Pd-Catalyzed Direct Cross-Coupling of Electron-Deficient Polyfluoroarenes with Heteroaromatic Tosylates

Shilu Fan, Jie Yang, and Xingang Zhang*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,

345 Lingling Road, Shanghai 200032, China xgzhang@mail.sioc.ac.cn

List of Contents

1)	Screens for Pd-catalyzed direct cross-coupling of pentafluorobenzene 1a with						
	2-quinaxolinyl tosylate 2a (Table S1)						
2)	Typical Procedure for the Preparation of Heteroaromatic Tosylate 2						
3)	General Procedure for Pd-Catalyzed Direct Cross-Coupling of Fluoroarenes 1						
	with Various Heteroaromatic Tosylates 2						
4)	Data for compounds 3						
5)	Data for compounds 5-9. S23						
6)	Copies of ¹ H NMR and ¹⁹ F NMR spectra of 2						
7)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 3						
8)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 5-7						
9)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 8-9						

General information: 1 H NMR and 13 C NMR spectra were recorded on a Bruker AM300 and AM400 spectrometer. 19 F NMR was recorded on a Bruker AM300 spectrometer (CFCl₃ as outside standard and low field is positive). Purification by reverse phase preparative HPLC was performed on a PerkinElmer 200 HPLC equipped with a PerkinElmer Series 200 UV/VIS detector and a Kromasil 100-5-C18 (250 x 10 mm) column. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by 19 F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All reagents were weighed and handled in air, and refilled with an inert atmosphere of N₂ at room temperature. DMF and DMSO were distilled under reduced pressure from CaH₂. 1,4-Dioxane was distilled from sodium and benzophenone immediately before use. *t*BuOH was distilled from CaH₂. Compounds 2-phenylquinazolin-4-ol, 7-methyl-2-phenylquinazolin-4-ol, 7-fluoro-2-phenylquinazolin-4-ol were prepared according to literature.¹

Screens for Pd-Catalyzed Direct Cross-Coupling of Pentafluorobenzene 1a with 2-Quinaxolinyl Tosylate 2a (Table S1). To a septum capped 25 mL of sealed tube were added Pd-catalyst (3-10 mol%), ligand (6-20 mol%), additive (1.2 equiv) and quinoxalin-2-yl-4-methylbenzenesulfonate 2a (0.3 mmol, 1.0 euqiv) under N_2 , followed by solvent (1.0 mL) with stirring. Pentafluorobenzene 1a (2.0 equiv) was then added subsequently. The sealed tube was screw capped and heated to 60-120 °C (oil bath). After stirring for 12 h, the reaction mixture was cooled to room temperature and fluorobenzene (28.5 μ L, 0.3 mmol) was added. The yield was determined by ¹⁹F NMR before working up. If necessary, the reaction mixture was diluted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1) to provide pure product.

Table S1. Screens for Pd-catalyzed direct cross-coupling of pentafluorobenzene **1a** with 2-quinaxolinyl tosylate **2a**. ^a

(1.2)

dioxane

60

8

trace

...

15

 $Pd(OAc)_2(10)$

L(20)

16	Pd(OAc) ₂ (10)	L3 (20)		K ₃ PO ₄ (1.2)	dioxane	80	12	36
17	Pd(OAc) ₂ (10)	L6 (20)	•••	K_3PO_4 (1.2)	dioxane	80	12	NR
18	Pd(OAc) ₂ (10)	L (20)	•••	K_3PO_4 (1.2)	dioxane	80	12	72
19	Pd(OAc) ₂ (10)	L (20)		K_3PO_4 (1.2)	DMF	80	12	18
20	Pd(OAc) ₂ (10)	L (20)		K_3PO_4 (1.2)	t-BuOH	80	12	72
21 ^c	Pd(OAc) ₂ (10)	L (20)		K_3PO_4 (1.2)	DMF/ t-BuOH	80	12	33
22	Pd(OAc) ₂ (10)	L (20)	•••	K_3PO_4 (1.2)	DMSO	80	12	trace
23	Pd(OAc) ₂ (5)	L (10)	•••	K_3PO_4 (1.2)	dioxane	80	12	10
24	Pd(OAc) ₂ (5)	L (10)		K_3PO_4 (1.2)	t-BuOH	80	12	32
25	Pd(OAc) ₂ (5)	L (10)	PivOH	K_3PO_4	dioxane	80	12	39
26	$Pd(OAc)_2(5)$	L (10)	(1.0) PivOH	(2.5) K_3PO_4	t-BuOH	80	12	65
27	Pd(OAc) ₂ (5)	L (10)	(1.2) AdOH	(1.2) K_3PO_4	t-BuOH	80	12	70
28	Pd(OAc) ₂ (3)	L (6)	(1.2) PivOH	(1.2) K_3PO_4	t-BuOH	80	12	(51)
29	$Pd(OAc)_2(3)$	L (6)	(1.2) AdOH	(1.2) K_3PO_4	t-BuOH	80	12	(60)
30	$Pd(TFA)_2(3)$	L(6)	(1.2) AdOH	(1.2) K_3PO_4	<i>t</i> -BuOH	80	12	(68)
31	Pd(TFA) ₂ (3)	L (6)	(1.2) AdOH	(1.2) K₃PO₄	<i>t</i> -BuOH	90	12	80(73)
32	Pd(TFA) ₂ (3)		(1.2) AdOH	(1.2) K_3PO_4	<i>t-</i> BuOH	90	12	N.R.
33	Pd(TFA) ₂ (3)	L (6)	(1.2) AdOH	(1.2) K_2CO_3	t-BuOH	90	12	18
34	Pd(TFA) ₂ (3)	L (6)	(1.2) AdOH	(1.2) Cs_2CO_3	<i>t</i> -BuOH	90	12	N.R.
35	Pd(TFA) ₂ (3)	L (6)	(1.2) AdOH	(1.2) tBuOLi	t-BuOH	90	12	30
36	$Pd(TFA)_2(3)$	L (6)	(1.2) AdOK	(1.2)	t-BuOH	90	12	50
<i>J</i> 0	1 0(1111)2 (3)	L (0)	(1.2)		i DuOII	70	12	50

^aRecation conditions unless otherwise specified: **1a** (2.0 equiv), **2a** (0.3 mmol) solvent (1.0 mL). ^bNMR yield determined by ¹⁹F NMR using fluorobenzene as an internal standard (isolated yield in parentheses). ^cDMF/tBuOH = 4:1 (v/v).

Considering that the phosphine-ligated arylpalladium carboxylates LPd(Ar)(OCOR) were typically proposed to react with arenes to form biarylpalladium complexes through a concerted metalation-deprotonation (CMD) pathway (*J. Am. Chem. Soc.* **2006**, *128*, 16496); the role of AdOH or PivOH was proposed to function as a proton shuttle during the aryl C-H cleavage step, a reaction mechanism for the cross-coupling of polyfluoroarenes with heteroaromatic tosylates was proposed as shown in Scheme S1.

