Hz, CHH'OCH₂), 3.95–4.04 (m, CH₂OCH₂), 4.30 (t, *J* = 4.0 Hz, CH), 5.14–5.30 (m, OCH₂CHCH₂), 5.83–5.93 (m, OCH₂CHCH₂); ¹³C NMR (100 MHz, CD₃OD) δ 27.3 (C(CH₃)₃), 53.8 (CH), 69.4 (CH₂OCH₂), 71.7 (CH₂OCH₂), 79.3 (C(CH₃)₃), 116.0 (OCH₂CHCH₂), 134.3 (OCH₂CHCH₂), 156.4 (C(O)N), 172.4 (C(O)OH).

(*R*,*S*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)amino-3-allyloxypropionamide ((*R*,*S*)-48). Utilizing Method B with (*R*,*S*)-46 (1.05 g, 4.28 mmol), NMM (0.62 mL, 5.57 mmol), IBCF (0.61 mL, 4.71 mmol), and benzylamine (0.49 mL, 4.50 mmol) gave the crude product that was purified by flash column chromatography (SiO₂; 1:10–1:1 EtOAc/hexanes followed by 1:10 MeOH/CH₂Cl₂) to give the desired product (1.25 g, 87%) as a pale yellow solid: R_f 0.19 (1:10 EtOAc/hexanes); mp 70–71 °C; IR (neat) 3305, 3037, 2968, 1707, 1532, 1365, 1250, 1167, 1041, 948, 869, 744, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.41 (s, C(CH₃)₃), 3.56 (dd, *J* = 6.4, 9.4 Hz, CHH'OCH₂),

3.87 (dd, J = 4.0, 9.4 Hz, CHH'OCH₂), 3.95–4.04 (m, CH₂OCH₂), 4.26–4.34 (m, CH), 4.47 (d, J = 5.6 Hz, NHCH₂Ph), 5.15–5.25 (m, OCH₂CHCH₂), 5.37–5.52 (br d, C(O)NH), 5.78–5.88 (m, OCH₂CHCH₂), 6.81–6.87 (br t, NHCH₂Ph), 7.23–7.33 (C₆H₅); ¹³C NMR (100 MHz, CDCl₃) δ 28.4 (C(CH₃)₃), 43.6 (NHCH₂Ph), 54.3 (CH), 69.9 (CH₂OCH₂), 72.4 (CH₂OCH₂), 80.4 (C(CH₃)₃), 117.7 (OCH₂CHCH₂), 127.5, 127.6, 128.8 (3 ArC), 134.1 (OCH₂CHCH₂), 138.1 (1 ArC), 155.6 (OC(O)N), 171.3 (CC(O)N).

(*R*,*S*)-*N*-Benzyl 2-Amino-3-allyloxypropionamide ((*R*,*S*)-11). Utilizing Method E with (*R*,*S*)-48 (1.17 g, 3.50 mmol), TFA (3.90 mL, 52.52 mol), and CH₂Cl₂ (12 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (285 mg, 35%) as a pale yellow oil: *R_f* 0.44 (1:20 MeOH/CH₂Cl₂); IR (neat) 3446, 3299, 2920, 2863, 1658, 1530, 1454, 1355, 1256, 1090, 1001, 930, 737, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.61–1.73 (br s, NH₂), 3.62 (t, *J* = 5.6 Hz, CH), 3.66–3.74 (m, CH₂OCH₂), 4.00 (app. t, *J* = 1.2 Hz, CH₂OCHH'), 4.02 (app. t, *J* = 1.6 Hz, CH₂OCHH'), 4.41–4.51 (m, NHCH₂Ph), 5.17–5.29 (m, OCH₂CHCH₂), 5.84–5.93 (m, OCH₂CHCH₂), 7.24–7.35 (C₆H₅), 7.73–7.81 (br t, NHCH₂Ph); ¹³C NMR (100 MHz, CDCl₃) δ 43.3 (NHCH₂Ph), 55.2 (CH), 72.3 (CH₂OCH₂), 72.4 (CH₂OCH₂), 117.5 (OCH₂CHCH₂), 127.5, 127.8, 128.8 (3 ArC), 134.5 (OCH₂CHCH₂), 138.6 (1 ArC), 172.8 (C(O)N); HRMS (ESI) 235.1452 [M + H⁺] (calcd for C₁₃H₁₈N₂O₂H⁺ 235.1447); Anal. Calcd for C₁₃H₁₈N₂O₂•0.20H₂O: C, 65.61; H, 7.80; N, 11.77. Found: C, 65.21; H, 7.92; N, 11.60.

7. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-(prop-2ynyloxy)propionamide ((*R*,*S*)-12)

(R,S)-Methyl 2-N-(t-Butoxycarbonyl)amino-3-(prop-2-ynyloxy)propionate ((R,S)-45). (R,S)-41 (6.85 g, 34.06 mmol) was dissolved in anhydrous CH₂Cl₂ (48 mL) and cooled to 0 $^{\circ}$ C in an ice bath. Then, propargyl alcohol (6.03 mL, 102.18 mmol) followed by BF₃•Et₂O (4.20 mL, 34.06 mmol) was successively added. The reaction was continued at 0 °C (15 min) and then saturated aqueous NaHCO₃ (48 mL) was added and stirred (30 min). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). Both sets of organic layers were combined, dried (Na₂SO₄), evaporated in vacuo, and purified by flash column chromatography (SiO₂; 1:100 MeOH/CH₂Cl₂) to give the desired product (1.06 g, 12%) as a pale yellow oil: Rf 0.35 (1:10 EtOAc/hexanes); IR (neat) 3396, 3265, 2976, 2880, 2118, 1713, 1507, 1451, 1358, 1213, 1169, 1108, 1065, 925, 869, 778, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, $C(CH_3)_3$), 2.45 (t, J = 2.4 Hz, CH_2CCH), 3.77 (dd, J = 3.6, 9.2 Hz, $CHH'OCH_2$), 3.78 (s, OCH₃), 3.96 (dd, J = 2.8, 9.2 Hz, CHH'OCH₂), 4.15 (d, J = 2.4 Hz, CH₂OCH₂), 4.43–4.44 (m, CH), 5.38 (d, J = 8.4 Hz, NH); ¹³C NMR (100 MHz, CDCl₃) δ 28.5 (C(CH₃)₃), 52.7 (OCH₃), 54.0 (CH), 58.7 (CH₂CCH), 69.9 (CH₂OCH₂), 75.2 (CH₂CCH), 79.0 (CH₂CCH), 80.2 $(C(CH_3)_3)$, 155.6 (C(O)N), 171.1 $(C(O)OCH_3)$; HRMS (ESI) 280.1167 $[M + Na^+]$ (calcd for $C_{12}H_{19}NO_5Na^+$ 280.1161).

(*R*,*S*)-2-*N*-(*t*-Butoxycarbonyl)amino-3-(prop-2-ynyloxy)propionic Acid ((*R*,*S*)-47). (*R*,*S*)-45 (959 mg, 37.30 mmol) was dissolved in anhydrous THF (37 mL) and a solution of LiOH (0.6 M, 6.22 mL, 37.30 mmol) was added at room temperature (18 h) and then the solvent was evaporated in vacuo. The crude product was diluted with H₂O (25 mL), acidified to pH 3 with aqueous 1 M KHSO₄, and extracted with EtOAc (6 x 25 mL), dried (Na₂SO₄), and evaporated in vacuo to give the crude product (916 mg, 99%) as a pale yellow, waxy solid. The product was used for the next step without further purification: R_f 0.46 (1:20 MeOH/CH₂Cl₂); ¹H NMR (300 MHz, CD₃OD) δ 1.45 (s, C(CH₃)₃), 2.87 (t, *J* = 2.3 Hz, CH₂CCH), 3.76 (dd, *J* = 3.9, 9.6 Hz, CHH'OCH₂), 3.89 (dd, *J* = 4.6, 9.6 Hz, CHH'OCH₂), 4.17 (d, *J* = 2.3 Hz, CH₂OCH₂), 4.32 (t, *J* = 4.2 Hz, CH); ¹³C NMR (75 MHz, CD₃OD) δ 28.8 (C(CH₃)₃), 55.2 (CH), 59.3 (CH₂CCH), 70.6 (CH₂OCH₂), 76.4 (CH₂CCH), 80.2 (CH₂CCH), 80.9 (C(CH₃)₃), 158.1 (C(O)N), 173.7 (C(O)OCH₃).

(*R*,*S*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)amino-3-(prop-2-ynyloxy)propionamide ((*R*,*S*)-49). Utilizing Method B with (*R*,*S*)-47 (894 mg, 3.68 mmol), NMM (0.53 mL, 4.78 mmol), IBCF (0.52 mL, 4.05 mmol), and benzylamine (0.42 mL, 3.86 mmol) gave the crude product that was purified by flash column chromatography (SiO₂; 1:10–1:1 EtOAc/hexanes) to give the desired

product (1.10 g, 90%) as a pale yellow solid: mp 100–101 °C; R_f 0.77 (1:1 EtOAc/hexanes); IR (nujol mull) 3332, 3263, 2878, 2114, 1710, 1660, 1539, 1457, 1369, 1300, 1249, 1166, 1092, 1020, 943, 871, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, C(CH₃)₃), 2.45 (t, J = 2.4 Hz, CH₂CCH), 3.70 (dd, J = 6.2, 9.2 Hz, CHH'OCH₂), 3.97 (dd, J = 3.8, 9.2 Hz, CHH'OCH₂), 4.11– 4.23 (m, CH₂OCH₂), 4.25–4.39 (m, CH), 4.49 (d, J = 5.2 Hz, NHCH₂Ph), 5.31–5.42 (br d, C(O)NH), 6.66–6.72 (br t, NHCH₂Ph), 7.25–7.34 (m, C₆H₅); ¹³C NMR (100 MHz, CDCl₃) δ 28.5 (C(CH₃)₃), 43.7 (NHCH₂Ph), 54.3 (CH), 58.8 (CH₂CCH), 69.7 (CH₂OCH₂), 75.4 (CH₂CCH), 79.1 (CH₂CCH), 80.6 (C(CH₃)₃), 127.7, 127.8, 128.9, 138.1 (C₆H₅), 155.2 (OC(O)N), 170.2 (CC(O)N); HRMS (ESI) 355.1645 [M + Na⁺] (calcd for C₁₈H₂₄N₂O₄Na⁺ 355.1634); Anal. Calcd for C₁₈H₂₄N₂O₄: C, 65.04; H, 7.28; N, 8.43. Found: C, 65.26; H, 7.44; N, 8.42.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-(prop-2-ynyloxy)propionamide ((*R*,*S*)-12). Utilizing Method E with (*R*,*S*)-49 (973 mg, 2.93 mmol), TFA (3.26 mL, 43.94 mol), and CH₂Cl₂ (10 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (512 mg, 75%) as a pale yellow oil: R_f 0.29 (1:100 MeOH/CH₂Cl₂); IR (neat) 3344, 3295, 3142, 3066, 2909, 2114, 1659, 1527, 1454, 1357, 1258, 1095, 1023, 916, 737, 697 cm⁻¹; ¹H NMR (100 MHz, CDCl₃) δ 1.64–1.72 (br s, NH₂), 2.45 (t, *J* = 2.4 Hz, CH₂CCH), 3.62 (dd, *J* = 4.0, 6.2 Hz, CH), 3.76 (dd, *J* = 6.2, 9.2 Hz, CHH'OCH₂), 3.84 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₂), 4.13–4.24 (m, CH₂OCH₂), 4.41–4.51 (m,

NHCH₂Ph), 7.24–7.35 (m, C₆H₅), 7.73–7.81 (br t, NHCH₂Ph); ¹³C NMR (400 MHz, CDCl₃) δ 43.4 (NHCH₂Ph), 55.1 (CH), 58.7 (CH₂CCH), 72.3 (CH₂OCH₂), 75.1 (CH₂CCH), 79.4 (CH₂CCH), 127.6, 127.8, 128.8, 138.5 (C₆H₅), 172.5 (CC(O)N); HRMS (ESI) 233.1294 [M + H⁺] (calcd for C₁₃H₁₆N₂O₂H⁺ 233.1290); Anal. Calcd for C₁₃H₁₆N₂O₂•0.09CH₂Cl₂: C, 65.59; H, 6.80; N, 11.69. Found: C, 65.54; H, 6.97; N, 11.68.

8. Preparation of (*R*,*S*)-*N*-Benzyl 2,3-Diaminopropionamide ((*R*,*S*)-13)

(R,S)-N,N'-2,3-Bis(t-butoxycarbonyl)aminopropionic Acid ((R,S)-63).¹¹ 2,3-

Diaminopropionic acid hydrochloride (5.00 g, 35.57 mmol) and NaHCO₃ (29.88 g, 0.36 mol) were dissolved in H₂O (150 mL) and dioxane (150 mL). Boc₂O (31.05 g, 142.3 mmol) was added and the reaction was stirred at room temperature (18 h). The mixture was diluted with H₂O (100 mL), washed with CH₂Cl₂ (2 x 150 mL), acidified to pH 2 with aqueous concentrated HCl, and extracted with CH₂Cl₂ (3 x 200 mL). The organic layers were combined, washed with H₂O (3 x 200 mL), dried (Na₂SO₄), and evaporated in vacuo. The residue was recrystallized from hot toluene to give the desired product (6.72 g, 62%) as a white solid: mp 126–127 °C (lit.¹¹ mp 118–124 °C); IR (nujol mull) 3311, 2920 (br), 1741, 1689, 1530, 1469, 1372, 1284, 1161, 1107, 1044, 868, 773, 719, 671 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.41 (s, C(CH₃)₃), 1.42 (s, (C(CH₃)₃)'), 3.24 (t, *J* = 5.9 Hz, CH₂NH), 3.96–4.03 (m, CH), 6.80 (t, *J* = 5.9 Hz, (CH₃)₃COC(O)NH'); ¹³C NMR (75 MHz,

DMSO-*d*₆) δ 27.8 (2 C(CH₃)₃), 40.8 (CH₂NH), 53.4 (CH), 77.6, 77.8 (2 C(CH₃)₃), 155.0, 155.3 (2 C(O)OC(CH₃)₃), 171.9 (C(O)OH).

(*R*,*S*)-*N*-Benzyl *N*',*N*''-2,3-Bis(*t*-butoxycarbonyl)aminopropionamide ((*R*,*S*)-64). Utilizing Method B with (*R*,*S*)-63 (1.77 g, 5.82 mmol), NMM (0.83 mL, 7.57 mmol), IBCF (0.75 mL, 6.40 mmol), and benzylamine (0.64 mL, 6.11 mmol) gave the crude product that was recrystallized twice from hot EtOAc to give the desired product (1.54 g, 67%) as a white solid: mp 141–142 °C; *R*_f 0.52 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3319, 2919, 2860, 1687, 1531, 1456, 1371, 1304, 1247, 1169, 1044, 952, 873, 746, 698, 639 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.42 (s, C(CH₃)₃), 1.43 (s, C(CH₃)₃'), 3.45–3.60 (m, CH₂NH), 4.18–4.29 (m, CH), 4.39 (dd, *J* = 5.0, 15.4 Hz, NHCHH'Ph), 4.51 (dd, *J* = 5.6, 15.4 Hz, NHCHH'Ph), 5.11–5.24 (br t, (CH₃)₃COC(O)NH), 5.89 (d, *J* = 6.0 Hz, (CH₃)₃COC(O)NH'), 6.96–7.05 (br t, NHCH₂Ph), 7.24–7.35 (C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 28.3, 28.4 (2 C(CH₃)₃), 42.5 (NHCH₂Ph), 43.5 (CH₂NH), 56.0 (CH), 80.0, 80.4 (2 C(CH₃)₃), 127.5, 127.6, 128.8, 138.1 (C₆H₅), 156.4, 157.3 (2 C(O)OC(CH₃)₃), 170.8 (C(O)NHCH₂Ph); HRMS (ESI) 416.2151 [M + Na⁺] (calcd for C₂₀H₃₁N₃O₅Na⁺ 416.2162); Anal. Calcd for C₂₀H₃₁N₃O₅: C, 61.05; H, 7.94; N, 10.68. Found: C, 61.16; H, 7.98; N, 10.49.

(*R*,*S*)-*N*-Benzyl 2,3-Diaminopropionamide ((*R*,*S*)-13). Utilizing Method E with (*R*,*S*)-64 (1.71 g, 4.35 mmol), TFA (4.86 mL, 65.23 mmol), and CH₂Cl₂ (15 mL) gave the crude product after workup that was further purified by recrystallization from hot EtOAc/hexanes to give the desired product (427 mg, 51%) as a white solid: mp 119–120 °C; R_f 0.17 (1:10 MeOH/CH₂Cl₂); IR (nujol mull) 3316, 2924, 2858, 1645, 1523, 1459, 1376, 731 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 2.70–2.95 (m, CH₂NH₂), 3.35–3.42 (m, CH), 4.40 (s, NHCH₂Ph), 7.21–7.35 (m, C₆H₅); ¹³C NMR (75 MHz, CD₃OD) δ 44.2 (NHCH₂Ph), 46.7 (CH₂NH₂), 57.5 (CH), 128.5, 128.8, 129.8, 140.0 (C₆H₅), 175.9 (C(O)NH); HRMS (ESI) 216.1107 [M + Na⁺] (calcd for C₁₀H₁₅N₃ONa⁺ 216.1113); Anal. Calcd for C₁₀H₁₅N₃O•H₂O: C, 61.91; H, 7.84; N, 21.66. Found: C, 61.54; H, 7.90; N, 21.38.

9. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-(*N*',*N*'-dimethyl)aminopropionamide ((*R*,*S*)-15)

(*R*,*S*)-*N*-(Benzyloxycarbonyl)-serine Methyl Ester ((*R*,*S*)-50).¹² Utilizing Method A with DLserine methyl ester hydrochloride (10.0 g, 64.3 mmol), NaHCO₃ (17.8 g, 212.1 mmol), and H₂O (130 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100 MeOH/CH₂Cl₂) to give the desired product (12.17 g, 75%) as a pale yellow oil: R_f 0.29 (1:100 MeOH/CH₂Cl₂); IR (neat) 3413, 3362, 3033, 2954, 2893, 1708, 1522, 1219, 1065, 912, 746, 700 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 3.59–3.69 (m, CH₂OH, CH₃), 4.14–4.20 (m, CH), 4.98 (t, J = 6.0 Hz, OH), 5.05 (s, OCH₂Ph), 7.29–7.38 (m, C₆H₅), 7.55 (d, J = 7.8 Hz, NH); ¹³C NMR (75 MHz, DMSO- d_6) δ 51.5 (CH₃), 56.3 (CH), 60.9 (CH₂OH), 65.3 (OCH₂Ph), 127.4, 127.5, 128.0, 136.6 (C₆H₅), 155.7 (NC(O)O), 170.9 (CHC(O)); HRMS (ESI) 276.0844 [M + Na⁺] (calcd for C₁₂H₁₅NO₅Na⁺ 276.0848).