Scheme S1. Proposed mechanism for the cross-coupling of polyfluoroarenes with heteroaromatic tosylates.

Typical Procedure for the Preparation of Heteroaromatic Tosylate 2.

To a solution of quinoxalin-2(1H)-one (6.0 g, 34 mmol) in 100 mL of dichloromethane were added TsCl (7.13 g, 37.4 mmol) and DMAP (416 mg, 3.4 mmol), followed by Et₃N (7 mL, 48 mmol). The reaction mixture was stirred for 3 h at room temperature. The reaction mixture was diluted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 6:1) to provide pure product **2a** (8.16 g, 91%).

Quinoxalin-2-yl 4-methylbenzenesulfonate (**2a**). The product (83% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 5:1). This compound is known.² ¹H NMR (300 MHz, CDCl₃) δ 8.66 (s, 1 H), 8.13-8.09 (m, 1 H), 8.03 (d, J = 8.4 Hz, 2 H), 7.92-7.89 (m, 1 H), 7.78-7.74 (m, 2 H), 7.39 (d, J = 8.4 Hz, 2 H), 2.47 (s, 3 H).

6-methylquinoxalin-2-yl 4-methylbenzenesulfonate (**2b**). The product (99% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 5:1). 1 H NMR (300 MHz, CDCl₃) δ 8.61 (s, 1 H), 8.01 (d, J = 8.7 Hz, 2 H), 7.88 (s, 1 H), 7.80 (d, J = 8.7 Hz, 1 H), 7.60 (d, J = 8.4 Hz, 1.5 Hz, 1 H), 7.38 (d, J = 8.1 Hz, 2 H), 2.58 (s, 3H), 2.47 (s, 3H). 13 C NMR (75.4 MHz, CDCl₃) δ 150.3, 145.8, 141.1, 140.3, 138.8, 137.8, 133.2, 133.1, 129.7, 128.9, 127.9, 127.8, 21.6, 21.5.

6,7-Dimethylquinoxalin-2-yl 4-methylbenzenesulfonate (**2c**). The product (67% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). 1 H NMR (300 MHz, CDCl₃) δ 8.54 (s, 1 H), 8.00 (d, J = 8.4 Hz, 2 H), 7.84 (s, 1 H), 7.65 (s, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 2.47 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 150.5, 145.8, 141.9, 140.3, 140.1, 138.4, 137.9, 133.3, 129.7, 128.9, 128.1, 127.4, 21.7, 20.2, 20.1.

6-Methoxyquinoxalin-2-yl 4-methylbenzenesulfonate (2d). The product (81% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl

ether = 4:1). ¹H NMR (300 MHz, CDCl₃) δ 8.60 (s, 1 H), 7.98 (d, J = 8.1 Hz, 2 H), 7.78 (dd, J = 8.4 Hz, 1.2 Hz, 1 H), 7.44-7.37 (m, 4 H), 3.96 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 149.5, 145.8, 142.9, 139.1, 135.4, 133.2, 129.8, 129.3, 128.9, 124.2, 106.8, 55.8, 21.7.

6-Chloroquinoxalin-2-yl 4-methylbenzenesulfonate (**2e**). The product (92% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 6:1). 1 H NMR (300 MHz, CDCl₃) δ 8.65 (s, 1 H), 8.11 (d, J = 2.1 Hz, 1 H), 8.02 (d, J = 8.1 Hz, 2 H), 7.85 (d, J = 8.7 Hz, 1 H), 7.72 (dd, J = 9.0 Hz, 2.1 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 2 H)), 2.47 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 151.0, 146.1, 141.3, 140.1, 138.2, 135.6, 133.1, 132.1, 129.8, 129.6, 129.0, 128.1, 21.8.

6-Fluoroquinoxalin-2-yl 4-methylbenzenesulfonate (**2f**). The product (84% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 6:1). 1 H NMR (300 MHz, CDCl₃) δ 8.66 (s, 1 H), 8.02 (d, J = 8.4 Hz, 2 H), 7.92 (dd, J = 9.3 Hz, 5.7 Hz, 1 H), 7.75 (dd, J = 9.0 Hz, 3.0 Hz, 1 H), 7.56 (dd, J = 8.1 Hz, 2.7 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 2 H)), 2.48 (s, 3H). 19 F NMR (282 MHz, CDCl₃) δ -104.8 (m, 1F). 13 C NMR (75.4 MHz, CDCl₃) δ 162.4 (d, J = 252.6), 150.5, 146.0, 141.8 (d, J = 13.0), 140.0, 136.6, 133.0, 130.3 (d, J = 9.9), 129.8, 128.9, 121.2 (d, J = 25.9), 112.9 (d, J = 22.0), 21.7.

2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (2g). The product (82% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl

ether = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 8.37-8.34 (s, 2 H), 8.20 (d, J = 7.5 Hz, 1 H), 8.13 (d, J = 8.4 Hz, 2 H), 8.08 (d, J = 8.4 Hz, 1 H), 7.92 (t, J = 8.1 Hz, 1 H), 7.63 (t, J = 7.8 Hz, 1 H), 7.52-7.47 (m, 3 H), 7.40 (d, J = 8.4 Hz, 2 H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 159.6, 153.3, 145.8, 136.9, 134.9, 134.2, 131.0, 129.8, 129.0, 128.7, 128.5, 128.3, 127.9, 123.3, 115.0, 21.8.

7-Methyl-2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (**2h**). The product (70% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). 1 H NMR (300 MHz, CDCl₃) δ 8.34-8.31 (s, 2 H), 8.12 (d, J = 8.1 Hz, 2 H), 8.08 (d, J = 8.4 Hz, 1 H), 7.84 (s, 1 H), 7.49-7.44 (m, 4 H), 7.39 (d, J = 8.1 Hz, 2 H), 2.59 (s, 3 H), 2.47 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.0, 159.6, 153.7, 146.1, 145.7, 137.0, 134.3, 130.9, 130.1, 129.7, 129.0, 128.6, 128.4, 127.4, 122.9, 112.9, 22.2, 21.7.

7-Fluoro-2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (**2i**). The product (80% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). 1 H NMR (300 MHz, CDCl₃) δ 8.34 (dd, J = 7.8 Hz, 1.8 Hz, 2 H), 8.22 (dd, J = 9.6 Hz, 6.3 Hz, 1 H), 8.12 (d, J = 8.1 Hz, 2 H), 7.68 (dd, J = 9.6 Hz, 2.1 Hz, 1 H), 2.47 (s, 3H). 19 F NMR (282 MHz, CDCl₃) δ -100.7 (m, 1F). 13 C NMR (100 MHz, CDCl₃) δ 166.4 (d, J = 255.8), 161.9, 160.8, 155.1 (d, J = 14.1), 145.9, 136.5, 134.0, 131.3, 129.8, 129.0, 128.8, 128.5, 126.1 (d, J = 10.7), 118.2 (d, J = 25.3), 112.4 (d, J = 21.0), 112.0, 21.8.

Quinolin-2-yl 4-methylbenzenesulfonate (**2j**). The product (82% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). This compound is known.³ ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 1 H), 8.02 (d, J = 8.4 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 1 H), 7.69 (t, J = 7.8 Hz, 1 H), 7.53 (t, J = 7.8 Hz, 1 H), 7.18 (d, J = 8.4 Hz, 2 H), 2.45 (s, 3H).

4-Methylquinolin-2-yl 4-methylbenzenesulfonate (**2k**). The product (83% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). This compound is known.⁴ ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2 H), 7.94 (d, J = 8.1 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 6.9 Hz, 1 H), 7.53 (t, J = 7.5 Hz, 1 H), 7.35 (d, J = 8.1 Hz, 2 H), 2.68 (s, 3H), 2.44 (s, 3 H).

Ethyl 2-(tosyloxy)quinoline-4-carboxylate (**21).** The product (95% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 10:1). ¹H NMR (300 MHz, CDCl₃) δ 8.74 (d, J = 8.7 Hz, 1 H), 8.04 (d, J = 8.4 Hz, 2 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.75 (t, J = 7.2 Hz, 1 H), 7.71 (s, 1 H), 7.63 (t, J = 7.2 Hz, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 4.50 (q, J = 7.2 Hz, 2 H), 2.46 (s, 3H), 1.47 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 154.8, 147.0, 145.5, 139.8, 133.7, 130.7, 129.6, 129.1, 128.9, 128.0, 125.6, 124.2, 116.0, 62.2, 21.7, 14.2.

5-(Ttrifluoromethyl)pyridin-2-yl 4-methylbenzenesulfonate (**2m**). The product (88% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 15:1). This compound is known.⁵ ¹H NMR (300 MHz, CDCl₃) δ 8.55 (S, 1 H), 8.02 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.1 Hz, 2 H), 7.39 (d, J = 7.2 Hz, 2 H), 7.24 (d, J = 8.7 Hz, 1 H), 2.49 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.5 (s, 3F).

Quinoline-2,4-diyl bis(**4-methylbenzenesulfonate**) (**4**). The product (92% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 2:1). This compound is known.⁵ ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.83 (d, J = 8.4 Hz, 3 H), 7.70 (t, J = 7.5 Hz, 1 H), 7.49 (t, J = 7.5 Hz, 1 H), 7.36 (t, J = 8.4 Hz, 4 H), 7.01 (s, 1 H), 2.46 (s, 3 H), 2.45 (s, 3 H).

General Procedure for Pd-Catalyzed Direct Cross-Coupling of Fluoroarenes 1 with Various Heteroaromatic Tosylates 2. To a septum capped 25 mL of sealed tube were added Pd(TFA)₂ (5.0 mol%), L (10 mol%), K₃PO₄ (1.2 equiv), AdOH (1.2 equiv) and heteroaromatic tosylate 2 (0.3 mmol, 1.0 equiv) under N₂, followed by *t*-BuOH (1.5 mL) with stirring. Polyfluoroarene (0.6-0.9 mmol, 2.0-3.0 equiv) was then added subsequently. The sealed tube was screw capped and heated to 90 °C (oil bath). After stirring for 12 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

2-(Perfluorophenyl)quinoxaline (3a). 3 mol% of Pd(TFA)₂ and 6 mol% of L were

used. The product (63 mg, 73% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 138 °C; 1 H NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 8.22-8.17 (m, 2H), 7.91-7.85 (m, 2H). 13 C

NMR (75.4 MHz, CDCl₃) δ 145.4 (t, J = 2.3 Hz), 145.0 (dm, J = 252.4 Hz), 142.7 (m), 142.3, 141.8, 142.0 (dm, J = 257.2 Hz), 137.9 (dm, J = 254.9 Hz), 131.2, 130.9, 129.7, 129.3, 112.6 (t, J = 16.8 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -142.8 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -151.6 (t, J = 21.7 Hz, 1F), -161.0 (m, 2F). IR (KBr): v_{max} 1652, 1523, 1498, 1029 cm⁻¹. MS (EI): m/z (%) 297 (M⁺+H⁺), 296 (M⁺), 76 (100). Anal. Calcd. for $C_{14}H_5F_5N_2$: N, 9.46; C, 56.77; H, 1.70; Found: N, 9.45; C, 56.91; H, 1.50.

6-Methyl-2-(perfluorophenyl)quinoxaline (3b). 3 mol% of Pd(TFA)₂ and 6 mol% of

L were used. The product (86 mg, 92% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 122 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.94 (s, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.95 (s, 1H), 7.69 (d, J = 8.7 Hz, 1H), 2.65 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 145.3, 144.9 (dm, J = 247.4 Hz), 142.2, 141.9, 141.8 (dm, J = 256.8 Hz), 141.7, 140.8, 137.9 (dm, J = 253.3 Hz), 133.2, 129.1, 128.1, 112.8 (m), 21.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -142.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.0 (t, J = 21.7 Hz, 1F),

MHz, CDCl₃) δ -142.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.0 (t, J = 21.7 Hz, 1F), -161.2 (td, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): ν_{max} 1552, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 311 (M⁺+H⁺), 310 (M⁺, 100), 89. Anal. Calcd. for C₁₅H₇F₅N₂: N, 7.52; C, 64.52; H, 2.44; Found: N, 7.49; C, 64.64; H, 2.48.

6,7-Dimethyl-2-(perfluorophenyl)quinoxaline (3c). 3 mol% of $Pd(TFA)_2$ and 6

NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 7.83 (s, 1H), 7.82 (s, 1H), 2.46 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1 (dm, J = 250.4 Hz), 144.6, 142.0, 141.9 (dm, J = 255.1 Hz), 141.7, 141.55, 141.49, 141.0, 138.0 (dm, J = 252.1 Hz), 128.7, 128.4, 113.3 (m), 20.2, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.6 (dd, J = 20.7 Hz, 8.3 Hz, 2F), -152.5 (t, J = 20.7 Hz, 1F), -161.4 (td, J = 20.7 Hz, 8.3 Hz, 2F). IR (KBr): v_{max} 1651, 1548, 1496, 1418 cm⁻¹. MS (EI): m/z (%) 325 (M⁺+H⁺), 324 (M⁺, 100), 309. Anal. Calcd. for C₁₆H₉F₅N₂: N, 8.64; C, 59.27; H, 2.80; Found: N, 8.69; C, 59.48; H, 2.48.

6-Methoxy-2-(perfluorophenyl)quinoxaline (3d). 3 mol% of Pd(TFA)₂ and 6 mol%

MeO N F F

of **L** were used. The product (89 mg, 91% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 133 °C; 1 H NMR (300 MHz, CDCl₃) δ 8.90 (s, 1H), 8.04 (d, J = 9.0

Hz, 1H), 7.51 (dd, J = 9.0 Hz, 2.7 Hz, 1H), 7.44 (d, J = 2.7 Hz, 1H), 4.03 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 161.8, 145.4, 144.9 (dm, J = 251.5 Hz), 143.6, 141.7 (dm, J = 255.1 Hz), 139.8, 138.6, 137.9 (dm, J = 252.1 Hz), 130.6, 124.5, 112.9 (m), 106.3, 55.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -143.0 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.2 (t, J = 21.7 Hz, 1F), -161.2 (td, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): v_{max} 1522, 1497, 1485 cm⁻¹. MS (EI): m/z (%) 327 (M⁺+H⁺), 326 (M⁺, 100), 106. HRMS: Calculated for C₁₅H₇N₂OF₅: 326.0479; Found: 326.0480.