N-(Benzyloxycarbonyl)amino-dehydroalanine Methyl Ester (51).¹³ (*R*,*S*)-50 (1.00 g, 3.95 mmol) was dissolved in anhydrous THF (20 mL) and cooled to 0 °C before the dropwise addition of Et₃N (0.66 mL, 4.74 mmol). After 10 min, MsCl (0.37 mL, 4.74 mmol) was added dropwise at 0 °C, which led to the formation of a precipitate. After 1 h at 0 °C, Et₃N (0.66 mL, 4.74 mmol) was added and the reaction was warmed to room temperature (3 h). The precipitate was filtered, washed with anhydrous THF, and the filtrate was evaporated in vacuo to give a crude oil (0.58 g, 62%) that was used without further purification: R_f 0.54 (1:10 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 3.30–3.75 (br s, NH), 3.83 (s, OCH₃), 5.16 (s, OCH₂Ph), 5.79 (s, CHH'), 6.25 (s, CHH'), 7.26–7.39 (m, C₆H₅).

(*R*,*S*)-2-*N*-(Benzyloxycarbonyl)amino-3-(*N*',*N*'-dimethyl)aminopropionic Methyl Ester ((*R*,*S*)-58). Utilizing Method F with (*R*,*S*)-50 (6.11 g, 24.14 mmol), Et₃N (4.0 mL, 28.97 mmol),

MsCl (2.2 mL, 28.97 mmol), dimethylamine (in 2 M THF, 100 mL, 193.1 mmol), and MeOH (100 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂, 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (4.51 g, 67%) as an orange oil: R_f 0.47 (1:20 MeOH/CH₂Cl₂); IR (neat) 3494, 3248, 3145, 1718, 1524, 1458, 1213, 1056, 908, 850, 745, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.21 (s, N(CH₃)₂), 2.57–2.69 (m, CH₂N(CH₃)₂), 3.73 (s, OCH₃), 4.30–4.36 (m, CH), 5.10 (s, OCH₂Ph), 5.89 (d, *J* = 6.3 Hz, NH), 7.27–7.36 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 45.6 (N(CH₃)₂), 52.4 (CH₃ or CH), 52.8 (CH₃ or CH), 59.9 (CH₂N(CH₃)₂), 67.0 (OCH₂Ph), 128.2, 128.5, 136.4 (C₆H₅), 156.2 (NC(O)O), 172.4 (CHC(O)), one aromatic peak was not detected and is believed to overlap with nearby signals; HRMS (ESI) 303.1322 [M + Na⁺] (calcd for C₁₄H₂₀N₂O₄Na⁺ 303.1321); Anal. Calcd for C₁₄H₂₀N₂O₂; C, 59.99; H, 7.19; N, 9.99. Found C, 60.17; H, 7.29; N, 9.85.

(*R*,*S*)-*N*-Benzyl 2-*N*'-(Benzyloxycarbonyl)amino-3-(*N*'',*N*''-dimethyl)aminopropionamide ((*R*,*S*)-60). Utilizing Method G with (*R*,*S*)-58 (3.88 g, 13.85 mmol), LiOH (0.33 g, 13.85 mmol), benzylamine hydrochloride (2.39 g, 16.62 mmol), DMTMM (4.60 g, 16.62 mmol), and THF/H₂O (140 mL/70 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂, 1:3 CH₂Cl₂/EtOAc followed by 1:10 MeOH/CH₂Cl₂) to give the desired product (1.67 g, 34%) as an orange solid: mp 82–83 °C; *R_f* 0.44 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3403, 3149, 2856 (br), 1706, 1655, 1550, 1457, 1375, 1255, 1058, 904, 850, 732, 694 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.26 (s, N(CH₃)₂), 2.43 (dd, *J* = 8.7, 12.4 Hz, CHH'N(CH₃)₂), 2.60 (dd, *J* = 6.2, 12.4 Hz, CHH'N(CH₃)₂), 4.09–4.19 (m, CH), 4.38 (dd, J = 5.3, 14.9 Hz, NHCHH'Ph), 4.53 (dd, J = 6.2, 14.9 Hz, NHCHH'Ph), 5.08 (1/2 AB_q, J = 12.2 Hz, OCHH'Ph), 5.13 (1/2 AB_q, J = 12.2 Hz, OCHH'Ph), 5.86–6.01 (br d, NHC(O)), 7.23–7.36 (m, 2 C₆H₅), 8.36–8.55 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 43.5 (NHCH₂Ph), 45.2 (N(CH₃)₂), 51.2 (CH), 61.2 (CH₂N(CH₃)₂), 67.1 (OCH₂Ph), 127.5, 127.6, 128.2, 128.3, 128.7, 128.8, 136.4, 138.5 (C₆H₅), 156.4 (NC(O)O), 171.1 (CHC(O)); HRMS (ESI) 378.1798 [M + Na⁺] (calcd for C₂₀H₂₅N₃O₃Na⁺ 378.1794); Anal. Calcd for C₂₀H₂₅N₃O₃; C, 67.58; H, 7.09; N, 11.82. Found C, 67.58; H, 7.15; N, 12.02.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-(*N*',*N*'-dimethyl)aminopropionamide ((*R*,*S*)-15). Utilizing Method C with (*R*,*S*)-60 (1.08 g, 3.03 mmol), 10% Pd-C (0.1 g), and MeOH (30 mL) gave a crude oil that was purified by flash column chromatography (SiO₂; 1:100–1:20 MeOH/CH₂Cl₂) to give the desired product (0.40 g, 60%) as a pale orange oil: R_f 0.26 (1:10 MeOH/CH₂Cl₂); IR (neat) 3447, 3116, 3006, 2848, 2731, 1661, 1526, 1458, 1362, 1259, 1113, 1037, 935, 870, 739, 701, 602 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.86 (s, NH₂), 2.26 (s, N(CH₃)₂), 2.42 (dd, *J* = 8.8, 12.3 Hz, CHH'N(CH₃)₂), 2.60 (dd, *J* = 6.0, 12.3 Hz, CHH'N(CH₃)₂), 3.50 (dd, *J* = 6.0, 8.8 Hz, CH), 4.38–4.52 (m, NHCH₂Ph), 7.24–7.36 (m, C₆H₅), 8.20–8.34 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 43.2 (NHCH₂Ph), 45.4 (N(CH₃)₂), 52.5 (CH), 63.0 (CH₂N(CH₃)₂), 127.5, 127.8, 128.8, 138.8 (C₆H₅), 174.4 (CHC(O)); HRMS (ESI) 244.1434 [M + Na⁺] (calcd for C₁₂H₁₉N₃ONa⁺ 244.1426); Anal. Calcd for C₁₂H₁₉N₃O₂•0.33H₂O; C, 63.41; H, 8.72; N, 18.49. Found C, 63.38; H, 8.52; N, 18.21.

10. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-morpholinopropionamide ((*R*,*S*)-16)

(*R*,*S*)-2-*N*-(Benzyloxycarbonyl)amino-3-morpholinopropionic Methyl Ester ((*R*,*S*)-59). Utilizing Method F with (R,S)-50 (7.00 g, 27.66 mmol), Et₃N (4.6 mL, 33.19 mmol), MsCl (2.6 mL, 33.19 mmol), and morpholine (24.2 mL, 276.6 mmol) gave the crude product after workup that was further purified by flash column chromatography $(SiO_2, 1:100-1:20 \text{ MeOH/CH}_2\text{Cl}_2)$ to give the desired product (6.58 g, 74%) as a white solid: mp 69–70 °C; $R_f 0.53$ (1:10 MeOH/CH₂Cl₂); IR (nujol mull) 3284, 2904 (br), 1749, 1679, 1528, 1457, 1373, 1302, 1269, 1207, 1159, 1109, 1054, 1007, 904, 862, 737 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.37–2.50 (m. $N(CH_2CH_2)_{2O}$, 2.65–2.76 (m, CH₂N(CH₂CH₂)_{2O}), 3.64 (t, J = 4.5 Hz, N(CH₂CH₂)_{2O}), 3.75 (s, OCH_3), 4.35–4.41 (m, CH), 5.09 (1/2 AB_a, J = 12.2 Hz, OCHH'Ph), 5.14 (1/2 AB_a, J = 12.2 Hz, OCHH'Ph), 5.67–5.69 (d, J = 6.6 Hz, NH), 7.31–7.40 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 52.2 (OCH₃), 52.5 (CH), 53.8 (N(CH₂CH₂)O), 59.2 (CH₂N(CH₂CH₂)O), 67.0 (N(CH₂CH₂)O), 67.2 (OCH₂Ph), 128.4, 128.7, 136.4 (C₆H₅), 156.1 (NC(O)O), 172.4 (CHC(O)), one aromatic peak was not detected and is believed to overlap with nearby signals; HRMS (ESI) 345.1431 [M + Na^+] (calcd for C₁₆H₂₂N₂O₅Na⁺ 345.1427); Anal. Calcd for C₁₆H₂₂N₂O₅; C, 59.61; H, 6.88; N, 8.69. Found C, 59.53; H, 6.79; N, 8.59.

(R,S)-N-Benzyl 2-N'-(Benzyloxycarbonyl)amino-3-morpholinopropionamide ((R,S)-61). Utilizing Method G with (R,S)-59 (5.00 g, 15.52 mmol), LiOH (0.37 g, 15.52 mmol), benzylamine hydrochloride (2.67 g, 18.62 mmol), DMTMM (5.15 g, 18.62 mmol), and THF/H₂O (150 mL/75 mL) gave the crude product after workup that was further purified by column chromatography (SiO₂, 1:100–1:10 MeOH/CH₂Cl₂) followed by recrystallization from hot EtOAc/hexanes to give the desired product (3.49 g, 57%) as a white solid: mp 103–104 °C; *R*_f 0.50 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3418, 3290, 3140, 2912 (br), 1658, 1554, 1457, 1376, 1260, 1113, 1037, 869, 732, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.26–2.82 (m, $CH_2N(CH_2CH_2)_2O)$, 3.41–3.56 (m, N(CH_2CH_2)_2O), 4.10–4.21 (m, CH), 4.33 (dd, J = 4.8, 14.6Hz, NC**H**H'Ph), 4.54 (dd, *J* = 6.3, 14.6 Hz, NCH**H'**Ph), 5.08 (1/2 AB_a, *J* = 12.3 Hz, OC**H**H'Ph), 5.13 (1/2 AB_q, J = 12.3 Hz, OCHH'Ph), 5.87–5.94 (br d, NHC(O)), 7.25–7.39 (m, C₆H₅) 8.10– 8.23 (m, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 43.9 (NHCH₂Ph), 50.6 (CH), 53.5 (N(CH₂CH₂)O), 60.3 (CH₂N(CH₂CH₂)O), 67.0 (N(CH₂CH₂)O), 67.2 (OCH₂Ph), 127.9, 128.0, 128.3, 128.4, 128.7, 129.0, 136.4, 138.2 (2 C₆H₅), 156.3 (NC(O)O), 170.7 (CHC(O)); HRMS (ESI) 420.1884 $[M + Na^+]$ (calcd for $C_{22}H_{27}N_3O_4Na^+$ 420.1899); Anal. Calcd for $C_{22}H_{27}N_3O_4$; C, 66.48; H, 6.85; N, 10.57. Found C, 66.52; H, 6.82; N, 10.64.

(*R*,*S*)-*N*-Benzyl 2-Amino-3-morpholinopropionamide ((*R*,*S*)-16). Utilizing Method C with (*R*,*S*)-61 (2.50 g, 6.29 mmol), 10% Pd-C (0.25 g), and MeOH (60 mL) gave the crude product that was further purified by flash column chromatography (SiO₂; 1:100 MeOH/CH₂Cl₂) to give the desired compound (0.94 g, 57%) as a white solid: mp 84–85 °C; *R*_f 0.24 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3401, 3237, 3168, 3096, 2920 (br), 1650, 1598, 1458, 1375, 1115, 946, 876, 720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.83 (s, NH₂), 2.37–2.55 (m, CHH'N(CH₂CH₂)₂O), 2.67 (dd, *J* = 5.7, 12.3 Hz, CHH'N(CH₂CH₂)₂O), 3.53–3.69 (m, CH, N(CH₂CH₂)₂O), 4.43 (d, *J* = 5.7 Hz, NHCH₂Ph), 7.24–7.36 (m, C₆H₅), 8.06–8.18 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 43.2 (NHCH₂Ph), 51.6 (CH), 53.5 (N(CH₂CH₂)O), 61.9 (CH₂N(CH₂CH₂)O), 67.0 (N(CH₂CH₂)O), 127.5, 127.8, 128.8, 138.5 (C₆H₅), 174.1 (CHC(O)); HRMS (ESI) 286.1533 [M + Na⁺] (calcd for C₁₄H₂₁N₃O₂Na⁺ 286.1532); Anal. Calcd for C₁₄H₂₁N₃O₂; C, 63.85; H, 8.04; N, 15.96. Found C, 63.71; H, 7.99; N, 15.77.

11. Attempted Synthesis of (R,S)-2-*N*-(Benzyloxycarbonyl)amino-3-(*N*'-methylamino)propionic Methyl Ester ((R,S)-53)

Attempted Synthesis of (*R*,*S*)-2-*N*-(Benzyloxycarbonyl)amino-3-(*N*'-methylamino)propionic Methyl Ester ((*R*,*S*)-53).^{14, 15} Utilizing Method F with (*R*,*S*)-50 (4.67 g, 18.45 mmol), Et₃N (3.1 mL, 22.14 mmol), MsCl (1.7 mL, 22.14 mmol), methylamine (in 2 M THF, 92.3 mL, 184.51 mmol), and MeOH (92.3 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:20 MeOH/CH₂Cl₂) to give the desired product (1.38 g,

28%) as an orange oil and (R,S)-N-methyl-2-N'-(benzyloxycarbonyl)amino-3-(N''-methylamino)propionamide (2.06 g, 42%) as an orange solid.

(*R*,*S*)-2-*N*-(Benzyloxycarbonyl)amino-3-(*N*'-methylamino)propionic Methyl Ester ((*R*,*S*)-53): R_f 0.26 (1:20 MeOH/CH₂Cl₂); IR (neat) 3326, 3032, 2952, 2853, 2800, 2360, 1960, 1716, 1530, 1451, 1218, 1054, 912, 746, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.16–1.26 (br s, NHCH₃), 2.40 (s, NHCH₃), 2.89–3.02 (m, CH₂NHCH₃), 3.75 (s, OCH₃), 4.42–4.48 (m, CH), 5.12 (s, OCH₂Ph), 5.81 (d, *J* = 7.5 Hz, NHC(O)O), 7.27–7.37 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 36.4 (NHCH₃), 52.7 (OCH₃ or CH₂NHCH₃), 52.8 (OCH₃ or CH₂NHCH₃), 53.9 (CH), 67.2 (OCH₂Ph), 128.2, 128.3, 128.7, 136.4 (C₆H₅), 156.3 (NC(O)O), 172.3 (CHC(O)); HRMS (ESI) 267.1352 [M + H⁺] (calcd for C₁₃H₁₈N₂O₄H⁺ 267.1345); Anal. Calcd for C₁₃H₁₈N₂O₄; C, 58.63; H, 6.81; N, 10.52. Found C, 58.36; H, 6.82; N, 10.67.

(*R*,*S*)-*N*-Methyl 2-*N*'-(Benzyloxycarbonyl)amino-3-(*N*''-methylamino)propionamide: mp 122–123 °C; R_f 0.32 (1:10 MeOH/CH₂Cl₂); IR (nujol mull) 3319, 3217, 3170, 3041 (br), 1719, 1660, 1593, 1547, 1457, 1377, 1250, 1153, 1052, 850, 735 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.72 (s, NHCH₃), 2.42 (s, NHCH₃), 2.64 (dd, *J* = 8.0, 11.7 Hz, CHH'NHCH₃), 2.80 (d, *J* = 4.8 Hz, C(O)NHCH₃), 3.11 (dd, J = 3.6, 11.7 Hz, CHH'NHCH₃), 4.08–4.14 (m, CH), 5.11 (s, OCH₂Ph), 6.11 (d, J = 5.7 Hz, NHC(O)), 7.28–7.36 (m, C₆H₅) 7.49–7.60 (br s, OC(O)NHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 26.3 (C(O)NHCH₃), 36.3 (NHCH₃), 53.2 (CH, CHCH₂), 67.2 (OCH₂Ph), 128.2, 128.4, 128.7, 136.4 (C₆H₅), 156.6 (NC(O)O), 171.8 (CHC(O)); HRMS (ESI) 288.1327 [M + Na⁺] (calcd for C₁₃H₁₉N₃O₃Na⁺ 288.1324); Anal. Calcd for C₁₃H₁₉N₃O₃; C, 58.85; H, 7.22; N, 15.84. Found C, 58.82; H, 7.22; N, 15.66.

12. Preparation of (*R*)-*N*-Benzyl 2-Amino-4-hydroxybutanamide ((*R*)-17)

(*R*)-2-(Benzyloxycarbonyl)amino- γ -lactone ((*R*)-69).¹⁶ D-Homoserine (5.00 g, 42.00 mmol) was dissolved in aqueous 1 M Na₂CO₃ (50 mL) and cooled to 0 °C in an ice bath under N₂. Benzyl chloroformate (6.48 mL, 46.20 mmol) was added dropwise and the reaction was maintained at 0 °C (30 min) before warming to room temperature (18 h). The solution was acidified to pH 2 with aqueous concentrated HCl and extracted with EtOAc (3 x 75 mL). The combined organic layers were dried (Na₂SO₄), evaporated in vacuo, and purified by recrystallization from hot EtOAc/hexanes to give the desired product (7.32 g, 74%) as a white solid: mp 130–131 °C (lit.¹⁶ mp 118–120 °C); *R_f* 0.67 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3428, 3062, 2856, 1777, 1694, 1550, 1458, 1380, 1295, 1176, 1076, 1011, 946, 844, 739, 694, 629 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.14–2.29 (m, CHCHH'), 2.74–2.82 (m, CHCHH'), 4.21–4.29 (m, CH), 4.34–4.48 (m, CHCH₂CH₂O), 5.13 (s, OCH₂Ph), 5.34–5.42 (br d, NH), 7.32–7.38 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 30.2 (CHCH₂CH₂O), 50.6 (CHCH₂CH₂O), 65.9 (CHCH₂CH₂O), 67.4 (OCH₂Ph), 128.3, 128.5, 128.7, 136.0 (C₆H₅), 156.3 (NC(O)O), 175.3

(**C**(O)O); HRMS (ESI) 258.0753 [M + Na⁺] (calcd for C₁₂H₁₃NO₄Na⁺ 258.0742); Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.59. Found: C, 61.26; H, 5.65; N, 6.00.