6-Chloro-2-(perfluorophenyl)quinoxaline (3e). 3 mol% of Pd(TFA)₂ and 6 mol% of

F F F

L were used. The product (43 mg, 43% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 130 °C; 1 H NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 8.18 (d, J = 2.1

Hz, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.81 (dd, J = 9.0 Hz, 2.1 Hz, 1H). ¹³C NMR (75.4 MHz, CDCl₃) δ 146.3 (t, J = 9.3 Hz), 144.9 (dm, J = 252.4 Hz), 142.8 (m), 142.1 (dm, J = 257.6 Hz), 142.0, 140.8, 137.9 (dm, J = 255.2 Hz), 137.2, 132.0, 130.9, 128.2,

122.4 (m). ¹⁹F NMR (282 MHz, CDCl₃) δ -142.8 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -151.1 (t, J = 21.7 Hz, 1F), -160.8 (m, 2F). IR (KBr): ν_{max} 1657, 1551, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 331 (M⁺+H⁺), 330 (M⁺, 100), 110. Anal. Calcd. for C₁₄H₄ClF₅N₂: N, 8.47; C, 50.86; H, 1.22; Found: N, 8.59; C, 51.11; H, 1.07.

6-Fluoro-2-(perfluorophenyl)quinoxaline (3f). The product (72 mg, 76% yield) as a

white solid (127 °C) was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). 1 H F NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 8.20 (dd, J = 9.0 Hz, 5.4 Hz, 1H), 7.83 (dd, J = 9.0 Hz, 2.7 Hz, 1H), 7.66 (td, J = 8.4 Hz, 2.7 Hz, 1H). 13 C NMR (75.4 MHz, CDCl₃) δ 163.5 (d, J = 254.6 Hz), 146.2 (t, J = 9.3 Hz), 145.0 (dm, J = 256.3 Hz), 142.7 (d, J = 13.3 Hz), 142.04 (dm, J = 257.3 Hz), 142.03 (m), 139.6 (d, J = 1.0 Hz), 137.8 (dm, J = 254.6 Hz), 131.9 (d, J = 10.2 Hz), 121.5 (d, J = 26.2 Hz), 112.9 (d, J = 21.7 Hz), 112.4 (m). 19 F NMR (282 MHz, CDCl₃) δ -105.7 (dd, J = 13.8 Hz, 7.9 Hz, 1F), -142.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -151.3 (t, J = 21.7 Hz, 1F), -160.8 (m, 2F). IR (KBr): v_{max} 1653, 1557, 1521, 1499 cm $^{-1}$. MS (EI): m/z (%) 315 (M $^{+}$ +H $^{+}$), 314 (M $^{+}$), 94 (100). Anal. Calcd. for $C_{14}H_4F_6N_2$: N, 8.92; C, 53.52; H, 1.28; Found: N, 8.94; C, 53.43; H, 1.15.

4-(Perfluorophenyl)-2-phenylquinazoline (3g). The product (88 mg, 78% yield) as a

white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 197 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.63-8.61(m, 2H), 8.22 (d, J = 8.4 Hz, 1H), 7.97 (t, J = 8.1 Hz, 1H), 7.67-7.53 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 156.9, 151.6, 144.7 (dm, J = 246.6 Hz), 142.1 (dm, J = 256.1 Hz), 137.8 (dm, J = 249.4 Hz), 137.3, 134.6, 130.9, 129.3, 128.6, 127.9, 125.2, 122.6, 112.0 (m). ¹³F NMR (282 MHz, CDCl₃) δ -139.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -151.8 (t, J = 21.7 Hz, 1F), -160.8 (m, 2F). IR (KBr): ν_{max} 1565, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 373 (M⁺+H⁺), 372 (M⁺, 100), 179. Anal. Calcd. for C₂₀H₉F₅N₂: N, 9.03; C, 58.07; H, 2.27; Found: N, 9.13; C, 58.15; H, 2.19.

7-Methyl-4-(perfluorophenyl)-2-phenylquinazoline (3h). The product (106 mg,

95% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 222 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.62-8.59 (m, 2H), 7.99 (s, 1H), 7.54-7.52 (m, 4H), 7.43 (d, J = 8.4 Hz, 1H), 2.62 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 160.7, 156.3, 151.9, 145.9, 144.7 (dm,

J = 250.4 Hz), 142.1 (dm, J = 255.2 Hz), 137.9 (dm, J = 253.4 Hz), 137.5, 130.8, 130.4, 128.7, 128.3, 124.9, 121.0, 112.3 (m), 22.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -140.0 (dd, J = 21.7 Hz, 5.9 Hz, 2F), -152.1 (t, J = 21.7 Hz, 1F), -161.0 (td, J = 21.7 Hz, 5.9 Hz, 2F). IR (KBr): v_{max} 1655, 1566, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 387 (M⁺+H⁺), 386 (M⁺, 100), 193. Anal. Calcd. for C₂₁H₁₁F₅N₂: N, 7.25; C, 65.29; H, 2.87; Found: N, 7.33; C, 65.43; H, 2.94.

7-Fluoro-4-(perfluorophenyl)-2-phenylquinazoline (3i). The reaction run at 80 °C

for 24 h. The product (100 mg, 85% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 208 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.63-8.59 (m, 2H), 7.84 (dd, J = 9.9 Hz, 2.4 Hz, 1H), 7.70-7.65 (m, 1H), 7.55-7.53 (m, 3H), 7.38 (td, J = 9.0 Hz, 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1 (d, J = 256.6 Hz), 161.6, 156.6, 153.5 (d, J = 14.2 Hz), 144.7 (dm, J = 251.1 Hz), 142.3 (dm, J = 251.1 Hz), 137.9 (dm, J = 255.5 Hz), 137.0, 131.3, 128.8 (d, J = 11.0 Hz), 128.0 (d, J = 10.7 Hz), 120.0, 118.7 (d, J = 25.6 Hz), 113.2 (d, J = 20.5 Hz), 111.9 (m). ¹⁹F NMR (282 MHz, CDCl₃) δ -100.8 (dd, J = 14.1 Hz, 7.9 Hz, 1F), -139.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.3 (t, J = 21.7 Hz, 1F), -161.5 (m, 2F). IR (KBr): ν_{max} 1572, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 391 (M⁺+H⁺), 390 (M⁺, 100), 199. Anal. Calcd. for C₂₀H₈F₆N₂: N, 7.18; C, 61.55; H, 2.07; Found: N, 7.22; C, 61.42; H, 1.95.