(*R*)-*N*-Benzyl 2-*N*^{*}-(Benzyloxycarbonyl)amino-4-hydroxybutanamide ((*R*)-70). A mixture of (*R*)-69 (4.20 mg, 17.87 mmol) and benzylamine (3.90 mL, 35.73 mmol) was stirred in anhydrous pyridine (70 mL) at 80 °C (18 h). The mixture was allowed to cool to room temperature and was diluted with CH₂Cl₂ (50 mL). The organic layer was successively washed with aqueous 1 M HCl (3 x 50 mL), H₂O (3 x 50 mL), and brine (2 x 50 mL), dried (Na₂SO₄), and evaporated in vacuo. The crude product was purified by recrystallization from hot EtOAc to give the desired product (3.57 g, 58%) as a white solid: mp 126–127 °C; *R_f* 0.56 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3087, 2916 (br), 1694, 1656, 1552, 1457, 1343, 1255, 1159, 1085, 1019, 727 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.65–1.89 (m, CHCH₂), 3.40–3.46 (m, CH₂OH), 4.10–4.17 (m, CH), 4.21–4.35 (m, NHCH₂), 4.59 (t, OH), 5.03 (s, OCH₂Ph), 7.23–7.37 (m, 2 C₆H₅), 7.46 (d, *J* = 8.1 Hz, OC(O)NH), 8.46 (t, *J* = 6.0 Hz NHCH₂Ph); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 34.9 (CHCH₂), 42.0 (NHCH₂), 52.3 (CH₂OH), 57.5 (CH), 65.4 (OCH₂Ph), 126.6, 127.0, 127.7, 127.7, 128.2, 128.3, 137.0, 139.5 (2 C₆H₅), 155.9 (OC(O)), 172.1 (CC(O)); HRMS (ESI) 365.1462 [M + Na⁺] (calcd for C₁₉H₂₂N₂O₄Na⁺ 365.1477).

(*R*)-*N*-Benzyl 2-Amino-4-hydroxybutanamide ((*R*)-17). Utilizing Method C with (*R*)-70 (1.50 g, 4.38 mmol), 10% Pd-C (0.15 g), and MeOH (45 mL) gave the crude product that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (0.53 g, 57%) as a white solid: mp 88–89 °C; R_f 0.40 (1:10 MeOH/CH₂Cl₂); [α]²⁵_D +4.8° (*c* 1.1, CH₂Cl₂); IR (nujol mull) 3265, 2965 (br), 1649, 1540, 1457, 1365, 1251, 1142, 1080, 1024, 952, 801, 724, 602, 549 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.79–1.90 (m, CHH'CH₂OH), 1.93–2.19 (m, CHH'CH₂OH, NH₂), 3.61 (t, *J* = 6.6 Hz, CH), 3.76–3.88 (CH₂CH₂OH), 4.46 (d, *J* = 6.3 Hz, NHCH₂Ph), 7.25–7.38 (m, C₆H₅), 7.56–7.64 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 37.6 (CH₂CH₂OH), 43.0 (NHCH₂Ph), 54.1 (CH), 60.6 (CH₂CH₂OH), 127.3, 127.5, 128.5, 137.9 (C₆H₅), 175.0 (C(O)N); HRMS (ESI) 209.1288 [M + H⁺] (calcd for C₁₁H₁₆N₂O₂H⁺ 209.1290); Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.31; H, 7.86; N, 13.31.

13. Preparation of (*R*)-*N*-Benzyl 2-Amino-4-(methylthio)butanamide ((*R*)-19)

(*R*)-2-*N*-(*t*-Butoxycarbonyl)amino-4-(methylthio)butanoic Acid ((*R*)-66).¹⁷ D-Methionine (5.00 g, 33.55 mmol) was dissolved in dioxane (20 mL) and aqueous 1.25 M NaOH (25 mL) and

then cooled to 0 °C in an ice bath under N₂. Boc₂O (7.69 g, 35.22 mmol) in dioxane (5 mL) was added dropwise and the reaction was allowed to warm to room temperature (18 h) before the organic layer was evaporated in vacuo. The remaining aqueous layer was diluted with aqueous 1 M KHSO₄ (50 mL) and extracted with EtOAc (3 x 75 mL). The organic layers were combined and washed with brine (2 x 200 mL), dried (Na₂SO₄), and evaporated in vacuo to give the crude product (8.19 g, 98%) as a pale yellow oil. The product was used for the next step without further purification: ¹H NMR (300 MHz, CDCl₃) δ 1.46 (s, C(CH₃)₃), 1.95–2.06 (m, CHH'CH₂SCH₃), 2.11 (s, SCH₃), 2.12–2.26 (m, CHH'CH₂SCH₃), 2.58 (t, *J* = 8.0 Hz, CH₂SCH₃), 4.18–4.64 (m, CH), 5.24–5.27 (d, *J* = 8.0 Hz, NHC(O)).

(*R*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)amino-4-(methylthio)butanamide ((*R*)-67). Utilizing Method B with (*R*)-66 (7.10 g, 28.50 mmol), NMM (4.07 mL, 37.05 mmol), IBCF (4.04 mL, 31.35 mmol), and benzylamine (3.27 mL, 29.92 mmol) gave the crude product that was purified by recrystallization (2x) from hot EtOAc/hexanes to give the desired compound (4.21 g, 44%) as a white solid: mp 104–105 °C; R_f 0.59 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3369, 3305, 2924, 1655, 1527, 1456, 13.73, 1328, 1293, 1247, 1170, 1055, 856, 739, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.40 (s, C(CH₃)₃), 1.87–1.99 (m, CHH'CH₂SCH₃), 2.06 (s, SCH₃), 2.07–2.16 (m, CHH'CH₂SCH₃), 2.50–2.60 (m, CH₂SCH₃), 4.29–4.48 (m, CH, NHCH₂Ph), 5.40–5.42 (d, *J* = 7.5 Hz, NHC(O)), 6.88–6.96 (br t, NHCH₂Ph), 7.23–7.34 (C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 15.0 (SCH₃), 28.0 (C(CH₃)₃), 30.0 (CH₂SCH₃), 31.4 (CH₂CH₂SCH₃), 43.1 (NHCH₂Ph), 53.2

(CH), 79.8 (C(CH₃)₃), 127.1, 127.3, 128.4, 137.7 (m, C₆H₅), 155.4 (NC(O)O), 171.3 (NC(O)C); HRMS (ESI) 339.1751 [M + H⁺] (calcd for $C_{17}H_{26}N_2O_3SH^+$ 339.1742); Anal. Calcd for $C_{17}H_{26}N_2O_3S$: C, 60.33; H, 7.74; N, 8.28; S, 9.47. Found: C, 60.18; H, 7.80; N, 8.25; S, 9.18.

(*R*)-*N*-Benzyl 2-Amino-4-(methylthio)butanamide ((*R*)-19). Utilizing Method E with (*R*)-67 (1.64 g, 4.85 mmol), TFA (5.40 mL, 72.74 mol), and CH₂Cl₂ (15 mL) gave the crude product that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired product (0.87 g, 76%) as a pale yellow oil: R_f 0.58 (1:20 MeOH/CH₂Cl₂); IR (neat) 3315, 3032, 2918, 1655, 1524, 1441, 1356, 1249, 1082, 1027, 956, 737, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.48 (s, NH₂), 1.73–1.87 (m, CHH^{*}CH₂SCH₃), 2.10 (s, SCH₃), 2.16–2.27 (m, CHH^{*}CH₂SCH₃), 2.62 (t, *J* = 7.4 Hz, CH₂SCH₃), 3.55 (dd, *J* = 4.4, 8.3 Hz, CH), 4.45 (d, *J* = 6.0 Hz, NHCH₂Ph), 7.25–7.36 (m, C₆H₅), 7.57–7.64 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 15.5 (SCH₃), 30.9 (CH₂SCH₃), 34.3 (CH₂CH₂SCH₃), 43.4 (NHCH₂Ph), 54.5 (CH), 127.6, 127.9, 128.9, 138.6 (C₆H₅), 174.6 (NC(O)); HRMS (ESI) 239.1224 [M + H⁺] (calcd for C₁₂H₁₈N₂OSH⁺ 239.1218); Anal. Calcd for C₁₂H₁₈N₂OS: C, 60.47; H, 7.61; N, 11.75; S, 13.45. Found: C, 60.17; H, 7.62; N, 11.52; S, 13.69.

14. Preparation of (*R*)-*N*-Benzyl 2-Aminobutanamide ((*R*)-21)

(*R*)-2-*N*-(*t*-Butoxycarbonyl)aminobutanoic Acid ((*R*)-77).¹⁸ D-2-Aminobutanoic acid (3.50 g, 33.94 mmol) and Na₂CO₃ (8.99 g, 84.85 mmol) was dissolved in a mixture of H₂O/acetone (70 mL/70 mL). Boc₂O (8.15 g, 37.34 mmol) was added in one portion at room temperature and the mixture stirred overnight (18 h). The organic layer was evaporated in vacuo and the remaining aqueous layer was washed with Et₂O (50 mL), acidified to pH ~2 with aqueous 1 M KHSO₄, and extracted with EtOAc (3 x 50 mL). The second set of organic layers was combined, dried (Na₂SO₄), and evaporated in vacuo to give the crude product (6.83 g, 99%) as a colorless oil and as a 2:1 mixture of conformers A (major) and B (minor). The product was used for the next step without further purification: $R_f 0.55$ (1:20 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) $\delta 0.98$ $(t, J = 7.6 \text{ Hz}, \text{CH}_2\text{CH}_3), 1.45 (s, \text{C}(\text{CH}_3)_3), 1.68-1.79 (m, \text{CHH'CH}_3), 1.86-1.95 (m, m)$ CHH'CH₃), 4.04–4.13 (m, CH_B), 4.24–4.35 (m, CH_A), 5.11 (d, J = 7.6 Hz, NH_A), 6.41 (d, J =7.6 Hz, NH_B), 9.20–9.65 (br s, OH); ¹³C NMR (400 MHz, CDCl₃) δ 9.8 ((CH₂CH₃)_A), 9.9 ((CH₂CH₃)_B), 25.8 (CH₂CH₃), 28.5 (C(CH₃)₃), 54.6 ((CH)_A), 56.0 ((CH)_B), 80.3 ((C(CH₃)₃)_A), 81.8 ((C(CH₃)₃)_B), 155.8 ((OC(O)N)_A), 157.1 ((OC(O)N)_A), 177.2 ((C(O)OH)_A), 177.5 $((\mathbf{C}(\mathbf{O})\mathbf{OH})_{\mathbf{B}}).$

(*R*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)aminobutanamide ((*R*)-83). Utilizing Method B with (*R*)-77 (6.16 g, 30.33 mmol), NMM (4.33 mL, 39.43 mmol), IBCF (4.30 mL, 33.36 mmol), and benzylamine (3.48 mL, 31.84 mmol) gave the crude product that was recrystallized from hot

EtOAc/hexanes to give the desired product (5.94 g, 67%) as a white solid: mp 70–71 °C; R_f 0.33 (1:10 EtOAc/hexanes); $[\alpha]^{25}_{D}$ +18.6° (*c* 1.0, CH₂Cl₂); IR (nujol mull) 3317, 2869 (br), 1688, 1648, 1525, 1457, 1376, 1245, 1166, 1058, 1012, 908, 865, 757, 656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.6 Hz, CH₂CH₃), 1.39 (s, C(CH₃)₃), 1.58–1.69 (m, CHH'CH₃), 1.80–1.91 (m, CHH'CH₃), 4.04–4.16 (m, CH), 4.36 (dd, *J* = 6.0, 14.8 Hz, NHCHH'Ph), 4.45 (dd, *J* = 6.0, 14.8 Hz, NHCHH'Ph), 5.26 (d, *J* = 8.4 Hz, NH), 6.82–6.89 (br t, NHCH₂Ph), 7.22–7.31 (m, 2 C₆H₅); ¹³C NMR (400 MHz, CDCl₃) δ 10.2 (CH₂CH₃), 26.0 (CH₂CH₃), 28.4 (C(CH₃)₃), 43.5 (NHCH₂Ph), 56.0 (CH), 80.0 (C(CH₃)₃), 127.5, 127.7, 128.8, 138.3 (C₆H₅), 156.0 (OC(O)N), 172.3 (C(O)NH); HRMS (ESI) 315.1694 [M + Na⁺] (calcd for C₁₆H₂₄N₂O₃Na⁺ 315.1685); Anal. Calcd for C₁₆H₂₄N₂O₃: C, 65.73; H, 8.27; N, 9.58. Found: C, 66.00; H, 8.33; N, 9.56.

(*R*)-*N*-Benzyl 2-Aminobutanamide ((*R*)-21). Utilizing Method E with (*R*)-83 (4.87 g, 16.67 mmol), TFA (18.57 mL, 0.25 mol), and CH₂Cl₂ (55 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired compound (1.86 g, 58%) as a pale yellow oil: R_f 0.53 (1:20 MeOH/CH₂Cl₂); IR 2966, 1659, 1529, 1456, 1357, 1292, 1082, 1025, 928, 736, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.97 (t, *J* = 7.2 Hz, CH₂CH₃), 1.38–1.46 (br s, NH₂), 1.51–1.66 (m, CHH'CH₃), 1.83–1.97 (m, CHH'CH₃), 3.35 (dd, *J* = 4.5, 7.8 Hz, CH), 4.44 (d, *J* = 5.7 Hz, NHCH₂Ph), 7.26–7.35 (m, C₆H₅), 7.61–7.73 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 10.2 (CH₂CH₃), 28.2 (CH₂CH₃), 43.2 (NHCH₂Ph), 56.5 (CH), 127.5, 127.8, 128.8, 138.7 (C₆H₅), 175.0 (C(O)N);

HRMS (ESI) 193.1348 $[M + H^+]$ (calcd for $C_{11}H_{16}N_2OH^+$ 193.1341); Anal. Calcd for

C₁₁H₁₆N₂O•0.06CH₂Cl₂: C, 67.22; H, 8.22; N, 14.17. Found: C, 67.23; H, 8.31; N, 14.36.

15. Preparation of (*R*)-, (*S*)-, and (*R*,*S*)-*N*-Benzyl 2-Aminopentanamide ((*R*)-, (*S*)-, and (*R*,*S*)-22)

(*R*)-2-*N*-(Benzyloxycarbonyl)aminopentanoic Acid ((*R*)-91).¹⁹ Utilizing Method A with Dnorvaline (5.00 g, 42.7 mmol), NaHCO₃ (8.97 g, 106.8 mmol), benzyl chloroformate (9.00 mL, 64.1 mmol) and H₂O (100 mL) gave the desired product (9.15 g, 85%) as a white solid after workup and the compound was used for the next step without further purification: mp 88–89 °C (lit.¹⁹ mp 84–85 °C); $[\alpha]^{25}_{D}$ +4.2° (*c* 2.0, acetone) (lit.²⁰ (*S*): $[\alpha]^{12}_{D}$ –4.2° (*c* 2, acetone)); *R_f* 0.61 (1:1 EtOAc/hexanes); ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.86 (t, *J* = 7.8 Hz, CH₂CH₃), 1.24–1.41 (m, CH₂CH₃), 1.51–1.67 (m, CHCH₂), 3.91–3.99 (m, CH), 5.03 (s, OCH₂Ph), 7.27–7.41 (m, C₆H₅), 7.58 (d, *J* = 8.1 Hz, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 13.1 (CH₃), 18.4 (CH₂CH₃), 32.5 (CHCH₂), 53.2 (CH), 65.0 (OCH₂Ph), 127.4, 127.5, 128.0, 136.7 (C₆H₅), 155.9 (NC(O)O), 173.7 (CHC(O)).

(*S*)-2-*N*-(**Benzyloxycarbonyl**)**aminopentanoic Acid** ((*S*)-**91**).²⁰ The previous procedure was repeated using L-norvaline (5.00 g, 42.7 mmol), NaHCO₃ (8.97 g, 106.8 mmol), and benzyl chloroformate (9.00 mL, 64.1 mmol), and H₂O (100 mL) to give the desired product (7.78 g, 73%) as a white solid: mp 85–86 °C (lit.²⁰ mp 86 °C); $[\alpha]^{25}_{D}$ –4.3° (*c* 2.1, acetone) (lit.²⁰ $[\alpha]^{12}_{D}$ – 4.2° (*c* 2, acetone)); *R_f* 0.43 (1:10 MeOH/CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.86 (t, *J* = 7.5 Hz, CH₂CH₃), 1.25–1.41 (m, CH₂CH₃), 1.50–1.71 (m, CHCH₂), 3.90–3.98 (m, CH), 5.03 (s, OCH₂Ph), 7.29–7.37 (m, PhH), 7.58 (d, *J* = 8.1 Hz, NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 13.4 (CH₃), 18.7 (CH₂CH₃), 32.8 (CHCH₂), 53.5 (CH), 65.3 (OCH₂Ph), 127.7, 127.8, 128.3, 137.0 (C₆H₅), 156.2 (NC(O)O), 174.0 (CHC(O)).

(*R*,*S*)-2-*N*-(Benzyloxycarbonyl)aminopentanoic Acid ((*R*,*S*)-91). The previous procedure was repeated using DL-norvaline (5.00 g, 42.7 mmol), NaHCO₃ (8.97 g, 106.8 mmol), benzyl chloroformate (9.00 mL, 64.1 mmol), and H₂O (100 mL) to give the desired product (8.55 g, 80%) as a white solid: mp 90–91 °C; R_f 0.57 (1:1 EtOAc/hexanes); ¹H NMR (300 MHz, DMSO- d_6) δ 0.86 (t, *J* = 7.2 Hz, CH₂CH₃), 1.26–1.42 (m, CH₂CH₃), 1.51–1.69 (m, CHCH₂), 3.91–3.99 (m, CH), 5.04 (s, OCH₂Ph), 7.27–7.39 (m, C₆H₅), 7.58 (d, *J* = 8.1 Hz, NH); ¹³C NMR (75 MHz, DMSO- d_6) δ 13.1 (CH₃), 18.4 (CH₂CH₃), 32.5 (CHCH₂), 53.2 (CH), 65.0 (OCH₂Ph), 127.4, 127.5, 128.0, 136.7 (C₆H₅), 155.8 (NC(O)O), 173.7 (CHC(O)).

(*R*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)aminopentanamide ((*R*)-93). Utilizing Method B with (*R*)-91 (5.00 g, 19.9 mmol), NMM (2.85 mL, 25.9 mmol), IBCF (2.82 mL, 21.9 mmol), and benzylamine (2.28 mL, 20.9 mmol) gave the crude product that was purified by flash column chromatography (SiO₂; 1:10 MeOH/CH₂Cl₂) followed by recrystallization from hot toluene to give the desired compound (3.49 g, 52%) as a white solid: mp 139–141 °C; $[\alpha]^{25}_{D}$ +11.5° (*c* 1.1, MeOH); *R*_f 0.27 (1:100 MeOH/CH₂Cl₂); IR (nujol mull) 3290, 2934 (br), 2358, 1692, 1643, 1540, 1458, 1375, 1258, 1058, 737, 694 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.85 (t, *J* = 7.5 Hz, CH₂CH₃), 1.20–1.37 (m, CH₂CH₃), 1.46–1.67 (m, CH₂CH₂CH₃), 3.98–4.06 (m, CH), 4.28 (d, *J* = 5.9 Hz, CH₂Ph), 5.03 (s, OCH₂Ph), 7.23–7.37 (m, 2 C₆H₅), 7.43 (d, *J* = 8.1 Hz, NHC(O)), 8.43 (t, *J* = 5.9 Hz, NHCH₂Ph); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 13.2 (CH₃), 18.3 (CH₂CH₃), 33.6 (CHCH₂), 41.6 (CH₂Ph), 54.1 (CH), 65.0 (OCH₂Ph), 126.3, 126.7, 127.3, 127.4, 127.8, 127.9, 136.7, 139.0 (2 C₆H₅), 155.6 (NC(O)O), 171.7 (CHC(O)); HRMS (ESI) 363.1686 [M + Na⁺] (calcd for C₂₀H₂₄N₂O₃Na⁺ 363.1685); Anal. Calcd for C₂₀H₂₄N₂O₃•0.12H₂O; C, 70.11; H, 7.13; N, 8.18. Found C, 69.75; H, 7.20; N, 8.35.