2-(Perfluorophenyl)quinoline (3j). The product (80 mg, 90% yield) as a white solid

was purified with silica gel chromatography (Petroleum ether F / Ethyl ether = 50:1). This compound is known.⁶ M.P. 166 °C; F H NMR (300 MHz, CDCl₃) δ 8.32 (d, J = 8.7 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.81 (td, J = 6.9 Hz, 1.2 Hz, 1H), 7.65 (td, J = 8.1 Hz, 1.2 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -143.1 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -153.7(t, J = 21.7 Hz, 1F), -161.9 (td, J = 21.7 Hz, 7.9 Hz, 2F). Anal. Calcd. for C₁₅H₆F₅N: N, 4.74; C, 61.03; H, 2.05; Found: N, 4.75; C, 60.94; H, 1.80.

4-Methyl-2-(perfluorophenyl)quinoline (3k). The product (72 mg, 78% yield) as a

white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 137 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.38 (s, 1H), 2.78 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 147.8, 146.7, 145.5, 144.7 (dm, J = 246.0 Hz), 141.2 (dm, J = 254.9 Hz), 137.7 (dm, J = 253.0 Hz), 130.1, 129.8, 127.5, 127.3, 123.7, 123.3, 115.8 (m), 18.7. ¹°F NMR (282 MHz, CDCl₃) δ -143.0 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -154.1(t, J = 21.7 Hz, 1F), -162.1 (td, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): v_{max} 1653, 1523, 1507, 1494 cm⁻¹. MS (EI): m/z (%) 310 (M⁺+H⁺), 309 (M⁺, 100), 115.Anal. Calcd. for C₁₆H₈F₅N: N, 4.53; C, 62.14; H, 2.61; Found: N, 4.65; C, 62.34; H, 2.59.

Ethyl 2-(perfluorophenyl)quinoline-4-carboxylate (31). The product (100 mg, 91%

yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 99 °C; 1 H NMR (300 MHz, CDCl₃) δ 8.86 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.07 (s, 1H), 7.85 (t, J = 6.9Hz, 1H), 7.75 (t, J = 6.9 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 1.49 (t, J = 13 cm. 13 cm. 14 cm. 15 cm. 15 cm. 15 cm. 15 cm. 15 cm. 15 cm. 16 cm. 16 cm. 17 cm. 17 cm. 17 cm. 18 cm.

7.2 Hz, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 165.5, 149.1, 146.5, 144.8 (dm, J =

246.6 Hz), 141.4 (dm, J = 242.0 Hz), 137.8 (dm, J = 253.0 Hz), 136.1, 130.4, 130.2, 129.1, 125.0, 124.4, 123.7, 114.9 (m), 62.2, 14.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -142.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.9 (t, J = 21.7 Hz, 1F), -161.6 (td, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): v_{max} 1723, 1653 cm⁻¹. MS (EI): m/z (%) 368 (M⁺+H⁺), 367 (M⁺), 309 (100). Anal. Calcd. for C₁₈H₁₀F₅NO₂: N, 3.81; C, 58.86; H, 2.74; Found: N, 4.06; C, 58.94; H, 2.66.

2-(Perfluorophenyl)-5-(trifluoromethyl)pyridine (3m). The reaction run at 80 °C

F₃C F F F

for 36 h. The product as a colorless liquid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). Further purification by reverse phase preparative HPLC (MeOH/H₂O = 95:5) afforded pure product (66 mg, 70%

yield). 1 H NMR (300 MHz, CDCl₃) δ 9.05 (s, 1H), 8.11 (dd, J = 8.1 Hz, 1.8 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 150.4, 147.0 (q, J = 3.9 Hz), 144.7 (dm, J = 250.7 Hz), 144.0 (dm, J = 255.6 Hz), 137.9 (dm, J = 252.5 Hz), 134.0 (q, J = 3.2 Hz), 126.7 (q, J = 33.4 Hz), 125.7, 123.1 (q, J = 271.3 Hz), 114.2 (td, J = 15.7 Hz, 3.9 Hz). 19 F NMR (282 MHz, CDCl₃) δ -63.1 (s, 3F), -143.3 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -152.4 (t, J = 21.7 Hz, 1F), -161.5 (m, 2F). IR (KBr): ν_{max} 2908, 1484, 1404 cm $^{-1}$. MS (EI): m/z (%) 314 (M $^{+}$ +H $^{+}$), 313 (M $^{+}$, 100), 294, 135. HRMS: Calculated for $C_{12}H_3F_8N$: 313.0138; Found: 313.0141.

2-(2,3,5,6-Tetrafluorophenyl)quinoline (3n). The product (60 mg, 72% yield) as a

F F

white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 109 $^{\rm o}$ C; $^{\rm 1}$ H NMR (300 MHz, CDCl₃) δ 8.31 (d, J = 8.7 Hz, 1H), 8.19 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.80 (t, J = 7.2 Hz,

1H), 7.64 (t, J = 7.2 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.27-7.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 147.8 (m), 146.1 (dm, J = 247.1 Hz), 144.3 (dm, J = 248.1 Hz), 136.7, 130.1, 129.6, 127.6, 127.5, 127.4, 122.6, 121.1 (t, J = 16.4 Hz), 106.1 (t, J = 22.4 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -138.8 (m, 2F), -143.8 (m, 2F).

IR (KBr): v_{max} 1490, 1484, 1425 cm⁻¹. MS (EI): m/z (%) 278 (M⁺+H⁺), 277 (M⁺, 100), 258. Anal. Calcd. for $C_{15}H_7F_4N$: N, 5.05; C, 64.99; H, 2.55; Found: N, 5.07; C, 65.17; H, 2.39.

6-Methyl-2-(2,3,5,6-tetrafluorophenyl)quinoxaline (30). The product (50 mg, 57%

yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. F 162 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.98 (s, 1H), 8.08 (dd, J = 8.4 Hz, 4.5 Hz, 1H), 7.96 (d, J = 4.5 Hz, 1H), 7.70 (t, J = 6.6 Hz, 1H), 7.29-7.22 (m, 1H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

146.2 (dm, J = 247.9 Hz), 145.4 (t, J = 2.0 Hz), 144.5 (dm, J = 249.6 Hz), 142.5, 142.0, 141.9, 140.8, 133.1, 129.2, 128.1, 118.2 (t, J = 15.7 Hz), 107.1 (t, J = 22.4 Hz), 21.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -138.2 (m, 2F), -143.6 (m, 2F). IR (KBr): ν_{max} 1504, 1484, 1465 cm⁻¹. MS (EI): m/z (%) 293 (M⁺+H⁺), 292 (M⁺, 100), 89. HRMS: Calculated for C₁₅H₈F₄N₂: 292.0624; Found: 292.0632.