(*S*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)aminopentanamide ((*S*)-93). The previous procedure was repeated using (*S*)-91 (5.00 g, 19.9 mmol), NMM (2.85 mL, 25.9 mmol), IBCF (2.82 mL, 21.9 mmol), and benzylamine (2.28 mL, 20.9 mmol) to give the crude product that was further

purified by flash column chromatography (SiO₂; 1:10 MeOH/CHCl₃) to give the desired compound (4.02 g, 60%) as a white solid: mp 134–135 °C; $[\alpha]^{25}_{D}$ –13.2° (*c* 1.1, MeOH); *R_f* 0.28 (1:100 MeOH/CH₂Cl₂); IR (nujol mull) 3285, 2938 (br), 1693, 1644, 1542, 1458, 1377, 1260, 1112, 1059, 739, 695 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.85 (t, *J* = 7.5 Hz, CH₂CH₃), 1.20–1.38 (m, CH₂CH₃), 1.46–1.65 (m, CH₂CH₂CH₃), 3.98–4.06 (m, CH), 4.28 (d, *J* = 6.0 Hz, CH₂Ph), 5.03 (s, OCH₂Ph), 7.20–7.44 (m, 2 PhH, NHC(O)), 8.42 (t, *J* = 6.0 Hz, NHCH₂Ph); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 13.2 (CH₃), 18.3 (CH₂CH₃), 33.6 (CHCH₂), 41.6 (CH₂Ph), 54.1 (CH), 65.0 (OCH₂Ph), 126.7, 126.9, 127.3, 127.4, 127.8, 127.9, 136.7, 139.0 (2 C₆H₅), 155.6 (NC(O)O), 171.7 (CHC(O)); HRMS (ESI) 363.1687 [M + Na⁺] (calcd for C₂₀H₂₄N₂O₃Na⁺ 363.1685); Anal. Calcd for C₂₀H₂₄N₂O₃; C, 70.56; H, 7.11; N, 8.23. Found C, 70.28; H, 7.19; N, 8.31.

(*R*,*S*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)aminopentanamide ((*R*,*S*)-93).²¹ The previous procedure was repeated using (*R*,*S*)-91 (5.00 g, 19.9 mmol), NMM (2.85 mL, 25.9 mmol), IBCF (2.82 mL, 21.9 mmol), and benzylamine (2.28 mL, 20.9 mmol) to give the crude product that was further purified by flash column chromatography (SiO₂; 1:10 MeOH/CH₂Cl₂) followed by recrystallization from hot toluene to give the desired compound (4.72 g, 70%) as a white solid: mp 136–137 °C (lit.²¹ mp 138–139 °C); R_f 0.27 (1:100 MeOH/CH₂Cl₂); IR (nujol mull) 3290, 2930 (br), 1689, 1641, 1538, 1459, 1375, 1257, 1057, 753, 702 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 0.85 (t, *J* = 6.9 Hz, CH₂CH₃), 1.17–1.40 (m, CH₂CH₃), 1.47–1.68 (m, CH₂CH₂CH₃), 3.99–4.06 (m, CH), 4.28 (d, *J* = 5.9 Hz, CH₂Ph), 5.03 (s, OCH₂Ph), 7.23–7.37 (m, 2 C₆H₅), 7.43 (d, J = 8.4 Hz, NHC(O)), 8.43 (t, J = 5.9 Hz, NHCH₂Ph); ¹³C NMR (75 MHz, DMSO- d_6) δ 13.2 (CH₃), 18.3 (CH₂CH₃), 33.6 (CHCH₂), 41.6 (CH₂Ph), 54.1 (CH), 65.0 (OCH₂Ph), 126.3, 126.7, 127.3, 127.4, 127.8, 127.9, 136.7, 139.1 (2 C₆H₅), 155.6 (NC(O)O), 171.7 (CHC(O)); HRMS (ESI) 363.1685 [M + Na⁺] (calcd for C₂₀H₂₄N₂O₃Na⁺ 363.1685); Anal. Calcd for C₂₀H₂₄N₂O₃; C, 70.56; H, 7.11; N, 8.23. Found C, 70.36; H, 7.17; N, 8.19.

(R)-N-Benzyl 2-Aminopentanamide ((R)-22). Utilizing Method C with (R)-93 (2.00 g, 5.88 mmol), 10% Pd-C (0.2 g), and MeOH (60 mL) gave the crude product further purified by flash column chromatography (SiO₂; 1:100 MeOH/CH₂Cl₂). The resulting oil was dissolved in CH₂Cl₂ (10 mL) and was extracted with aqueous 1 M HCl (3 x 10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (2 x 30 mL). The aqueous layer was basified to pH 10–12 with aqueous 1 M NaOH, and then extracted with CH₂Cl₂ (3 x 60 mL). The CH₂Cl₂ layers were combined, dried (NaSO₄), and concentrated in vacuo to give the desired product (0.95 g, 79%) as a pale yellow oil: $[\alpha]^{25}_{D}$ –9.4° (c 1.0, MeOH); $R_f 0.64$ (1:10 MeOH/CH₂Cl₂); IR (neat) 3307, 3033, 2956, 2870, 1658, 1525, 1456, 1358, 1250, 700 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 0.86 (t, J = 7.4 Hz, CH₂CH₃), 1.19-1.42 (m, CH₂CH₃, CHH'CH₂CH₃), 1.47-1.61 (m, CHH'CH₂CH₃), 1.78 (br s, NH₂), 3.15–3.20 (app. t, CH), 4.28 (d, J = 5.7 Hz, CH₂Ph), 7.20– 7.34 (m, C₆H₅), 8.34 (t, J = 5.7 Hz, NHCH₂Ph); ¹H NMR (300 MHz, CDCl₃) δ 0.95 (t, J = 7.2Hz, CH₂CH₃), 1.32–1.58 (m, CH₂CH₃, CHH'CH₂CH₃, NH₂), 1.81–1.93 (m, CHH'CH₂CH₃), 3.41 (dd, J = 4.1, 8.0 Hz, CH), 4.45 (d, J = 6.0 Hz, CH₂Ph), 7.24–7.37 (m, C₆H₅), 7.60–7.72 (br s, NHCH₂Ph); ¹H NMR (300 MHz, CD₃OD) δ 0.92 (t, J = 7.2 Hz, CH₂CH₃), 1.28–1.42 (m,

CH₂CH₃), 1.44–1.56 (m, CHH'CH₂CH₃), 1.58–1.71 (m, CHH'CH₂CH₃), 3.28–3.33 (m, CH), 4.35 (1/2 AB_q, J = 15.0 Hz, CHH'Ph), 4.41 (1/2 AB_q, J = 15.0 Hz, CHH'Ph), 4.86 (s, NH₂), 7.20–7.34 (m, C₆H₅); ¹³C NMR (75 MHz, DMSO- d_6) δ 13.5 (CH₃), 18.2 (CH₂CH₃), 37.1 (CHCH₂), 41.5 (CH₂Ph), 54.2 (CH), 126.3, 126.8, 127.8, 139.3 (C₆H₅), 175.0 (CHC(O)); HRMS (ESI) 229.1317 [M + Na⁺] (calcd for C₁₂H₁₈N₂ONa⁺ 229.1317); Anal. Calcd for C₁₂H₁₈N₂O; C, 69.87; H, 8.80; N, 13.58. Found C, 69.98; H, 8.73; N, 13.37.

(*S*)-*N*-Benzyl 2-Aminopentanamide ((*S*)-22). The previous procedure was repeated using (*S*)-93 (3.00 g, 8.82 mmol), 10% Pd-C (0.3 g), and MeOH (100 mL) to give the desired product (1.76 g, 97%) as a pale yellow oil: $[\alpha]^{25}_{D}$ +9.4° (*c* 1.5, MeOH); *R_f* 0.65 (1:10 MeOH/CH₂Cl₂); IR (neat) 3351, 3265, 3032, 2928, 2873, 1655, 1534, 1456, 1358, 1250, 701 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.86 (t, *J* = 6.6 Hz, CH₂CH₃), 1.22–1.42 (m, CH₂CH₃, CHH'CH₂CH₃), 1.48– 1.61 (m, CHH'CH₂CH₃), 1.78 (br s, NH₂), 3.17 (t, *J* = 6.9 Hz, CH), 4.28 (d, *J* = 6.0 Hz, CH₂Ph), 7.20–7.34 (m, PhH), 8.34 (t, *J* = 4.8 Hz, NHCH₂Ph); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 13.5 (CH₃), 18.2 (CH₂CH₃), 37.1 (CHCH₂), 41.5 (CH₂Ph), 54.2 (CH), 126.3, 126.8, 127.8, 139.3 (C₆H₅), 175.0 (CHC(O)); LRMS (ESI) 207.12 [M + H⁺] (calcd for C₁₂H₁₈N₂OH⁺ 207.12); Anal. Calcd for C₁₂H₁₈N₂O•0.32H₂O; C, 67.99; H, 8.86; N, 13.22. Found C, 67.93; H, 8.76; N, 13.21.

(R,S)-N-Benzyl 2-Aminopentanamide ((R,S)-22).²¹ The previous procedure was repeated using (R,S)-93 (2.00 g, 11.76 mmol), 10% Pd-C (0.2 g), and MeOH (60 mL) to give the desired product (0.88 g, 72%) as a pale yellow oil: $R_f 0.65$ (1:10 MeOH/CH₂Cl₂); IR (neat) 3292, 3064, 2957, 1655, 1528, 1457, 1358, 1250, 700 cm⁻¹. ¹H NMR (300 MHz, DMSO- d_6) δ 0.86 (t, J = 6.6 Hz, CH₂CH₃), 1.24–1.42 (m, CH₂CH₃, CHH'CH₂CH₃), 1.48–1.61 (m, CHH'CH₂CH₃), 1.74 (br s, NH₂), 3.15–3.18 (app. t, CH), 4.28 (d, J = 5.9 Hz, CH₂Ph), 7.20–7.34 (m, C₆H₅), 8.36 (t, J =5.9 Hz, NHCH₂Ph); ¹H NMR (300 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, CH₂CH₃), 1.32–1.58 (m, CH_2CH_3 , $CHH'CH_2CH_3$, NH_2), 1.81–1.93 (m, $CHH'CH_2CH_3$), 3.41 (dd, J = 4.2, 8.1 Hz, CH), 4.45 (d, J = 6.0 Hz, CH₂Ph), 7.24–7.37 (m, C₆H₅), 7.58–7.70 (br s, NHCH₂Ph); ¹H NMR (300) MHz, CD₃OD) δ 0.92 (t, J = 7.2 Hz, CH₂CH₃), 1.28–1.43 (m, CH₂CH₃), 1.44–1.56 (m, CHH'CH₂CH₃), 1.58–1.71 (m, CHH'CH₂CH₃), 3.28–3.32 (m, CH), 4.35 (1/2 AB_a, *J* = 14.9 Hz, CHH'Ph), 4.41 (1/2 AB_a, J = 14.9 Hz, CHH'Ph), 4.88 (s, NH₂), 7.21–7.34 (m, C₆H₅); ¹³C NMR (75 MHz, DMSO-d₆) δ 13.5 (CH₃), 18.2 (CH₂CH₃), 37.1 (CHCH₂), 41.5 (CH₂Ph), 54.2 (CH), 126.3, 126.8, 127.9, 139.3 (C₆H₅), 175.1 (CHC(O)); HRMS (ESI) 229.1320 [M + Na⁺] (calcd for $C_{12}H_{18}N_2ONa^+$ 229.1317); Anal. Calcd for $C_{12}H_{18}N_2O\bullet 0.18H_2O$; C, 68.81; H, 8.83; N, 13.37. Found C, 68.48; H, 8.81; N, 13.27.

16. Preparation of (*R*)-*N*-Benzyl 2-Amino-2-pentanamide ((*R*)-23)

(*R*)-2-*N*-(*t*-Butoxycarbonyl)amino-2-pentanoic Acid ((*R*)-78). D-Norleucine (2.00 g, 15.2 mmol) was added to H₂O/acetone (25 mL/25 mL) followed by the addition of Boc₂O (3.85 mL,

16.8 mmol) and Na₂CO₃ (1.78 g, 16.8 mmol). The reaction was stirred at room temperature (22 h) and then Et₂O (30 mL) was added. The layers were separated and the aqueous layer was acidified to pH ~2 with an aqueous 1 M solution of KHSO₄. The aqueous layer was washed with Et₂O (3 x 40 mL) and the organic layers were combined, dried (Na₂SO₄), and evaporated in vacuo. The crude mixture was purified by flash column silica gel chromatography (1:10 MeOH/CH₂Cl₂) to give the desired product (3.53 g, 100%) as a clear oil as a 1:1 mixture of conformers: R_f 0.54 (1:10 MeOH/CH₂Cl₂); IR (nujol mull) 3050, 1714, 1515, 1402, 1247, 1167 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.88–0.93 (br t, CH₃), 1.22–1.83 (m, C(CH₃)₃, CH₂CH₂CH₂CH₂), 4.08–4.20 (br s, NH, conformer a or b), 4.29–4.31 (br dd, CHNH, conformer a or b), 5.12 (d, *J* = 8.1 Hz, CHNH, conformer a or b), 6.23–6.40 (br s, NH, conformer a or b); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 22.5, 27.5, 28.5, 32.3, 53.6 (CH₂CH₂CH₂CH₃, NHCH, C(CH₃)₃,), 80.2 (C(CH₃)₃), 155.8 (NHC(O)O), 177.4 (C(O)OH); HRMS (ESI) 254.1370 [M+Na⁺] (calcd for C₁₁H₂₁NO₄Na⁺ 254.1368).

(*R*)-*N*-Benzyl 2-*N*-(*t*-Butoxycarbonyl)amino-2-pentanamide ((*R*)-84). Utilizing Method B with (*R*)-78 (3.19 g, 13.8 mmol), NMM (1.67 mL, 15.2 mmol), IBCF (1.97 mL, 15.2 mmol), and benzylamine (1.66 mL, 15.2 mmol) gave the crude product that purified by flash column chromatography (SiO₂; 2:5 EtOAc/hexanes) to give the desired product (3.33 g, 75%) as a white solid: mp 69–70 °C; R_f 0.57 (2:5 EtOAc/hexanes); IR (nujol mull) 3484, 3327, 3132, 2927, 2857, 1686, 1527, 1457, 1373, 1317, 1245, 1170, 1067, 1010, 863, 744, 661, 473 cm⁻¹; ¹H NMR (300

MHz, CDCl₃) δ 0.86–0.91 (br t, CH₃), 1.26–1.86 (m, C(CH₃)₃, CH₂CH₂CH₂CH₂CH₃), 4.09–4.20 (br m, NH), 4.33–4.84 (m, NHCH₂) 5.12 (d, *J* = 8.1 Hz, NHCH), 6.71–6.84 (br s, NH), 7.21–7.32 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.6, 27.9, 28.4, 32.5, 43.5, 54.8 (CH₂CH₂CH₂CH₃, NHCH, NHCH₂, C(CH₃)₃), 80.1 (C(CH₃)₃), 127.5, 127.7, 128.8, 138.3 (C₆H₅), 155.9 (NHC(O)), 172.5 (NHC(O)O); HRMS (ESI) 453.1152 [M+Cs⁺] (calcd for C₁₈H₂₈N₂O₃Cs⁺ 453.1154); Anal. Calcd for C₁₈H₂₈N₂O₃: C, 67.47; H, 8.81; N, 8.74. Found C, 67.65; H, 8.93; N, 8.74.

(*R*)-*N*-Benzyl 2-Amino-2-pentanamide ((*R*)-23). Utilizing Method E with (*R*)-84 (3.33 g, 9.78 mmol), TFA (10.9 mL, 0.15 mol), and CH₂Cl₂ (33 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:10 MeOH/CH₂Cl₂) to give the desired product (1.83 g, 80%) as a colorless oil: $[\alpha]^{25}_{D}$ –3.5° (*c* 2.6, EtOH); *R_f* 0.55 (1:10 MeOH/CH₂Cl₂); IR (nujol mull) 3494, 3119, 2993, 1653, 1528, 1456, 1247, 735, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.87–0.92 (br t, CH₃), 1.31–1.60 (m, CHH'CH₂CH₂CH₃, NH₂), 1.80–1.95 (br m, CHH'CH₂CH₂CH₃), 3.31–3.43 (m, NHCH), 4.42 (d, *J* = 6.0 Hz, NHCH₂), 7.25–7.32 (m, C₆H₅), 7.59–7.78 (br s, NH); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.6, 28.1, 34.9, 43.1, 55.3 (CH₂CH₂CH₂CH₃, NHCH, NHCH₂), 127.4, 127.8, 128.7, 138.7 (C₆H₅), 172.5 (NHC(O)); HRMS (ESI) 221.1655 [M+H⁺] (calcd for C₁₃H₂₁N₂O⁺ 221.1654); Anal. Calcd for C₁₃H₂₀N₂O•0.15H₂O: C, 69.32; H, 9.02; N, 12.44. Found C, 69.35; H, 9.16; N, 12.37.

Preparation of (R)- and (S)-N-Benzyl 2-Amino-3-methylbutanamide ((R)- and (S)-24)

(*R*)-2-*N*-(*t*-Butoxycarbonyl)amino-3-methylbutanoic Acid ((*R*)-79).²² D-Valine (5.00 g, 42.71 mmol) was dissolved in aqueous 2 M NaOH (43 mL) and cooled to 0 °C in an ice water bath. Boc₂O (11.18 g, 51.25 mmol) was slowly added and the reaction was allowed to warm to room temperature (18 h). The mixture was acidified to pH 2 using aqueous concentrated HCl and then extracted with EtOAc (3 x 50 mL). The combined organic layers were dried (Na₂SO₄) and evaporated in vacuo to give the crude product (8.50 g, 92%) as a pale yellow oil. The product was used for the next step without further purification: ¹H NMR (300 MHz, CDCl₃) δ 0.83–1.02 (m, CH(CH₃)₂), 1.45 (s, C(CH₃)₃), 2.15–2.28 (m, CH(CH₃)₂), 4.27 (dd, *J* = 4.7, 9.1 Hz, CHCH(CH₃)₂), 5.06 (d, *J* = 9.1 Hz, NH).