6-Methyl-2-(2,3,4,6-tetrafluorophenyl)quinoxaline (3p). The product (46 mg, 53%

yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 149 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.94 (s, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.94 (s, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.02-6.95 (m, 1H), 2.65 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 155.0 (dm, J = 253.8 Hz), 151.2 (dm, J = 250.0 Hz), 149.7 (dm, J = 251.5 Hz), 145.6, 142.6, 141.8, 141.7, 140.8, 137.6 (dm, J = 250.1 Hz), 133.0, 129.1, 128.1, 113 (m), 101.5 (ddd, J = 28.0 Hz, 21.6 Hz, 4.1 Hz), 21.9. ¹°F NMR (282 MHz, CDCl₃) δ -117.9 (t, J = 9.9 Hz, 1F), -129.6 (td, J = 17.8 Hz, 7.9 Hz, 1F), -135.1 (dd, J = 21.7 Hz, 7.9 Hz, 1F), -164.0 (m, 1F). IR (KBr): ν_{max} 1517, 1484, 1453 cm⁻¹. MS (EI): m/z (%) 293 (M⁺+H⁺), 292 (M⁺, 100), 89. HRMS: Calculated for C₁₅H₈F₄N₂: 292.0624; Found: 292.0629.

2-(2,3,5,6-Tetrafluoro-4-methoxyphenyl)quinoxaline (3q). The product (66 mg,

71% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1).

M.P. 95 °C;
1
H NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 8.20-8.16 (m, 2H), 7.87-7.84 (m, 2H), 2.94 (s, 3H). 13 C

NMR (75.4 MHz, CDCl₃) δ 145.0 (dm, J = 249.0 Hz), 145.7 (m), 143.6 (m), 142.4, 142.3, 141.6, 141.0 (dm, J = 249.6 Hz), 130.8, 130.6, 129.6, 129.2, 125.2 (m), 110.5 (m), 62.2 (t, J = 3.9 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -144.9 (dd, J = 21.7 Hz, 8.2 Hz, 2F), -157.5 (dd, J = 21.7 Hz, 9.9 Hz, 2F). IR (KBr): v_{max} 1497, 1484, 1404 cm⁻¹. MS (EI): m/z (%) 309 (M⁺+H⁺), 308 (M⁺, 100), 76. HRMS: Calculated for C₁₅H₈F₄N₂O: 308.0573; Found: 308.0565.

2-(2,3,5,6-Tetrafluoro-4-methoxyphenyl)-5-(trifluoromethyl)pyridine (3r). The

reaction run at 80 °C for 36 h. The product (58 mg, 60% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1).

M.P. 47 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.03 (s, 1 H),

8.08 (dd, J = 8.1 Hz, 1.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 4.16 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 151.3, 146.8 (q, J = 3.9 Hz), 144.8 (dm, J = 249.3 Hz), 141.0 (dm, J = 247.4 Hz), 134.3 (m), 133.8 (q, J = 3.3 Hz), 126.2 (q, J = 33.4 Hz), 125.6, 123.2 (q, J = 272.3 Hz), 112.1 (t, J = 15.8 Hz), 62.1 (t, J = 4.0 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.9 (s, 3F), -145.4 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -157.8 (dd, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): ν_{max} 3012, 1652, 1472 cm⁻¹. MS (EI): m/z (%) 326 (M⁺+H⁺), 325 (M⁺, 100), 135. HRMS: Calculated for C₁₃H₆F₇NO: 325.0338; Found: 325.0336.

2-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)quinoxaline (3s). The product (90 mg, 87% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 137 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.04 (s, 1H), 8.24-8.17 (m, 2H), 7.94-7.86 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ

145.0 (m), 144.9 (dm, J = 252.9 Hz), 144.4 (dm, J = 260.1Hz), 142.3, 142.1, 131.6, 131.1, 129.8, 129.4, 121.2 (m), 120.6 (q, J = 274.0 Hz), 110.6 (m). ¹⁹F NMR (282 MHz, CDCl₃) δ -56.9 (t, J = 21.4, 3F), -139.7 (m, 2F), -141.1 (m,

2F). IR (KBr): v_{max} 1660, 1499, 1343 cm⁻¹. MS (EI): m/z (%) 347 (M⁺+H⁺), 346 (M⁺, 100), 76. Anal. Calcd. for C₁₅H₅F₇N₂: N, 8.09; C, 52.04; H, 1.46; Found: N, 8.21; C, 52.36; H,1.32.

6-Methyl-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)quinoxaline (3t). The

product (95 mg, 88% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 98 °C; 1 H NMR (300 MHz, CDCl₃) δ 8.98 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 7.71(d, J = 8.4 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (75.4 MHz,

CDCl₃) δ 144.9 (t, J = 2.3 Hz), 144.8 (dm, J = 253.5 Hz), 144.6 (dm, J = 264.2 Hz), 142.7, 142.1, 141.1, 140.8, 133.4, 129.3, 128.1, 121.4 (t, J = 16.0 Hz), 120.6 (q, J = 16.0 Hz) 274.6 Hz), 110.3 (m), 21.7. ¹⁹F NMR (282 MHz, CDCl₃) δ -56.8 (t, J = 21.7 Hz, 3F), -139.8 (m, 2F), -141.3 (m, 2F). IR (KBr): v_{max} 1624, 1498 cm⁻¹. MS (EI): m/z (%) 361 (M⁺+H⁺), 360 (M⁺, 100), 90. Anal. Calcd. for C₁₆H₇F₇N₂: N, 7.78; C, 53.35; H, 1.96; Found: N, 7.72; C, 53.32; H,1.86.

7-Methyl-4-(perfluoropyridin-4-yl)-2-phenylquinazoline (3u). The product (86 mg,

chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 211 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.62-8.59 (m, 2H), 8.03 (s, 1H), 7.56-7.45 (m, 5H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 155.2, 151.9, 146.3, 143.7 (dm, J = 246.3 Hz), 139.5 (dm, J = 262.8

78% yield) as a white solid was purified with silica gel

Hz), 137.2, 131.0, 130.7, 129.7 (m), 128.7, 128.6, 128.4, 124.3, 120.0, 22.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -89.2 (m, 2F), -141.3 (m, 2F). IR (KBr): v_{max} 1566, 1521, 1499 cm⁻¹. MS (EI): m/z (%) 370 (M⁺+H⁺), 369 (M⁺, 100), 219. Anal. Calcd. for C₂₀H₁₁F₄N₃: N, 11.38; C, 65.04; H, 3.00; Found: N, 11.30; C, 65.07; H, 3.02.

6-Methyl-2-(perfluoropyridin-4-yl)quinoxaline (3v). The product (62 mg, 70%

yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. F 106 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.03 (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 143.9 (dm, J = 245.3 Hz), 143.0, 142.3, 140.7, 140.0 (dm, J = 261.8 Hz), 133.5, 129.7 (m), 129.3, 128.1, 21.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -89.5 (m, 2F), -144.3 (m, 2F). IR (KBr): v_{max} 1645, 1497, 1471, 1406 cm⁻¹. MS (EI): m/z (%) 294 (M⁺+H⁺, 100), 89. Anal. Calcd. for C₁₄H₇F₄N₃: N, 14.33; C, 57.35; H, 2.41; Found: N, 14.45; C, 57.42; H, 2.31.