(*R*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)amino-3-methylbutanamide ((*R*)-85).²³ Utilizing Method B with (*R*)-79 (8.50 g, 39.14 mmol), NMM (5.60 mL, 50.89 mmol), IBCF (5.55 mL, 43.06 mmol), and benzylamine (4.50 mL, 41.10 mmol) gave the crude product that was recrystallized from hot EtOAc to give the desired compound (6.64 g, 55%) as a white solid: mp 122–123 °C (lit.²³ mp 112–115 °C); R_f 0.67 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3297, 2900 (br), 1690, 1645, 1530, 1458, 1378, 1299, 1247, 1166, 1020, 930, 875, 744, 693, 585, 508 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.92 (d, *J* = 6.9 Hz, CH(CH₃)CH₃), 0.95 (d, *J* = 6.6 CH(CH₃)CH₃), 1.40 (s, C(CH₃)₃), 2.18–2.26 (m, CH(CH₃)₂), 3.94–4.00 (br t, CHCH(CH₃)₂), 4.36 (dd, J = 6.0, 14.7 Hz, NHCHH'Ph), 4.46 (dd, J = 6.0, 14.7 Hz, NHCHH'Ph), 5.25 (d, J =9.3 Hz, NHC(O)), 6.71–6.79 (br t, NHCH₂Ph), 7.21–7.33 (C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 18.5 (CH(CH₃)(CH₃)'), 19.9 (CH(CH₃)(CH₃)'), 28.9 (C(CH₃)₃), 31.4 (CH(CH₃)(CH₃)'), 43.9 (NHCH₂Ph), 60.7 (CH), 80.4 (C(CH₃)₃), 128.0, 128.2, 129.2, 138.7 (C₆H₅), 156.6 (NC(O)O), 172.3 (CC(O)N).

(*S*)-*N*-Benzyl 2-*N*'-(*tert*-Butoxycarbonyl)amino-3-methylbutanamide ((*S*)-85).²⁴ The previous procedure was repeated using commercially available (*S*)-79 (4.00 g, 18.42 mmol), NMM (2.63 mL, 23.95 mmol), IBCF (2.61 mL, 20.26 mmol), and benzylamine (2.11 mL, 19.34 mmol) to give the crude product that was recrystallized from hot EtOAc to give the desired compound (2.89 g, 51%) as a white solid: mp 122–123 °C; *R*_f 0.24 (1:10 EtOAc/hexanes); IR (nujol mull) 3116, 2910 (br), 1689, 1646, 1527, 1458, 1375, 1301, 1249, 1163, 1018, 725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (d, *J* = 7.2 Hz, CH(CH₃)CH₃), 0.97 (d, *J* = 7.2 Hz, CH(CH₃)CH₃), 1.42 (s, (CH₃)₃), 2.12–2.23 (m, CH(CH₃)₂), 3.92 (dd, *J* = 6.2, 8.6 Hz, CH), 4.39–4.50 (m, NHCH₂), 5.06–5.14 (br d, C(O)NH), 6.36–6.44 (br t, NHCH₂Ph), 7.25–7.34 (C₆H₅); ¹³C NMR (100 MHz, CDCl₃) δ 17.9 (CH(CH₃)(CH₃)'), 19.4 (CH(CH₃)(CH₃)'), 28.3 ((CH₃)₃), 30.7 (CH(CH₃)₂), 43.5 (NHCH₂), 60.2 (CH), 80.0 (C(CH₃)₃), 127.5, 127.7, 128.7, 138.0 (C₆H₅), 156.0 (OC(O)), 171.6 (CC(O)).

(*R*)-*N*-Benzyl 2-Amino-3-methylbutanamide ((*R*)-24). Utilizing Method E with (*R*)-85 (4.00 g, 13.06 mmol), TFA (14.56 mL, 0.20 mol), and CH₂Cl₂ (45 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired compound (2.25 g, 83%) as a pale yellow oil: R_f 0.70 (1:20 MeOH/CH₂Cl₂); IR (neat) 3316, 3064, 2961, 1952, 1881, 1812, 1655, 1525, 1459, 1364, 1240, 1081, 1028, 882, 700, 608, 488 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.82 (d, *J* = 6.8 Hz, CH(CH₃)CH₃), 0.97 (d, *J* = 6.8 Hz, CH(CH₃)CH₃), 1.31 (s, NH₂), 2.24–2.35 (m, CH(CH₃)₂), 3.23 (d, *J* = 3.9 Hz, CHCH(CH₃)₂), 4.35–4.49 (m, NHCH₂Ph), 7.21–7.33 (m, C₆H₅), 7.72–7.81 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 16.1 (CH(CH₃)CH₃), 19.7 (CH(CH₃)CH₃), 30.1 (CH(CH₃)₂), 43.0 (NHCH₂Ph), 60.2 (CH), 127.2, 127.7, 128.6, 138.7 (C₆H₅), 174.4 (NC(O)); HRMS (ESI) 207.1501 [M + H⁺] (calcd for C₁₂H₁₈N₂OH⁺ 207.1497); Anal. Calcd for C₁₂H₁₈N₂O+0.04CH₂Cl₂: C, 68.93; H, 8.69; N, 13.35. Found: C, 68.97; H, 8.82; N, 13.37.

$$H_2N$$
 O N O

(*S*)-*N*-Benzyl 2-Amino-3-methylbutanamide ((*S*)-24).²⁴ The previous procedure was repeated using (*S*)-85 (2.57 g, 8.39 mmol), TFA (9.35 mL, 0.13 mol), and CH₂Cl₂ (28 mL) to give the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:20 EtOAc/hexanes followed by 1:10 MeOH/CH₂Cl₂) to give the desired compound (1.65 g, 96%) as a white solid: mp 52–53 °C; $[\alpha]^{28.5}_{D}$ –27.1° (*c* 0.6, CH₂Cl₂) (lit.²⁴ $[\alpha]^{20}_{D}$ –27.2° (*c* 0.5, CH₂Cl₂)); *R_f* 0.47 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3012, 2904 (br), 1645, 1550, 1458,

1375, 1165, 1078, 1028, 965, 727 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (d, *J* = 6.8 Hz, CH(CH₃)CH₃), 0.99 (d, *J* = 6.8 Hz, CH(CH₃)CH₃), 1.43 (s, NH₂), 2.28–2.40 (m, CH(CH₃)₂), 3.27 (d, *J* = 4.0 Hz, CH), 4.42 (dd, *J* = 6.2, 14.8 Hz, NHCHH'), 4.48 (dd, *J* = 6.0, 14.8 Hz, NHCHH'), 7.24–7.34 (C₆H₅), 7.62–7.70 (br t, NHCH₂); ¹³C NMR (100 MHz, CDCl₃) δ 16.1 (CH(CH₃)CH₃), 19.8 (CH(CH₃)CH₃), 30.9 (CH(CH₃)₂), 43.1 (NHCH₂), 60.2 (CH), 127.3, 127.7, 128.6, 138.6 (m, C₆H₅), 174.3 (C(O)); HRMS (ESI) 207.1502 [M + H⁺] (calcd for C₁₂H₁₈N₂OH⁺ 207.1497); Anal. Calcd for C₁₂H₁₈N₂O•0.30H₂O: C, 68.09; H, 8.86; N, 13.23. Found: C, 67.71; H, 8.89; N, 13.19.

17. Preparation of (*R*)- and (*S*)-*N*-Benzyl 2-*N*'-Amino-3,3dimethylbutanamide ((*R*)- and (*S*)-25)

(*R*)-2-*N*-(*t*-Butoxycarbonyl)amino-3,3-dimethylbutanoic Acid ((*R*)-80). Boc₂O (9.16 g, 41.96 mmol) was added to an H₂O/acetone (75/75 mL) solution of D-*tert*-leucine (5.00 g, 38.14 mmol) and Na₂CO₃ (10.11 g, 95.35 mmol). The reaction was stirred at room temperature (18 h) and then Et₂O was added. The layers were separated and the aqueous layer was acidified to pH ~2 with an aqueous 1 M solution of KHSO₄. The acid aqueous layer was extracted with EtOAc (3 x 100 mL) and then the EtOAc layers were combined, dried (Na₂SO₄), and evaporated in vacuo to give the crude product (8.12 g, 92%) as a pale yellow solid and as a 2:1 mixture of conformers A (major) and B (minor). The product was used for the next step without further purification: ¹H NMR (400 MHz, CDCl₃) δ 1.02 (s, CC(CH₃)₃), 1.45 (s, OC(CH₃)₃), 3.85–3.92 (br d, CH_B), 4.13 (d, *J* = 8.0 Hz, CH_A), 5.12 (d, *J* = 8.0 Hz, NH_A), 6.16–6.22 (br d, NH_B), 10.02–10.45 (br s, OH).

¹³C NMR (100 MHz, CDCl₃) δ 26.5 (CHC(CH₃)₃), 28.3 (OC(CH₃)₃), 34.0 (CHC_B(CH₃)₃), 34.5 (CHC_A(CH₃)₃), 61.6 (CH_A), 63.6 (CH_B), 80.0 (OC_A(CH₃)₃), 81.6 (OC_B(CH₃)₃), 155.6 (OC_A(O)), 156.6 (OC_B(O)), 176.8 (CC(O)).

(*S*)-2-*N*-(*t*-Butoxycarbonyl)amino-3,3-dimethylbutanoic Acid ((*S*)-80).²⁵ Boc₂O (8.24 g, 37.76 mmol) was added to a H₂O/*t*-butyl alcohol (45 mL/45 mL) solution of L-*tert*-leucine (4.50 g, 34.33 mmol) and NaOH (1.51 g, 37.76 mmol). The reaction was stirred at room temperature (18 h) and then the organic layer was evaporated in vacuo. The aqueous layer was acidified to pH ~2 with an aqueous 1 M KHSO₄. The aqueous layer was extracted with EtOAc (3 x 50 mL) and the organic layers were combined, dried (Na₂SO₄), and evaporated in vacuo to give the crude product (7.55 g, 95%) as a white solid and as a 2:1 mixture of conformers A (major) and B (minor): mp 105–106 °C (lit.²⁵ mp 122 °C); $[\alpha]^{25}_{D}$ –2.8° (*c* 1.1, CH₂Cl₂); *R_f* 0.77 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 2910 (br), 1660, 1531, 1458, 1373, 1223, 1161, 1061, 1011, 900, 850, 724 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.02 (s, CC(CH₃)₃), 1.45 (s, OC(CH₃)₃), 3.88 (d, *J* = 7.4 Hz, CH_B), 4.14 (d, *J* = 9.5 Hz, CH_A), 5.16 (d, *J* = 9.5 Hz, NH_A), 6.38 (d, *J* = 7.4 Hz, NH_B), 10.91–11.16 (br s, CO₂H). ¹³C NMR (75 MHz, CDCl₃) δ 26.7 (CHC(CH₃)₃), 80.2 (OC_A(CH₃)₃), 81.8 (OC_B(CH₃)₃), 155.9 (OC_A(O)NH), 157.7 (OC_B(O)NH), 176.9 (C(O)OH).

(*R*)-*N*-Benzyl 2-*N*'-(*t*-Butoxycarbonyl)amino-3,3-dimethylbutanamide ((*R*)-86). Utilizing Method B with (*R*)-80 (3.50 g, 15.14 mmol), NMM (2.16 mL, 19.68 mmol), IBCF (2.15 mL, 16.66 mmol), and benzylamine (1.74 mL, 15.90 mmol) in anhydrous THF (150 mL) gave the crude product (3.97 g, 82%) as a pale solid. The product was used immediately for the next step without further purification.

(*S*)-*N*-Benzyl 2-*N*'-(*tert*-Butoxycarbonyl)amino-3,3-dimethylbutanamide ((*S*)-86).²⁴ The previous procedure was repeated using (*S*)-80 (4.53 g, 19.60 mmol), NMM (2.80 mL, 25.48 mmol), IBCF (2.78 mL, 21.56 mmol), and benzylamine (2.25 mL, 20.57 mmol) in anhydrous THF (200 mL) to give the crude product that was purified by flash column chromatography (SiO₂; 1:10–1:1 EtOAc/hexanes) to give the desired product (4.58 g, 73%) as a white solid: mp 150–151 °C; $[\alpha]^{25}_{D}$ +3.1° (*c* 1.0, CH₂Cl₂); *R_f* 0.36 (1:10 EtOAc/hexanes); IR (nujol mull) 2911 (br), 1714, 1644, 1543, 1459, 1374, 1228, 1170, 1066, 732 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.00 (s, CHC(CH₃)₃), 1.39 (s, OC(CH₃)₃), 3.91 (d, *J* = 9.5 Hz, CH), 4.35 (dd, *J* = 5.4, 15.0 Hz, NHCHH'Ph), 4.48 (dd, *J* = 5.9, 15.0 Hz, NHCHH'Ph), 5.35 (d, *J* = 9.5 Hz, OC(O)NH), 6.44–6.51 (br m, CC(O)NH), 7.20–7.33 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 26.6 (CC(CH₃)₃), 127.3, 28.3 (OC(CH₃)₃), 34.5 (CC(CH₃)₃), 43.4 (NHCH₂Ph), 62.3 (CH), 79.6 (OC(CH₃)₃), 127.3, 127.7, 128.6, 138.1 (C₆H₅), 156.0 (OC(ON)), 171.1 (C(O)N).

(*R*)-*N*-Benzyl 2-*N*'-Amino-3,3-dimethylbutanamide ((*R*)-25).²⁶ Utilizing Method E with (*R*)-86 (3.80 g, 11.87 mmol), TFA (13.22 mL, 0.18 mol), and CH₂Cl₂ (40 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:20 EtOAc/hexanes followed by 1:10 MeOH/CH₂Cl₂) to give the desired compound (2.17 g, 83%) as a pale yellow solid: mp 65–66 °C (lit.²⁶ mp 53–54 °C); $[\alpha]^{28.5}_{D}$ +21.8° (*c* 0.5, CH₂Cl₂); *R_f* 0.48 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3291, 2957, 1643, 1555, 1452, 1361, 1259, 1188, 1018, 831 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, (CH₃)₃), 1.45 (s, NH₂), 3.12 (s, CH), 4.42 (dd, *J* = 4.0, 12.8 Hz, NHCHH'), 4.46 (dd, *J* = 4.0, 12.8 Hz, NHCHH'), 7.05–7.13 (br m, NH), 7.24– 7.34 (m, C₆H₅); ¹³C NMR (100 MHz, CDCl₃) δ 26.8 ((CH₃)₃), 34.2 (C(CH₃)₃), 43.1 (NCH₂), 64.4 (CH), 127.4, 127.9, 128.6, 138.6 (C₆H₅), 173.5 (C(O)); HRMS (+ESI) 221.1654 [M+H⁺] (calcd. for C₁₃H₂₀N₂OH⁺ 221.1653). Anal. Calcd for C₁₃H₂₀N₂O: C, 70.87; H, 9.25; N, 12.72. Found: C, 70.83; H, 9.20; N, 12.75.

(*S*)-*N*-Benzyl 2-Amino-3,3-dimethylbutanamide ((*S*)-25).^{24, 27} The previous procedure was repeated using (*S*)-86 (2.50 g, 7.81 mmol), TFA (8.70 mL, 0.12 mol), and CH_2Cl_2 (26 mL) to give the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired compound (1.58 g, 92%) as a white solid:

mp 65–66 °C (lit.²⁷ mp 53–54 °C); $[\alpha]^{25}_{D}$ –15.2° (*c* 0.51, CH₂Cl₂) (lit.²⁴ $[\alpha]^{20}_{D}$ –17.5° (*c* 0.56, CH₂Cl₂); *R_f* 0.19 (100% EtOAc); IR (nujol mull) 2912 (br), 1649, 1555, 1459, 1372, 1260, 1192, 1023, 941, 839, 707 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.00 (s, C(CH₃)₃), 1.47 (s, NH₂), 3.14 (s, CH), 4.44 (d, *J* = 5.7 Hz, NHCH₂Ph), 7.04–7.12 (br t, C(O)NH), 7.24–7.36 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 27.0 (C(CH₃)₃), 34.4 (C(CH₃)₃), 43.4 (NHCH₂Ph), 64.7 (CH), 127.6, 128.1, 128.9, 138.8 (C₆H₅), 173.6 (C(O)N); HRMS (ESI) 221.1652 [M + H⁺] (calcd for C₁₃H₂₀N₂OH⁺ 221.1654); Anal. Calcd for C₁₃H₂₀N₂O: C, 70.87; H, 9.15; N, 12.72. Found: C, 70.90; H, 9.10; N, 12.54.

18. Preparation of (*R*,*S*)-*N*-Benzyl 2-Amino-3-methylpentanamide ((*R*,*S*)-26)

(*R*,*S*)-2-*N*-(*t*-Butoxycarbonyl)amino-3-methylpentanoic Acid ((*R*,*S*)-81).²⁸ A solution of DLisoleucine (5.00 g, 38.14 mmol) in a mixture of dioxane (75 mL) and aqueous 1 M NaOH (37.5 mL) was cooled to 0 °C in an ice water bath. Boc₂O (9.16 g, 41.97 mmol) was added slowly and the reaction was allowed to warm to room temperature (18 h), and then the solvent was evaporated in vacuo. The resulting crude oil was dissolved in EtOAc (50 mL), the aqueous layer was acidified to pH 2 with aqueous 1 M KHSO₄ and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried (Na₂SO₄) and evaporated in vacuo to give the crude product with minor impurities (9.10 g) as a pale yellow oil and as a 1:1 mixture of conformers A and B. The product was used for the next step without further purification: ¹H NMR (300 MHz, CDCl₃)

 δ 0.82–0.98 (m, 2 CH₃), 1.18–1.32 (m, CH₂), 1.45 (s, C(CH₃)₃), 1.82–2.03 (m, CH), 4.33 (dd, J = 4.4, 8.7 Hz, NHCH_A), 4.43 (dd, J = 3.5, 9.5 Hz, NHCH_B), 5.02 (d, J = 9.5 Hz, NH_B), 5.08 (d, J = 8.7 Hz, NH_A), 10.52–11.35 (br s, OH).

(R,S)-N-Benzyl 2-N'-(t-Butoxycarbonyl)amino-3-methylpentanamide ((R,S)-87). Utilizing Method B with (R,S)-81 (9.10 g, 39.37 mmol), NMM (5.63 mL, 51.18 mmol), IBCF (5.59 mL, 43.31 mmol), and benzylamine (4.52 mL, 41.34 mmol) gave the crude product that was purified by recrystallization from hot EtOAc/hexanes to give the desired compound (7.16 g, 57%) as a white solid and as a 1:1 mixture of conformers A and B: mp 104–105 °C; $R_f 0.59$ (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3393, 3282, 2912, 1658, 1554, 1458, 1375, 1308, 1253, 1168, 1041, 723 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.84–0.96 (m, 2 CH₃), 1.01–1.26 (m, CH₂), 1.40, 1.41 (2 s, OC(CH₃)₃), 1.74–2.04 (m, CHCH), 3.98 (dd, J = 6.7, 8.7 Hz, NHCH_A or NHCH_B), 4.15 (dd, J = 3.5, 9.5 Hz, NHCH_B or NHCH_A), 4.36–4.51 (m, NHCH₂Ph), 4.96–5.18 (m, (CH₃)₃COC(O)NH), 6.54–6.62 (br t, NHCH₂Ph), 7.17–7.35 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 11.8, 12.1 (CH₂CH₃), 14.9, 16.1 (CHCH₃), 19.6, 22.3 (CH₂CH₃), 26.8, 28.8 (C(CH₃)₃), 37.9, 38.0 (CHCH), 43.8, 43.9 (NHCH₂Ph), 58.9, 59.8 (CH), 80.2, 80.3 (C(CH₃)₃), 127.9, 128.2, 129.0, 129.1, 138.7, 138.8 ((C₆H₅)_A, (C₆H₅)_B), 156.3, 156.6 (NC(O)O), 172.4, 172.6 (CC(O)N), two aromatic peaks were not detected and are believed to overlap with nearby signals; HRMS (ESI) 321.2187 [M + H⁺] (calcd for $C_{18}H_{28}N_2O_3H^+$ 321.2178); Anal. Calcd for $C_{18}H_{28}N_2O_3$: C, 67.47; H, 8.81; N, 8.74. Found C, 67.22; H, 9.00; N, 8.65.