6-Methyl-2-(2,3,5,6-tetrafluoro-4-(4-methoxybenzyl)phenyl)quinoxaline (3w). 1.2

equiv of fluoroarene was used. The product

(60 mg, 49% yield) as a white solid was

purified with silica gel chromatography

(Petroleum ether / Ethyl ether = 50:1). M.P.

100 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.94 (s, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.95 (s, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.09 (s, 2H), 3.79 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 158.5, 145.6, 145.0 (dm, J = 245.1 Hz), 144.4 (dm, J = 239.3 Hz), 141.8 (m), 140.9, 133.1, 129.5, 129.4, 129.2, 128.1, 121.6 (t, J = 18.4 Hz), 115.4 (m), 114.1, 55.2, 28.0, 21.9. ¹³F NMR (282 MHz, CDCl₃) δ -143.5 (dd, J = 21.7 Hz, 113.8 Hz, 2F), -144.3 (dd, J = 21.7 Hz, 11.8 Hz, 2F). IR (KBr): ν_{max} 1612, 1514 cm⁻¹. MS (EI): m/z (%) 413 (M⁺+H⁺), 412 (M⁺, 100), 206. HRMS: Calculated for C₂₃H₁₆F₄N₂O: 412.1199; Found: 412.1201.

(E)-Tert-butyl 3-(2,3,5,6-tetrafluoro-4-(6-methylquinoxalin-2-yl)phenyl)acrylate

(3x). 1.2 equiv of fluoroarene was used. The product (100 mg, 80% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether =
$$50:1$$
). M.P. 153

^oC; ¹H NMR (300 MHz, CDCl₃) δ 8.99 (s, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.95 (s, 1H), 7.69 (d, J = 16.5 Hz, 1H), 7.68 (s, 1H), 6.81 (d, J = 16.5 Hz, 1H), 2.65 (s, 3H), 1.57 (s, 9H). ¹³C NMR (75.4 MHz, CDCl₃) δ 165.2, 145.5 (dm, J = 255.3 Hz), 145.3 (m), 144.6 (dm, J = 256.3 Hz), 142.2, 141.9, 140.8, 133.2, 129.3, 129.2, 129.1, 127.6, 117.8 (t, J = 16.0 Hz), 115.6 (t, J = 13.5 Hz), 81.5, 28.0, 21.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -140.0 (dd, J = 21.7 Hz, 13.8 Hz, 2F), -143.9 (dd, J = 21.7 Hz, 13.8 Hz, 2F). IR (KBr): v_{max} 1716, 1636 cm⁻¹. MS (EI): m/z (%) 419 (M⁺+H⁺), 418 (M⁺), 362 (100). Anal. Calcd. for C₂₂H₁₈F₄N₂O₂: N, 6.70; C, 63.16; H, 4.34; Found: N, 6.66; C, 63.27; H, 4.48.

6-Methyl-2-(2,4,6-trifluorophenyl)quinoxaline (3y). 10 mol% of Pd(TFA)₂ and 20

F mol% of **L** were used. The product (22 mg, 27% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 151 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.93 (s, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.93 (s, 1H), 7.66 (d, J = 8.1 Hz, 1H), 6.87 (t, J = 8.1 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (dt, J = 251.0 Hz, 15.2 Hz), 161.2 (ddd, J = 251.7 Hz, 14.8 Hz, 9.3 Hz), 146.0, 143.6, 141.6, 141.3, 140.8, 132.8, 129.1, 128.0, 112.1 (m), 101.0 (m), 21.8. ¹⁹F NMR (282 MHz, CDCl₃) δ -105.2 (m, 1F), -111.2 (t, J = 7.9 Hz, 2F). IR (KBr): v_{max} 3047, 1643, 1599 cm⁻¹. MS (EI): m/z (%) 275 (M⁺+H⁺), 274 (M⁺, 100), 89. Anal. Calcd. for C₁₅H₉F₃N₂: N, 10.21; C, 65.69; H, 3.31; Found: N, 10.17; C, 65.71; H, 3.35.

2-(2,3,5,6-Tetrafluorophenyl)quinolin-4-yl-4-methylbenzenesulfonate (5). The product (74 mg, 55% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 138 °C; ¹H NMR (300 method)

MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.79 (t, J = 8.4 Hz, 1H), 7.60 (t, J = 8.4 Hz, 1H), 7.47 (s, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.23-7.15 (m, 1H), 2.43 (m, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 153.3, 149.7, 148.2 (m), 146.3, 146.1 (dm, J =

248.7 Hz), 144.2 (dm, J = 250.4 Hz), 131.6, 131.0, 130.0, 129.5, 128.4, 128.1, 121.5, 121.4, 120.2 (t, J = 16.1 Hz), 106.6 (t, J = 22.7 Hz), 21.6. ¹⁹F NMR (282 MHz, CDCl₃) δ -138.5 (m, 2F), -143.6 (m, 2F). IR (KBr): ν_{max} 1613, 1595, 1497 cm⁻¹. MS (EI): m/z (%) 448 (M⁺+H⁺), 447 (M⁺), 91 (100). Anal. Calcd. for C₂₂H₁₃F₄NO₃S: N, 3.13; C, 59.06; H, 2.93; Found: N, 3.34; C, 59.24; H, 2.85.

4-Phenyl-2-(2,3,5,6-tetrafluorophenyl)quinoline (6). To a septum capped 100 mL of

F F Ph

sealed tube were added $Pd(OAc)_2$ (13.8 mg, 0.06 mmol), X Phos (60 mg, 0.12 mmol), K_3PO_4 (764 mg, 3.6 mmol),

 $2\mbox{-}(2,3,5,6\mbox{-Tetrafluorophenyl}) quinolin-4\mbox{-yl-4-methyl-benzenesulfonate 5 (552 mg, 1.2 mmol) and PhB(OH)$_2$ (294 mg, 2.4 mmol) under N_2, followed by THF (6 mL) with$

stirring. The sealed tube was screw capped and heated to 80 $^{\circ}$ C (oil bath). After stirring for 6 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated. The product (347 mg, 82% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 152 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.25 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.83-7.78 (m, 1H), 7.62-7.53 (m, 7H), 7.21-7.15 (m, 1H). 13 C NMR (75.4 MHz, CDCl₃) δ 149.4, 148.6, 147.5 (m), 146.1 (dm, J = 248.7 Hz), 144.4 (dm, J = 249.4 Hz), 137.3, 130.1, 130.0, 129.5, 128.7, 128.6, 127.6, 126.0, 125.8, 122.9, 121.1(t, J = 16.3 Hz), 106.2 (t, J = 22.5 Hz). 19 F NMR (282 MHz, CDCl₃) δ -138.5 (m, 2F), -143.6 (m, 2F). IR (KBr):

 v_{max} 1610, 1574, 1495 cm⁻¹. MS (EI): m/z (%) 354 (M⁺+H⁺), 353 (M⁺, 100), 352, 176. Anal. Calcd. for $C_{21}H_{11}F_4N$: N, 3.96; C, 71.39; H, 3.14; Found: N, 3.93; C, 71.33; H, 3.09.