63

(R,S)-N-Benzyl 2-Amino-3-methylpentanamide ((R,S)-26). Utilizing Method E with (R,S)-87 (4.00 g, 12.49 mmol), TFA (13.92 mL, 0.19 mol), and CH₂Cl₂ (40 mL) gave the crude product after workup that was further purified by flash column chromatography (SiO₂; 1:100–1:10 MeOH/CH₂Cl₂) to give the desired compound (2.24 g, 81%) as a pale yellow oil and as a 1:1 mixture of diastereomers: Rf 0.73 (1:20 MeOH/CH₂Cl₂); IR (neat) 3308, 3068, 2962, 2926, 2876, 1656, 1521, 1457, 1365, 1247, 1081, 1026, 934, 852, 737, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.77–0.96 (m, 2 CH₃), 1.00–1.46 (m, (CH₂CH₃), NH₂), 1.92–2.17 (m, CHCH), 3.26 (d, J = 3.6 Hz, (CH)_A or (CH)_B), 3.36 (d, J = 3.6 Hz, (CH)_A or (CH)_B), 4.36–4.49 (m, NHCH₂Ph), 7.21–7.33 (m, C₆H₅), 7.74–7.82, 7.83–7.91 (2 br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 11.9 (CH₂CH₃), 13.1, 16.2 (CHCH₃), 23.7, 26.7 (CH₂CH₃), 37.1, 38.0 (CHCH), 42.9, 43.0 (NHCH₂Ph), 57.9, 59.9 (CH), 127.2, 127.6, 127.7, 128.5, 138.7, 138.7 ((C₆H₅)_A, (C₆H₅)_B), 174.4, 174.7 (CC(O)N), two aromatic peaks were not detected and are believed to overlap with nearby signals; HRMS (ESI) 221.1663 $[M + H^+]$ (calcd for C₁₃H₂₀N₂OH⁺ 221.1654); Anal. Calcd for C₁₃H₂₀N₂O•0.03CH₂Cl₂: C, 70.20; H, 9.07; N, 12.57. Found: C, 70.19; H, 9.21; N, 12.54.

19. Preparation of (R)-2-Amino-N-benzyl-2-cyclohexylacetamide ((R)-27)

(*R*)-2-(tert-Butoxycarbonylamino)-2-cyclohexylacetic Acid ((*R*)-82). Boc₂O (3.05 g, 14.0 mmol) was added to an H₂O/acetone (25/25 mL) solution of 2-amino-2-cyclohexylacetic acid (2.00 g, 12.7 mmol) and Na₂CO₃ (2.02 g, 19.0 mmol). The reaction was stirred at room temperature (16 h) and then Et₂O was added. The layers were separated and the aqueous layer was acidified to pH ~1 with an aqueous 1 M solution of KHSO₄. The acid aqueous layer was washed with Et₂O (3 x 100 mL) and then the organic layers were combined, dried (Na₂SO₄), and concentrated in vacuo to give the desired product (2.90 g, 89%) as a white gummy solid and a 4:1 mixture of conformers A (major) and B (minor): mp 68–75 °C; IR (nujol mull) 2898, 1721, 1675, 1525, 1456, 1373, 1241, 1167, 1068, 919, 793, 729 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.07–1.30 (m, 2 CH₂), 1.45 (s, (CH₃)₃), 1.59–1.89 (m, 3 CH₂), 3.99–4.09 (br s, CH_B), 4.24 (dd, *J* = 4.8, 8.7 Hz, CH_A), 5.04 (d, J = 8.7 Hz, NH_A), 6.01–6.10 (br t, NH_B), 7.60–7.15 (br s, CO₂H); ¹³C NMR (75 MHz, CDCl₃) δ 25.9, 26.0, 26.0, 27.9, 28.3, 29.5, 31.1, 40.7 ((CH₃)₃, C₆H₁₁), 58.2 (NHCHC(O)), 80.0 (C(CH₃)₃), 155.8 (NC(O)), 177.0 (C(O)).

(*R*)-*N*-Benzyl-2-(tert-butoxycarbonylamino)-2-cyclohexylacetamide ((*R*)-88). Utilizing Method B with (*R*)-82 (500 mg, 2.0 mmol), NMM (0.26 mL, 2.3 mmol), IBCF (0.31 mL, 2.3 mmol), and benzylamine (0.26 mL, 2.3 mmol) gave the desired product (600 mg, 86%) as a white solid: mp 138–139 °C; R_f 0.21 (1:9 EtOAc/hexanes); IR (nujol mull) 3335, 2907, 2859, 1659, 1528, 1457, 1374, 1300, 1247, 1171, 1021, 872, 734 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.95–1.25 (m, 2 CH₂), 1.42 (s, (CH₃)₃), 1.59–1.83 (m, 3 CH₂), 3.89 (dd, *J* = 6.6, 8.7 Hz, CH),

4.46 (d, J = 6.3 Hz, NCH₂), 4.99–5.05 (br d, NH), 6.17–6.25 (br m, NH), 7.24–7.33 (m, C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 25.9, 26.1, 28.3, 29.8, 40.2, 43.4 ((CH₃)₃, CH₂N, C₆H₁₁), 59.8 (NHCHC(O)), 79.9 (C(CH₃)₃), 127.5, 127.7, 128.7, 138.0 (ArC), 155.9 (NC(O)), 171.5 (CO); HRMS (ESI) 479.1307 [M + Cs⁺] (calcd for C₂₀H₃₀N₂O₃Cs⁺ 479.1311).

(*R*)-2-Amino-*N*-benzyl-2-cyclohexylacetamide ((*R*)-27). Utilizing Method E with (*R*)-88 (1.10 g, 3.2 mmol), TFA (2.40 mL, 31.8 mmol), and CH₂Cl₂ (50 mL) gave the crude product after workup that was purified by flash column chromatography (SiO₂; 0:5:95–5:90:5 MeOH/EtOAc/Et₃N) to give the desired product (530 mg, 68%) as a yellow solid: mp 94–96 °C; $[\alpha]^{27}_{D}$ +24.0° (*c* 0.5, CHCl₃); *R_f* 0.55 (95:5 EtOAc/Et₃N); IR (nujol mull) 3273, 3153, 2898, 2855, 1641, 1551, 1455, 1376, 1233, 1081, 1022, 886, 795, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.92–1.34 (m, 1 C₆H₁₁), 1.45–1.71 (m, 5 C₆H₁₁), 1.85–1.94 (m, 5 C₆H₁₁), 3.20 (d, *J* = 3.9 Hz, CH), 4.39 (d, *J* = 5.7 Hz, NCH₂), 7.17–7.30 (m, C₆H₅), 7.49–7.62 (br m, NH); ¹³C NMR (75 MHz, CDCl₃) δ 26.1, 26.2, 26.3, 26.6, 30.3, 41.0, 43.1 (CH, 6 CH₂), 60.0 (NHCHC(O)), 127.3, 127.7, 128.6, 138.6 (4 ArC), 174.2 (C(O)); HRMS (ESI) 247.1810 [M + H⁺] (calcd C₁₅H₂₂N₂OH⁺ 247.1810). Anal. Calcd for C₁₅H₂₂N₂O•0.08H₂O: C, 72.73; H, 9.01; N, 11.31. Found: C, 72.43; H, 8.89; N, 11.34.

20. Preparation of (*R*)-*N*-Benzyl 2-Amino-3-phenylpropionamide ((*R*)-28)

(*R*)-2-*N*-(Benzyloxycarbonyl)amino-3-phenylpropionic Acid ((*R*)-92).^{29,30} Benzyl

chloroformate (5.09 mL, 36.35 mmol) and aqueous 4 M NaOH (12 mL) were added simultaneously over a 30 min period to a vigorously stirred solution of D-phenylalanine (5.00 g, 30.29 mmol) dissolved in aqueous 4 M NaOH (10 mL)/aqueous 1 M NaHCO₃ (30 mL) at 0 °C. The mixture was then warmed to room temperature and stirred overnight (18 h). The reaction was washed with Et_2O (2 x 100 mL) and then the aqueous mixture was added to a stirred mixture of aqueous 4 M HCl (66 mL) and EtOAc (100 mL). The aqueous layer was separated and then extracted with EtOAc (3 x 100 mL). All of the organic layers were combined, successively washed with H₂O (3 x 100 mL) and brine (2 x 100 mL), dried (Na₂SO₄), and then evaporated in vacuo to give the desired product (6.74 g, 74%) as an off-white solid and as a 2:1 mixture of conformers A (major) and B (minor): mp 88–89 °C (lit.²⁹ mp 85–88 °C); $[\alpha]^{25}_{D}$ +4.3° (c 1.0, MeOH) (lit.²⁹ $[\alpha]^{25}_{D}$ +4.1° (c 1.0, MeOH)); R_f 0.52 (1:20 MeOH/CH₂Cl₂); IR (nujol mull) 3461, 3319, 2919, 1695, 1531, 1457, 1260, 1053, 904, 735 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.87– 2.95 (m, (CHCH₂Ph)_B), 3.07 (dd, J = 6.6, 14.1 Hz, (CHCHH'Ph)_A), 3.19 (dd, J = 5.6, 14.1 Hz, $(CHCHH'Ph)_A$, 4.60–4.53 (m, CH_B), 4.65–4.72 (m, CH_A), 5.03 (d, J = 4.5 Hz, $(OCH_2Ph)_B$), 5.07 (d, J = 3.3 Hz, (OCH₂Ph)_A), 5.36 (d, J = 8.1 Hz, NH_A), 6.45 (d, J = 8.1 Hz, NH_B), 7.12– 7.32 (m, 2 C₆H₅), 10.32–10.58 (br s, OH); ¹³C NMR (75 MHz, CDCl₃) δ 37.8 (CHCH₂Ph), 54.8 (CH), 67.3 (OCH₂Ph), 127.3, 128.2, 128.4, 128.7, 128.7, 129.5, 135.7, 136.2 (2 C₆H₅), 156.1 (OC(O)N), 176.2 (C(O)OH).

(*R*)-*N*-Benzyl 2-*N*'-(Benzyloxycarbonyl)amino-3-phenylpropionamide ((*R*)-94). Utilizing Method B with (*R*)-92 (5.00 g, 16.71 mmol), NMM (2.39 mL, 21.73 mmol), IBCF (2.37 mL, 18.38 mmol), and benzylamine (1.92 mL, 17.55 mmol) gave the crude product that was recrystallized from hot EtOAc to give the desired compound (4.67 g, 72%) as an off-white solid: mp 154–155 °C; $[\alpha]^{25}_{D}$ +5.1° (*c* 1.1, CH₂Cl₂); *R_f* 0.85 (1:100 MeOH/CH₂Cl₂); IR (nujol mull) 3412, 3292, 2923, 2860, 1688, 1645, 1537, 1457, 1380, 1288, 1239, 1045, 743, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.99–3.15 (m, CHCH₂Ph), 4.24–4.44 (m, CH, NHCH₂Ph), 5.46 (d, *J* = 7.2 Hz, NH), 6.10–6.19 (br t, NHCH₂Ph), 7.03–7.36 (m, 3 C₆H₅); ¹³C NMR (75 MHz, CDCl₃) δ 39.0 (CHCH₂Ph), 43.7 (NHCH₂Ph), 56.7 (CH), 67.3 (OCH₂Ph), 127.2, 127.7, 127.9, 128.2, 128.4, 128.7, 128.8, 128.9, 129.5, 136.2, 136.6, 137.7 (3 C₆H₅), 156.2 (OC(O)N), 170.9 (CC(O)N); HRMS (ESI) 411.1697 [M + Na⁺] (calcd for C₂₄H₂₄N₂O₃Na⁺ 411.1685); Anal. Calcd for C₂₄H₂₄N₂O₃: C, 74.21; H, 6.23; N, 7.21. Found: C, 74.18; H, 6.28; N, 7.28.

(*R*)-*N*-Benzyl 2-Amino-3-phenylpropionamide ((*R*)-28). Utilizing Method C with (*R*)-94 (3.50 g, 9.02 mmol), 10% Pd-C (0.35 g), and MeOH (90 mL) gave the crude product that was purified by flash column chromatography (SiO₂; 1:10 MeOH/CH₂Cl₂) to give the desired compound (2.22 g, 97%) as a pale yellow solid: mp 66–67 °C; $[\alpha]_{D}^{25}$ +63.3° (*c* 1.4, CH₂Cl₂); *R_f* 0.43 (1:20

MeOH/CH₂Cl₂); IR (nujol mull) 3293, 2924, 2859, 1641, 1539, 1457, 1373, 1261, 1105, 1031, 950, 845, 701 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.98–1.62 (br s, NH₂), 2.75 (dd, *J* = 9.0, 13.7 Hz, CHCHH'Ph), 3.29 (dd, *J* = 4.2, 13.7 Hz, CHCHH'Ph), 3.65 (dd, *J* = 4.2, 9.0 Hz, CH), 4.37–4.50 (m, NHCH₂Ph), 7.20–7.35 (m, 2 C₆H₅), 7.56–7.64 (br t, NHCH₂Ph); ¹³C NMR (75 MHz, CDCl₃) δ 41.2 (CHCH₂Ph), 43.3 (NHCH₂Ph), 56.6 (CH), 127.0, 127.5, 127.9, 128.8, 128.9, 129.5, 138.0, 138.5 (2 C₆H₅), 171.3 (CC(O)N); HRMS (ESI) 277.1321 [M + Na⁺] (calcd for C₁₆H₁₈N₂ONa⁺ 277.1317); Anal. Calcd for C₁₆H₁₈N₂O: C, 75.56; H, 7.13; N, 11.01. Found: C, 75.53; H, 7.16; N, 10.85.

21. Preparation of (*R*)-*N*-Benzyl 2-Acetamido-3-methylbutanamide ((*R*)-105)

(R)-N-Benzyl 2-Acetamido-3-methylbutanamide ((R)-105). (R)-N-Benzyl 2-amino-3-

methylbutanamide hydrochloride (0.79 g, 3.26 mmol) was dissolved in CH₂Cl₂ (60 mL) and then Et₃N (1.4 mL, 9.78 mmol) and acetyl chloride (0.28 mL, 3.91 mmol) were carefully added at 0 °C. The resulting solution was stirred at room temperature (2 h). Aqueous 10% citric acid (60 mL) was added, the layers separated, and the organic layer was washed with a saturated aqueous NaHCO₃ (60 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 60 mL). All of the organic layers were combined, dried (Na₂SO₄), and concentrated in vacuo. The residue was recrystallized with EtOAc to give the desired compound as a white solid: mp 223–224 °C; $[\alpha]^{26}_{D}$ +32.8° (*c* 0.5, CHCl₃); *R_f* 0.53 (100% EtOAc); IR (nujol mull) 3472, 3401, 3369, 3169, 3119, 2934, 2860, 1628, 1545, 1458, 1376, 1298, 1156, 727, 614, 542 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.94–

0.97 (m, 6H), 1.98 (s, 3H), 2.04–2.11 (m, 1H), 4.25 (app t, J = 8.2 Hz, 1H), 4.37 (1/2 AB_q, J = 5.4, 14.8 Hz, 1H), 4.47 (1/2 AB_q, J = 5.8, 14.8 Hz, 1H), 6.18–6.21 (br d, 1H), 6.42–6.50 (br t, 1H), 7.24–7.34 (m, 5H), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-105 gave only one signal for the acetyl methyl protons; ¹³C NMR (100 MHz, CDCl₃) δ 18.3, 19.2 (2 CH(CH₃)₂), 23.2 (C(O)CH₃), 31.1 (CH(CH₃)₂), 43.6 (NCH₂), 58.7 (CHNH), 127.6, 127.7, 128.7, 137.7 (C₆H₄), 170.2, 171.1 (2 C(O)); LRMS (ESI) 271.16 [M + Na⁺] (calcd for C₁₄H₂₀N₂O₂Na⁺ 271.14). Anal. Calcd for C₁₄H₂₀N₂O₂: C, 67.71; H, 8.12; N, 11.28. Found: C, 67.92; H, 8.24; N, 11.23.

22. Preparation of (*R*)-*N*-Benzyl 2-Acetamido-3,3-dimethylbutanamide ((*R*)-106)

(*R*)-*N*-Benzyl 2-Acetamido-3,3-dimethylbutanamide ((*R*)-106). (*R*)-*N*-Benzyl 2-amino-3,3dimethylbutanamide hydrochloride (0.64 g, 2.5 mmol) was dissolved in CH₂Cl₂ (50 mL) and then Et₃N (1.0 mL, 7.50 mmol) and acetyl chloride (0.2 mL, 3.00 mmol) were carefully added at 0 °C, and the resulting solution was stirred at room temperature (2 h). Aqueous 10% citric acid (50 mL) was added, the layers separated, and the organic layer was washed with a saturated aqueous NaHCO₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). All the organic layers were combined, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (SiO₂; 30:70–70:30 EtOAc/hexanes) to give crude product that was recrystallized with EtOAc to give the desired product as a white solid: mp 199–200 °C; $[\alpha]^{25}_{D}$ – 6.1° (*c* 0.5, CHCl₃); *R_f* 0.19 (30:70 EtOAc/hexanes); IR (nujol mull) 3064, 2970, 2857, 1638,

1543, 1463, 1375, 1284, 1240, 1128, 1031, 901, 743, 600, 470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, 9H), 1.86 (s, 3H), 4.29 (1/2 AB_q, *J* = 5.5, 14.8 Hz, 1H), 4.43 (1/2 AB_q, *J* = 5.8, 14.8 Hz, 1H), 4.45 (d, *J* = 9.4 Hz, 1H), 6.45 (d, *J* = 9.4 Hz, 1H), 7.18 (br t, *J* = 5.4 Hz, 1H), 7.23–7.32 (m, 5H), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-106 gave only one signal for the acetyl methyl protons; ¹³C NMR (100 MHz, CDCl₃) δ 23.1 (C(O)CH₃), 26.7 (C(CH₃)₃), 34.8 (C(CH₃)₃), 43.5 (NCH₂), 60.5 (CH), 127.4, 127.9, 128.6, 137.9 (C₆H₄), 170.1, 170.7 (2 C(O)); LRMS (ESI) 263.20 [M + H⁺] (calcd for C₁₅H₂₂N₂O₂H⁺ 263.18). Anal. Calcd for C₁₅H₂₂N₂O₂: C, 68.67; H, 8.45; N, 10.68. Found: C, 68.67; H, 8.55; N, 10.49.

23. Pharmacological Evaluation

Pharmacological evaluation conducted at UCB Pharma. All experiments were performed with the use of male NMRI mice (Charles River, France) weighing 25–30 g. All mice were kept on a 12/12 h light/dark cycle with lights on at 6 am and were housed at a temperature maintained at 20–24 °C and at a humidity of 40–70%. The mice were kept in groups of 10 in Makrolon cages (Type III, 425 x 266 x 155 mm) containing a bedding layer of sawdust. The mice were allowed *ad libitum* access to standard dry pellet food and tap water before random assignment to experimental groups. Each experiment consisted of several groups of 10 mice, one group receiving the vehicle control and the other groups receiving different doses of compounds. All compounds were dissolved in 0.5% methylcellulose and injected ip (10 mL/kg volume) 30 min before testing. An effective dose protecting 50% of the mice (ED₅₀) against the convulsive endpoint and its associated 95% confidence interval, and a toxic dose impairing the rotorod performance of 50% of the mice (TD₅₀), were calculated using a non-linear fitting of the doseresponse curve with GraphPad Prism 4 (GraphPad Software, San Diego, CA). In cases where the

dose-response could not be established, the minimal active dose (MAD) or maximal tolerated dose (MTD) was determined after statistical comparison (Fisher's exact test). This occurred when no further increase in protection was observed at a higher dose (plateau effect), a higher dose could not be tested because of CNS side effects, or there was loss of activity at higher doses.

In the 6 Hz test, partial-onset seizures were induced by a stimulator (ECT Unit 57800, Ugo Basile, Comerio, Italy) using a current intensity of 44 mA, delivered with 0.2 msec monopolar pulses at 6 Hz, for a duration of 3 sec through corneal electrodes as described by Kaminski and coworkers.³¹ A drop of saline/Unicain 0.1% was placed on the eyes to ensure good conductivity and mild local anesthesia before electrical stimulation. After stimulation, each mouse was observed for 30 sec and the duration of immobility (stunned posture) was noted. Untreated mice reliably respond with seizures. After compound treatment, the mice were considered as protected against seizures if the duration of immobility was shorter than 7 sec.

The maximal electroshock seizures (MES) test identified compounds that prevent seizure spread and was induced by a stimulator (WITT Industrie Elektronik, Berlin, Germany) using a current of 50 mA, delivered with a pulse frequency of 50 Hz for 0.2 sec, through corneal electrodes as described by Klitgaard and coworkers.³² Stimulation with this current caused tonic hindlimb extension in 100% of the vehicle-treated mice. The mice were considered as protected by the compound if they did not exhibit the tonic hindlimb extension following stimulation.

In the formalin test, mice were pretreated ip with compound or vehicle 30 min before intrapaw injection of formalin and then returned to their cage. Twenty min after pretreatment (10 min before the injection of formalin), the mice were individually placed in 6 mm thick Plexiglas cages (26 cm x 17 cm x 28 cm) and observed for drug induced side effects over a 10 min period.

72
Then, 25 μ L of 1.5% formalin (1.5% aqueous solution of formaldehyde) was injected into the midplantar aspect of the right hindpaw (subplantar injection) and the mice were returned to the observation cage. The nociceptive response was defined as the duration of licking directed at the right hindpaw and was measured to the nearest sec for each consecutive 5 min time bin for 30 min after the injection of formalin.³³ A typical triphasic pattern of nociceptive response occurs.³⁴ An immediate (0–5 min) bout of intense flinching, licking, or biting behavior is followed by nociceptive silence (5–10 min), followed by a gradual increase in nociceptive licking that peaks at 15–20 min. The nociceptive response gradually decays to zero by 25–30 min after injection.³⁵ The bin 0–5 min after formalin injection constituted the early phase, where pain is due to direct excessive stimulation of primary afferent neurons. The sum of the remain four time bins (10-15 min, 15–20 min, 20–25 min, and 25–30 min) constituted the late phase, where pain is due to peripheral and central sensitization. The compound's efficacy in the late phase is viewed as predictive of efficacy in animal models of neuropathic pain. Therefore, the compound's primary outcome measure is the late-phase value at which 50% of mice display a paw lick duration ≤ 72 sec (ED₅₀), which corresponds to a 50% reduction of the nociceptive response relative to the mean of vehicle-treated mice. ED₅₀ values, with 95% confidence limits where applicable, were calculated using JMP Version 5 for Windows (SAS Institute Inc.).

The adverse effects on motor coordination were assessed in a rotorod test (Treadmill for Mice, Ugo Basile, Italy) as described by Klitgaard and coworkers.³² The device consisted of a rod with a diameter of 3 cm rotating at a constant speed of 6 rpm. Mice were pretrained and only mice that were able to remain on the rotorod for at least 60 sec in three consecutive trials were retained for testing. Within 24 h, the compound was administered and the number of mice unable to remain on the rod for at least 60 sec was recorded.

Pharmacological evaluation conducted at the NINDS ASP. Experiments were performed with the use of male albino Carworth Farms No. 1 mice (18–25 g) or male albino Sprague-Dawley rats (100-150 g). Housing, handling, and feeding were all in accordance with the recommendations in the "Guide for the Care and Use of Laboratory Animals."³⁶ All compounds were dissolved in 0.5% methylcellulose and administered ip (10 mL/kg volume) in mice and po (20 mL/kg) in rats. An effective dose protecting 50% of the mice and rats (ED₅₀) against the convulsive endpoint and its associated 95% confidence interval, as well as the toxic dose impairing the rotorod performance of 50% of the mice, or the positional sense/gait and stance performance of 50% of the rats (TD₅₀), were calculated by a computer program based on the methods described by Finney.³⁷

The MES test was induced by a stimulator using a current of 50 mA in mice, or 150 mA in rats, and delivered with a pulse frequency of 60 Hz for 0.2 sec through corneal electrodes.³⁸ A drop of 0.5% butacaine hemisulfate in 0.9% sodium chloride was placed on the eyes to ensure good conductivity and mild local anesthesia before electrical stimulation. Qualitative assessment of activity in mice was determined at 30 min and 4 h following doses of 30, 100, and 300 mg/kg of compound. Rats were tested at 0.25–4 h in 30 min intervals at a dose of 30 mg/kg. The mice or rats were considered as protected by the compound if they did not exhibit the tonic hindlimb extension following stimulation.

The subcutaneous Metrazol[®] (scMET) model primarily identifies compounds that raise the seizure threshold and was induced by subcutaneous injection of 0.5% solution of pentylenetetrazol in the posterior midline (85 mg/kg) in mice. This produces clonic seizures that last at least 5 sec in 97% (CD₉₇) of animals tested.³⁸ Mice were tested at 30 min and 4 h

following doses of 30, 100, and 300 mg/kg of compound. The animals were considered protected when the compound abolished the effect of pentylenetetrazol on seizure threshold.

The adverse effects on motor coordination in mice were assessed in a rotorod test, similar to that conducted at UCB Pharma. Mice were positioned on a rod with a diameter of 1 in rotating at a constant speed of 6 rpm, and the ability of the mice to remain on the rod for at least 60 sec was recorded. Mice were tested at 30 min and 4 h following doses of 30, 100, and 300 mg/kg of compound. The adverse effects on motor coordination in rats were assessed in a positional sense test or gait and stance test. In the positional sense test, one hind leg was lowered over the edge of the table and the ability to transition back to a stable stance was recorded. In the gait and stance test, neurotoxicity was indicated by circular or zig-zag gait, ataxia, abnormal stance or posture, tremor, somnolence, stupor, or catalepsy.³⁸ Rats were tested at 0.25–4 h in 30 min intervals at a dose of 30 mg/kg.

Supporting Information Table S1. Comparison of the pharmacological activities of C(2)-hydrocarbon FAAs and their PAAD counterparts in rats (mg/kg)

			Rat $(po)^a$				Rat (po) ^a	
R ²	FAA Cpd No.	FAA Test Site	FAA MES, ^b ED ₅₀	FAA Tox, ^c TD ₅₀	PAAD Cpd No.	PAAD Test Site	PAAD MES, ^b ED ₅₀	PAAD Tox, ^c TD ₅₀
CH ₃	(R,S)-100 ^d	NINDS	48 [1.0] (32–72)	>1000	(<i>R</i> , <i>S</i>)- 20 ^{<i>e</i>}	NINDS	14 [1.0] (7–22)	>500
CH ₂ CH ₂ CH ₃	(<i>R</i> , <i>S</i>)- 103 ^{<i>e</i>}	NINDS	~30	>30	(<i>R</i> , <i>S</i>)- 22	UCB	ND^{f}	ND^{f}
CH(CH ₃) ₂	(<i>R</i>)- 104	NINDS	>30 [0.25–4.0]	>30 [0.25–4.0]	(<i>R</i>)- 24	NINDS	11 [0.25] (9.1–13)	>500
C(CH ₃) ₃	(<i>R</i>)-105	NINDS	>30 [0.25–4.0]	>30 [0.25–4.0]	(<i>R</i>)-25	NINDS	11 [0.25] (8.7–15)	>500

^{*a*} The compounds were administered orally to adult male albino Sprague Dawley rats. ED_{50} and TD_{50} values are in mg/kg. A dose-response curve was generated for all compounds that displayed sufficient activity and the dose-effect data for these compounds was obtained at the "time of peak effect" (indicated in hours in the brackets). Numbers in parentheses are 95% confidence intervals. ^{*b*} MES = maximal electroshock seizure test. ^{*c*} Tox = behavioral toxicity. ^{*d*} Béguin, C. *et al. Bioorg. Med Chem.* **2004**, *12*, 3079–3096. ^{*e*} LeTiran, A. *et al. J. Med. Chem.* **2002**, *45*, 4762–4773. ^{*f*} ND = not determined.

Supporting Information Table S2. Pharmacological activities of C(2)-*N*-benzylamide PAAD chiral sets in mice (mg/kg) at UCB and the NINDS ASP

			Mice $(ip)^a$						
Cmpd No.	Test Site	R ²	$\mathrm{MES}^b,\mathrm{ED}_{50}$	6 Hz, ^c ED ₅₀	Formalin, ED ₅₀	Tox^d , TD_{50}	PI ^e , MES	PI ^e , Form	
(<i>R</i>)- 2	UCB	LCM	3.3	10	15	19	5.8	1.3	
(R) - 2^{f}	NINDS	LCM	4.5 [0.5] (3.7–5.5)	10	ND^{g}	27 [0.25] (26-28)	6.0		
$(S)-2^{f}$	NINDS	LCM	>100, <300	ND^{g}	ND^{g}	>300			
(<i>R</i>)-7	UCB	CH ₂ OH	ND^{g}	>62	>62	>110			
(<i>S</i>)- 7	UCB	CH ₂ OH	\mathbf{ND}^{g}	>62	>62	>110			
(<i>R</i> , <i>S</i>)-7	UCB	CH ₂ OH	ND^{g}	>62	>62	>110			
(<i>R</i>)- 8	UCB	CH ₂ OCH ₃	34	>67	>67	>120	>3.5		
(<i>R</i>)- 8	NINDS	CH ₂ OCH ₃	48 [0.25] (40–61)	ND^{g}	ND^{g}	>30, <100 [0.25]			
(R)- 8 ^h	NINDS	CH ₂ OCH ₃	>30, <100	ND^{g}	ND^{g}	>100, <300			
(<i>S</i>)- 8	UCB	CH ₂ OCH ₃	64	>70	120	63	1.0	0.5	

(R)-20 ^{<i>i</i>}	NINDS	CH ₃	>10, <30	ND^{g}	ND^{g}	>100, <300		
(S)- 20 ^{<i>i</i>}	NINDS	CH ₃	>300	ND^{g}	ND ^g	>300		
(R,S)- 20 ^{<i>i</i>}	NINDS	CH ₃	>100, <300	ND^{g}	ND ^g	>300		
(<i>R</i>)-22	UCB	CH ₂ CH ₂ CH ₃	21	66 (MAD) ^{<i>j</i>}	35	57	2.8	1.6
(S)- 22	UCB	CH ₂ CH ₂ CH ₃	>37	>210	100	ND^{g}		
(<i>R</i> , <i>S</i>)- 22	UCB	CH ₂ CH ₂ CH ₃	39	120 (MAD) ^{<i>i</i>}	68 ^{<i>k</i>} (17%)	ND^{g}		
(<i>R</i>)-24	UCB	CH(CH ₃) ₂	16 (MAD) ^{<i>j</i>} 16 ^{<i>k</i>} (100%)	74	20	47	2.9	2.4
(<i>R</i>)- 24	NINDS	CH(CH ₃) ₂	15 [0.25] (13–18)	<100 [0.25–1.0]	15 [0.25]	70 [0.25] (63–80)	4.7	
(S)- 24	NINDS	CH(CH ₃) ₂	>300 [0.5]	ND^{g}	ND ^g	>300 [0.5]		
(<i>R</i>)-25	UCB	C(CH ₃) ₃	13	>71	>22	ND^{g}		
(<i>R</i>)-25	NINDS	C(CH ₃) ₃	14 [0.25] (11–17)	~30 [0.25–0.5]	ND^{g}	66 [0.25] (58–73)	4.7	
(S)- 25	NINDS	C(CH ₃) ₃	42 [0.25] (37–46)	ND^{g}	ND^{g}	100 [0.25] (100–110)		

^{*a*} The compounds were administered intraperitoneally to adult male NMRI mice under the auspices of UCB or administered intraperitoneally to adult male albino CF-1 mice under the auspices of the NINDS ASP. ED_{50} and TD_{50} values are in mg/kg and were determined 30 min after ip administration (UCB) or a dose-response curve was generated for all compounds that displayed sufficient activity and the dose-effect data for these compounds was obtained at the "time of peak effect" (indicated in hours in the brackets) (NINDS ASP). Numbers in parentheses are 95% confidence intervals. ^{*b*} MES = maximal electroshock seizure test. ^{*c*} 6 Hz test = psychomotor seizure model (44 mA, UCB; 32 mA, NINDS ASP). ^{*d*} Tox = neurological toxicity. TD₅₀ value determined from the rotorod test. ^{*e*} PI = protective index (TD₅₀/ED₅₀). ^{*f*} Choi, D. *et al. J. Med. Chem.* **1996**, *39*, 1907–1916. ^{*s*} ND = not determined. ^{*h*} Andurkar, S.V. *et al. Tetrahedron: Asymmetry* **1998**, *9*, 3841–3854. ^{*i*} Béguin, C. *et al. Bioorg. Med. Chem.* **2004**, *12*, 3079–3096. ^{*j*} MAD = minimal active dose. ^{*k*} Single dose experiments where the mg/kg used is followed by the percentage protected in parenthesis.

Supporting Information Table S3. Comparison of the pharmacological activities of PAADs evaluated in mice (mg/kg) at UCB and the NINDS-ASP

$H_2N \xrightarrow{R^2}_{O} H$							
UCB ^a NINDS-ASP ^b							
Cmpd No.	R ²	MES, ^c ED ₅₀	Tox, ^d TD ₅₀	PI ^e	MES, ^c ED ₅₀	Tox, ^d TD ₅₀	PI ^e
(<i>R</i>)- 2	LCM	3.3	19	5.8	4.5 [0.5] (3.7–5.5)	27 [0.25] (26–28)	6.0
(R)- 8	CH ₂ OCH ₃	34	>117	>3. 4	48 [0.25] (40–61)	>30, <100 [0.25]	
(<i>R</i>)- 21	CH ₂ CH ₃	16	46	2.9	18 [0.25] (10–25)	80 [0.25] (65–95)	4.4
(<i>R</i>)- 24	CH(CH ₃) ₂	16 (MAD) ^f	47	2.9	15 [0.25] (13–18)	70 [0.25] (63–80)	4.8
(<i>R</i>)-25	C(CH ₃) ₃	13	ND^{g}		14 [0.25] (11–17)	66 [0.25] (58–73)	4.7

Ŗ²

^a The compounds were administered intraperitoneally to adult male NMRI mice under the auspices of UCB. ED₅₀ and TD₅₀ values are in mg/kg and were determined 30 min after ip administration. ^b The compounds were administered intraperitoneally to adult male albino CF-1 mice under the auspices of the NINDS ASP. ED₅₀ and TD₅₀ values are in mg/kg. A dose-response curve was generated for all compounds that displayed sufficient activity and the dose-effect data for these compounds was obtained at the "time of peak effect" (indicated in hours in the brackets). Numbers in parentheses are 95% confidence intervals. c MES = maximal electroshock seizure test. ^d Tox = neurological toxicity. TD_{50} value determined from the rotorod test. ^e PI = protective index (TD_{50}/ED_{50}) . ^{*f*} MAD = minimal active dose. ^{*g*} ND = not determined.

Calcd. Formula Found No. S С С S Η Ν Η Ν 14.31 (R)-7 $C_{10}H_{14}N_2O_2$ 61.84 7.27 14.42 61.94 7.27 7.31 7.27 61.91 (S)-**7** $C_{10}H_{14}N_2O_2$ 61.84 14.42 14.21 (R, S)-7 $C_{10}H_{14}N_2O_2$ 61.84 7.27 14.42 61.84 7.27 14.42 (*R*)-8 $C_{11}H_{16}N_2O_2 \bullet 0.18H_2O_2$ 62.49 7.80 13.25 62.13 7.82 13.10 7.79 (S)-**8** $C_{11}H_{16}N_2O_2 \bullet 0.15H_2O_2$ 62.56 13.28 62.25 7.91 13.16 (R, S)-8 63.44 7.74 13.45 63.18 7.66 13.41 $C_{11}H_{16}N_2O_2$ (*R*,*S*)-**36** $C_{20}H_{24}N_2O_4$ 67.40 6.79 7.86 67.12 6.67 7.89 (*R*,*S*)-9 $C_{12}H_{18}N_2O_2 \bullet 0.06CH_2Cl_2$ 63.63 8.02 12.30 63.67 8.21 12.32 (R, S)-37 $C_{21}H_{26}N_2O_4$ 68.09 7.07 7.56 68.20 7.19 7.64 $C_{13}H_{20}N_2O_2$ (R, S)-10 66.07 8.53 11.85 65.80 8.29 11.58 $C_{13}H_{18}N_2O_2 \bullet 0.20H_2O$ 7.92 (R, S)-1165.61 7.80 11.77 65.21 11.60 (*R*,*S*)-49 $C_{18}H_{24}N_2O_4$ 65.04 7.28 8.43 65.26 7.44 8.42 (R, S)-12 $C_{13}H_{16}N_2O_2 \bullet 0.09CH_2Cl_2$ 65.59 6.80 11.69 65.54 6.97 11.68 (*R*,*S*)-**58** 59.99 7.19 9.99 7.29 $C_{14}H_{20}N_2O_2$ 60.17 9.85 7.09 (*R*,*S*)-60 67.58 11.82 67.58 7.15 12.02 C₂₀H₂₅N₃O₃ $C_{12}H_{19}N_{3}O_{2}\bullet 0.33H_{2}O$ 8.72 (R, S)-15 63.41 18.49 63.38 8.52 18.21 8.59 (*R*,*S*)-**59** $C_{16}H_{22}N_2O_5$ 59.61 6.88 8.69 59.53 6.79 (*R*,*S*)-**61** 66.48 6.85 10.57 66.52 6.82 10.64 C22H27N3O4 7.99 (*R*,*S*)-16 C14H21N3O2 63.85 8.04 15.96 63.71 15.77 (R, S)-53 58.63 6.81 10.52 58.36 6.82 10.67 $C_{13}H_{18}N_2O_4$ $C_{20}H_{31}N_3O_5$ (R,S)-64 61.05 7.94 10.68 61.16 7.98 10.49 $C_{10}H_{15}N_3O\bullet H_2\overline{O}$ 7.90 (R, S)-13 61.91 7.84 21.66 61.54 21.38 (R)-**69** 61.27 5.57 5.59 61.26 5.65 6.00 $C_{12}H_{13}NO_4$ 7.74 (R)-17 $C_{11}H_{16}N_2O_2$ 63.44 13.45 63.31 7.86 13.31 60.33 7.74 8.28 9.47 8.25 9.18 (R)-67 $C_{17}H_{26}N_2O_3S$ 60.18 7.80 13.45 13.69 (R)-19 60.47 7.61 11.75 60.17 7.62 11.52 $C_{12}H_{18}N_2OS$ (R)-83 C₁₆H₂₄N₂O₃ 65.73 8.27 9.58 66.00 8.33 9.56 (R)-21 $C_{11}H_{16}N_2O\bullet 0.06CH_2Cl_2$ 67.22 8.22 14.17 67.23 8.31 14.36 (R)-93 $C_{20}H_{24}N_2O_3 \bullet 0.12H_2O$ 70.11 7.13 8.18 69.75 7.20 8.35 8.23 8.31 (S)-**93** $C_{20}H_{24}N_2O_3$ 70.56 7.11 70.28 7.19 (*R*,*S*)-**93** $C_{20}H_{24}N_2O_3$ 70.56 7.11 8.23 70.36 7.17 8.19 $C_{12}H_{18}N_2O$ 13.37 (R)-2269.87 8.80 13.58 69.98 8.73 (S)-**22** $C_{12}H_{18}N_2O \bullet 0.32H_2O$ 67.99 8.86 13.22 67.93 8.76 13.21 (R, S)-22 $C_{12}H_{18}N_2O \bullet 0.18H_2O$ 68.81 8.83 13.37 68.48 8.81 13.27 8.93 (R)-84 C₁₈H₂₈N₂O₃ 67.47 8.81 8.74 67.65 8.74 $C_{13}H_{20}N_2O \bullet 0.15H_2O$ (R)-2369.32 12.44 12.37 9.02 69.35 9.16 (R)-24 $C_{12}H_{18}N_2O \bullet 0.04CH_2Cl_2$ 68.93 8.69 13.35 68.97 8.82 13.37 (S)-**24** $C_{12}H_{18}N_2O\bullet 0.30H_2O$ 68.09 8.86 13.23 67.71 8.89 13.19 $C_{13}H_{20}N_2\overline{O}$ 9.25 12.72 12.75 (R)-2570.87 70.83 9.20 (S)-**25** 70.87 9.15 12.72 70.90 9.10 12.54 $C_{13}H_{20}N_2O$ (R,S)-87 C₁₈H₂₈N₂O₃ 67.47 8.81 8.74 67.22 9.00 8.65 (R, S)-26 $C_{13}H_{20}N_2O \bullet 0.03CH_2Cl_2$ 70.20 9.07 12.57 70.19 9.21 12.54 (R)-27 $C_{15}H_{22}N_2O \bullet 0.08H_2O$ 72.73 9.01 11.31 72.43 8.89 11.34 (R)-94 7.28 $C_{24}H_{24}N_2O_3$ 74.21 6.23 7.21 74.18 6.28 (*R*)-28 $C_{16}H_{18}N_2O$ 75.56 7.13 11.01 75.53 7.16 10.85 (R)-105 $C_{14}H_{20}N_2O_2$ 67.71 8.12 11.28 67.92 8.24 11.23 10.49 (*R*)-106 $C_{15}H_{22}N_2O_2$ 68.67 8.45 10.68 68.67 8.55

Supporting Information Table S4. Elemental analysis of prepared compounds.

Supporting Information Table S5. Mass spectra data of select compounds.

No.	Formula	Calcd.	Found
(<i>R</i>)-7	$C_{10}H_{14}N_2O_2Na^+$	217.0953	217.0953
(<i>S</i>)-7	$C_{10}H_{14}N_2O_2Na^+$	217.0953	217.0953
(R,S)-7	$C_{10}H_{14}N_2O_2Na^+$	217.0953	217.0953
(<i>R</i> , <i>S</i>)- 36	$C_{20}H_{24}N_2O_4H^+$	357.1814	357.1814
(R,S)-9	$C_{12}H_{18}N_2O_2H^+$	223.1447	223.1450
(R,S)- 37	$C_{21}H_{26}N_2O_4Na^+$	393.1790	393.1790
(<i>R</i> , <i>S</i>)- 40	$C_{23}H_{21}NO_2H^+$	344.1651	344.1663
(<i>R</i> , <i>S</i>)- 41	C ₉ H ₁₅ NO ₄ Na ⁺	224.0899	224.0909
(R,S)-11	$C_{13}H_{18}N_2O_2H^+$	235.1447	235.1452
(<i>R</i> , <i>S</i>)- 45	$C_{12}H_{19}NO_5Na^+$	280.1161	280.1167
(<i>R</i> , <i>S</i>)- 49	$C_{18}H_{24}N_2O_4Na^+$	355.1634	355.1645
(<i>R</i> , <i>S</i>)-12	$C_{13}H_{16}N_2O_2H^+$	233.1290	233.1294
(<i>R</i> , <i>S</i>)- 50	$C_{12}H_{15}NO_5Na^+$	276.0848	276.0844
(<i>R</i> , <i>S</i>)- 58	$C_{14}H_{20}N_2O_4Na^+$	303.1321	303.1322
(<i>R</i> , <i>S</i>)- 60	$C_{20}H_{25}N_3O_3Na^+$	378.1794	378.1798
(<i>R</i> , <i>S</i>)-15	$C_{12}H_{19}N_3ONa^+$	244.1426	244.1434
(<i>R</i> , <i>S</i>)- 59	$C_{16}H_{22}N_2O_5Na^+$	345.1427	345.1431
(<i>R</i> , <i>S</i>)- 61	$C_{22}H_{27}N_3O_4Na^+$	420.1899	420.1884
(<i>R</i> , <i>S</i>)- 16	$C_{14}H_{21}N_3O_2Na^+$	286.1532	286.1533
(R,S)-53	$C_{13}H_{18}N_2O_4H^+$	267.1345	267.1352
(<i>R</i> , <i>S</i>)- 64	$C_{20}H_{31}N_3O_5Na^+$	416.2162	416.2151
(<i>R</i> , <i>S</i>)- 13	$C_{10}H_{15}N_3ONa^+$	216.1113	216.1107
(<i>R</i>)- 69	$C_{12}H_{13}NO_4Na^+$	258.0742	258.0753
(<i>R</i>)-70	$C_{19}H_{22}N_2O_4Na^+$	365.1477	365.1462
(<i>R</i>)-17	$C_{11}H_{16}N_2O_2H^+$	209.1290	209.1288
(<i>R</i>)- 67	$C_{17}H_{26}N_2O_3SH^+$	339.1742	339.1751
(<i>R</i>)-19	$C_{12}H_{18}N_2OSH^+$	239.1218	239.1224
(<i>R</i>)- 83	$C_{16}H_{24}N_2O_3Na^+$	315.1685	315.1694
(<i>R</i>)-21	$C_{11}H_{16}N_2OH^+$	193.1341	193.1348
(R)- 93	$C_{20}H_{24}N_2O_3Na^+$	363.1685	363.1686
(S)- 93	$C_{20}H_{24}N_2O_3Na^+$	363.1685	363.1687
(<i>R</i> , <i>S</i>)- 93	$C_{20}H_{24}N_2O_3Na^+$	363.1685	363.1685
(<i>R</i>)-22	$C_{12}H_{18}N_2ONa^+$	229.1317	229.1317
(S)- 22	$C_{12}H_{18}N_2OH^+$	207.12	207.12
(R,S)-22	$C_{12}H_{18}N_2ONa^+$	229.1317	229.1320
(R,S)-78	$C_{11}H_{21}NO_4Na^+$	254.1368	254.1370
(<i>R</i>)- 84	$C_{18}H_{28}N_2O_3Cs^+$	453.1154	453.1152
(<i>R</i>)-23	$C_{13}H_{20}N_2OH^{+}$	221.1654	221.1655
(<i>R</i>)-24	$C_{12}H_{18}N_2OH^{+}$	207.1497	207.1501
(S)- 24	$C_{12}H_{18}N_2OH^{+}$	207.1497	207.1502
(<i>R</i>)-25	$C_{13}H_{20}N_2OH^{+}$	221.1654	221.1653
(<i>S</i>)-25	$C_{13}H_{20}N_2OH^{+}$	221.1654	221.1652
(<i>R</i> , <i>S</i>)- 8 7	$C_{18}H_{28}N_2O_3H^{\dagger}$	321.2178	321.2187
(<i>R</i> , <i>S</i>)- 26	$C_{13}H_{20}N_2OH^{+}$	221.1654	221.1663
(<i>R</i>)- 88	$C_{20}H_{30}N_2O_3Cs^{\dagger}$	479.1311	479.1307
(<i>R</i>)-27	$C_{15}H_{22}N_2OH^{\dagger}$	247.1810	247.1810
(<i>R</i>)-94	$C_{24}H_{24}N_2O_3Na^{+}$	411.1685	411.1697
(R)-28	$C_{16}H_{18}N_2ONa^+$	277.1317	277.1321
(<i>R</i>)-105	$C_{14}H_{20}N_2O_2Na^{\dagger}$	2/1.14	2/1.16
(<i>K</i>)- 106	$C_{15}H_{22}N_2O_2H$	263.18	263.20

References

 Lall, M. S.; Ramtohul, Y. K.; James, M. N. G.; Vederas, J. C., Serine and threonine βlactones: A new class of hepatitis A virus 3C cysteine proteinase inhibitors. *J. Org. Chem.* 2002, 67, 1536-1547.

2. Moore, J. A.; Dice, J. R.; Nicolaides, E. D.; Westland, R. D.; Wittle, E. L., Azaserine, synthetic studies. I. *J. Am. Chem. Soc.* **1954**, *76*, 2884-2887.

3. Skinner, C. G.; McCord, T. J.; Ravel, J. M.; Shive, W., *O*-Carbamyl-L-serine, an inhibitory analog of L-glutamine. *J. Am. Chem. Soc.* **1956**, *78*, 2412-2414.

4. Andurkar, S. V.; Stables, J. P.; Kohn, H., Synthesis and anticonvulsant activities of (*R*)(*O*)-methylserine derivatives. *Tetrahedron: Asymmetr* **1998**, *9*, 3841-3854.

5. LeTiran, A.; Stables, J. P.; Kohn, H., Design and evaluation of affinity labels of functionalized amino acid anticonvulsants. *J. Med. Chem.* **2002**, *45*, 4762-4773.

6. Morie, T.; Kato, S.; Harada, H.; Hufiwara, I.; Watanabe, K.; Matsumoto, J.-i., Ring expansion of nitrogen-containing chloromethylheteroalicycles via aziridium intermediates. *J. Chem. Soc., Perkin Trans. 1* **1994**, 2565-2569.

 LeTiran, A.; Stables, J. P.; Kohn, H., Functionalized amino acid anticonvulsants: Synthesis and pharmacological evaluation of conformationally restricted analogues. *Bioorg. Med. Chem.* 2001, *9*, 2693-2708.

8. Webb, R. G.; Haskell, M. W.; Stammer, C. H., A nuclear magnetic resonance method for distinguishing α -amino acids from β and γ isomers. *J. Org. Chem.* **1969**, *34*, 576-580.

9. Shtrumfs, B.; Hermane, J.; Kalvinsh, I.; Trapencieris, P., Unnatural amino acids. 3. Aziridinyl ketones from esters and amides of aziridine-2-carboxylic acids. *Chem. Heterocycl. Compd. (N. Y., NY, U. S.)* **2007,** *43*, 169-174.

10. Whitehouse, D.; Hu, S.; Van Zandt, M. C.; Parker, G. Substituted amino carboxylic acids. US Patent 7,498,356, March 3, 2009.

11. Efange, S. M. N.; Kung, H. F.; Billings, J. J.; Blau, M., Synthesis and biodistribution of 99mTc-labeled piperidinyl bis(aminoethanethiol) complexes: Potential brain perfusion imaging agents for single photon emission computed tomography. *J. Med. Chem.* **1988**, *31*, 1043-1047.

12. Scheurer, A.; Mosset, P.; Bauer, W.; Saalfrank, R., A practical route to regiospecifically substituted (*R*)- and (*S*)-oxazolylphenols. *Eur. J. Org. Chem.* **2001**, *2001*, 3067-3074.

13. Andruskiewicz, R.; Czerwinski, A., Dehydration of β -hydroxyamino acids with *N*,*N*-carbonyldiimidazole. *Synthesis* **1982**, 968-969.

14. Sakai, N.; Ohfune, Y., Total synthesis of galantin I. Acid-catalyzed cyclization of galantinic acid. *J. Am. Chem. Soc.* **1992**, *114*, 998-1010.

Webber, S. E.; Okano, K.; Little, T. L.; Reich, S. H.; Xin, Y.; Fuhrman, S. A.; Matthews,
D. A.; Love, R. A.; Hendrickson, T. F.; Patick, A. K.; Meador, J. W.; Ferre, R. A.; Brown, E. L.;
Ford, C. E.; Binford, S. L.; Worland, S. T., Tripeptide aldehyde inhibitors of human rhinovirus
3C protease: Design, synthesis, biological evaluation, and cocrystal structure solution of P1
glutamine isosteric replacements. *J. Med. Chem.* 1998, *41*, 2786-2805.

16. Lall, M. S.; Karvellas, C.; Vederas, J. C., β -Lactones as a new class of cysteine proteinase inhibitors: Inhibition of hepatitis A virus 3C proteinase by *N*-Cbz-serine β -lactone. *Org. Lett.* **1999**, *1*, 803-806.

17. Macdonald, S. J. F.; Clarke, G. D. E.; Dowle, M. D.; Harrison, L. A.; Hodgson, S. T.; Inglis, G. G. A.; Johnson, M. R.; Shah, P.; Upton, R. J.; Walls, S. B., A flexible, practical, and stereoselective synthesis of enantiomerically pure trans-5-oxohexahydropyrrolo[3,2-β]pyrroles

(pyrrolidine-trans-lactams), a new class of serine protease inhibitors, using acyliminium methodology. *J. Org. Chem.* **1999**, *64*, 5166-5175.

Ley, S.; Priour, A., Total synthesis of the cyclic peptide Argyrin B. *Eur. J. Org. Chem.* 2002, 2002, 3995-4004.

19. Oka, T.; Yasusa, T.; Ando, T.; Watanabe, M.; Yoneda, F.; Ishida, T.; Knoll, J., Enantioselective synthesis and absolute configuration of (-)-1-(benzofuran-2-yl)-2-propylaminopentane, ((-)-BPAP), a highly potent and selective catecholaminergic activity enhancer. *Bioorg. Med. Chem.* **2001**, *9*, 1213-1219.

Izumiya, N.; Yamamoto, T., Action of chymotrypsin: I. *J. Biochem. (Tokyo)* 1959, 46, 19-22.

21. Shen, M.; LeTiran, A.; Xiao, Y.; Golbraikh, A.; Kohn, H.; Tropsha, A., Quantitative structure–activity relationship analysis of functionalized amino acid anticonvulsant agents Using k nearest neighbor and simulated annealing PLS methods. *J. Med. Chem.* **2002**, *45*, 2811-2823.

22. Chen, J.; Corbin, S. P.; Holman, N. J., An improved large scale synthesis of the Schöllkopf chiral auxiliaries: (2R)- and (2S)-2,5-Dihydro-3,6-dimethoxy-2-isopropylpyrazine. *Org. Process Res. Dev.* **2005**, *9*, 185-187.

Yu, Y.; Shao, X.; Cui, Y.; Liu, H. m.; Wang, C. l.; Fan, Y. z.; Liu, J.; Dong, S. l.; Cui, Y. x.; Wang, R., Structure–activity study on the spatial arrangement of the third aromatic ring of endomorphins 1 and 2 using an atypical constrained C-terminus. *ChemMedChem* 2007, *2*, 309-317.

24. Ramalingam, B.; Neuburger, M.; Pfaltz, A., Synthesis of chiral C₂-symmetric methyleneand boron-bridged bis(imidazolines). *Synthesis* **2007**, *4*, 572-582.

25. Jenssen, K.; Sewald, K.; Sewald, N., Synthesis of marimastat and a marimastat conjugate for affinity chromatography and surface plasmon resonance studies. *Bioconjug. Chem.* **2004**, *15*, 594-600.

26. Vachal, P.; Jacobsen, E. N., Enantioselective catalytic addition of HCN to ketoimines. Catalytic synthesis of quaternary amino acids. *Org. Lett.* **2000**, *2*, 867-870.

27. Vachal, P.; Jacobsen, E. N., Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. *J. Am. Chem. Soc.* **2002**, *124*, 10012-10014.

28. Ray, S.; Drew, M. G. B.; Das, A. K.; Banerjee, A., The role of terminal tyrosine residues in the formation of tripeptide nanotubes: a crystallographic insight. *Tetrahedron* **2006**, *62*, 7274-7283.

29. Harding, C. I.; Dixon, D. J.; Ley, S. V., The preparation and alkylation of a butanedionederived chiral glycine equivalent and its use for the synthesis of α -amino acids and α , α disubstituted amino acids. *Tetrahedron* **2004**, *60*, 7679-7692.

30. Ramage, R.; Hopton, D.; Parrott, M. J.; Richardson, R. S.; Kenner, G. W.; Moore, G. A., Application of diphenylphosphinic carboxylic mixed anhydrides to peptide synthesis. *J. Chem. Soc., Perkin Trans. 1* **1985**, 461-470.

31. Kaminski, R. M.; Livingood, M. R.; Rogawski, M. A., Allopregnanolone analogs that positively modulate GABA_A receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. *Epilepsia* **2004**, *45*, 864-867.

32. Klitgaard, H.; Matagne, A.; Gobert, J.; Wülfert, E., Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. *Eur. J. Pharmacol.* **1998**, *353*, 191-206.

33. Lambeng, N.; Lebon, F.; Christophe, B.; Burton, M.; De Ryck, M.; Quéré, L.,

Arylsulfonamides as a new class of cannabinoid CB1 receptor ligands: Identification of a lead and initial SAR studies. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 272-277.

34. Tjølsen, A.; Berge, O.-G.; Hunskaar, S.; Rosland, J. H.; Hole, K., The formalin test: An evaluation of the method. *Pain* **1992**, *51*, 5-17.

35. Vissers, K. C. P.; Geenen, F.; Biermans, R.; Meert, T. F., Pharmacological correlation between the formalin test and the neuropathic pain behavior in different species with chronic constriction injury. *Pharmacol. Biochem. Behav.* **2006**, *84*, 479-486.

36. National Resource Council. *Guide for the care and use of laboratory animals*. Institute of Laboratory Animal Resources. National Academy Press: Washington, D.C., 1996.

37. Finney, D. J., *Probit analysis*. 3 ed.; Cambridge University Press: London, 1971.

38. Stables, J. P.; Kupferberg, H. J., The NIH anticonvulsant drug development (ADD)

program: Preclinical anticonvulsant screening project. In Molecular and cellular targets for anti-

epileptic drugs, Avanzini, G.; Regesta, G.; Tanganelli, O.; Avoli, M., Eds. John Libby &

Company Ltd: London, 1997; pp 191-198.