(E)-Diethyl 2,3,5,6-tetrafluoro-4-(4-phenylquinolin-2-yl)styrylphosphonate (7).

To a septum capped 25 mL of sealed tube were added Pd(OAc)₂ (6.7 mg, 0.03 mmol), Ag₂CO₃ (158 mg, 0.9 mmol), and 4-phenyl-2-(2,3,5,6-tetrafluorophenyl)quinoline **6** (109 mg, 0.3 mmol), followed by DMF (1.5 mL),

PivOH (92 mg, 0.9 mmol) and diethyl vinylphosphonate (148 mg, 0.9 mmol) with stirring. The sealed tube was screw capped and heated to 120 °C (oil bath). After stirring for 16 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate, washed with 1 N HCl, saturated NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product 7. The product (118 mg, 76% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 2:1). M.P. 93 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, J = 8.1 Hz, 1H), 8.01 (d, J= 9.0 Hz, 1H), 7.82 (td, J = 6.9 Hz, 1.2 Hz, 1H), 7.64-7.50 (m, 8H), 6.77 (t, J = 17.7Hz, 1H), 4.21 (q, J = 7.5 Hz, 2H), 4.18 (q, J = 7.5 Hz, 2H), 1.40 (t, J = 7.5 Hz, 6H). ¹³C NMR (75.4 MHz, CDCl₃) δ 149.4, 148.6, 146.8 (m), 145.3 (dm, J = 254.1 Hz), 144.5 (dm, J = 150.3 Hz), 137.2, 132.6 (m), 130.0, 129.4, 128.7, 128.6, 127.7, 126.0, 125.7, 124.7 (dt, J = 187.0 Hz, 8.4 Hz), 122.7, 121.1 (t, J = 16.7 Hz), 114.7 (m), 62.2, 62.1, 16.3, 16.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -141.6 (dd, J = 21.7 Hz, 14.1 Hz, 2F), -143.5 (m, 2F). 31 P NMR (121 MHz, CDCl₃) δ 17.4 (s). IR (KBr): ν_{max} 2982, 1623, 1590, 1425 cm⁻¹. MS (EI): m/z (%) 516 (M⁺+H⁺), 515 (M⁺), 376 (100). Anal. Calcd. for C₂₇H₂₂F₄NO₃P: N, 2.72; C, 62.92; H, 4.30; Found: N, 2.54; C, 62.88; H, 4.38.

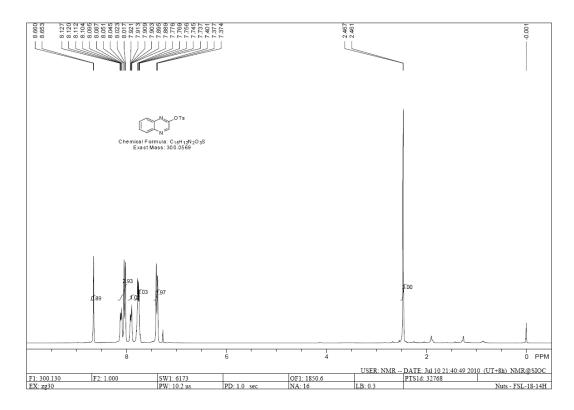
2-(perfluorophenyl)quinolin-4-yl 4-methylbenzenesulfonate (8). To a septum

capped 100 mL of sealed tube were added $Pd(OAc)_2$ (67 mg, 0.3 mmol), **L** (210 mg, 0.6 mmol), K_3PO_4 (1.52 g, 7.2 mmol), AdOH (1.3 g, 7.2 mmol) and quinoline-2,4-diyl-bis(4-methylbenzenesulfonate) **4** (2.9 g, 6.0 mmol) under N_2 , followed by t-BuOH (30 mL) with stirring.

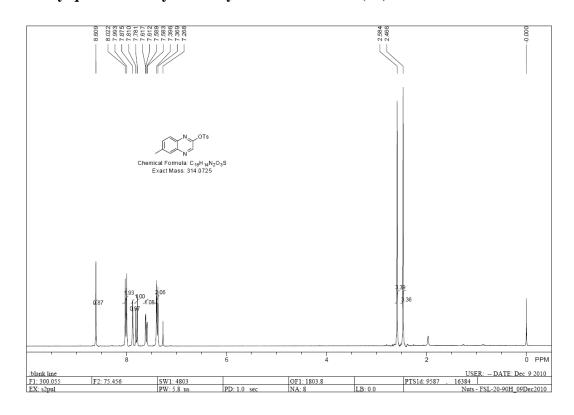
Pentafluorobenzene (1.34 mL, 12 mmol) was then added subsequently. The sealed tube was screw capped and heated to 90 °C (oil bath). After stirring for 6 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated. The product (1.73 g, 62% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 60:1). M.P. 162 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.80 (t, J = 7.2 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 7.45 (s, 1H), 7.34 (d, J = 8.4 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 153.5, 149.8, 147.3, 146.4, 144.7 (dm, J = 247.2 Hz), 141.6 (dm, J = 256.2 Hz), 137.8 (dm, J = 254.0 Hz), 131.7, 131.1, 130.1, 129.5, 128.4, 128.3, 121.6, 121.5, 114.9 (m), 113.9, 21.7. ¹⁹F NMR (282 MHz, CDCl₃) δ -138.9 (dd, J = 21.9 Hz, 5.9 Hz, 2F), -148.8 (t, J = 19.7 Hz, 1F), -157.7 (m, 2F). IR (KBr): v_{max} 1621, 1557, 1524 cm⁻¹. MS (EI): m/z (%) 466 (M⁺+H⁺), 465 (M⁺), 91 (100). Anal. Calcd. for C₂₂H₁₂F₅NO₃S: N, 3.01; C, 56.78; H, 2.60; Found: N, 2.83; C, 56.72; H, 2.66.

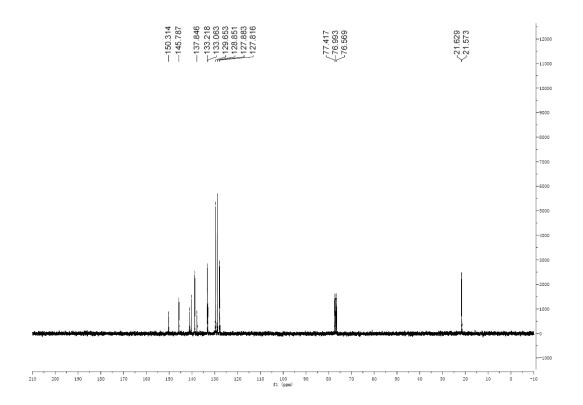
2-(perfluorophenyl)-4-phenylquinoline (9). To a septum capped 25 mL of sealed tube were added Pd(OAc)₂ (6.7 mg, 0.03 mmol), X Phos 30 mg, 0.06 mmol), K₃PO₄

(382 mg, 1.8 mmol), 2-(perfluorophenyl)quinolin-4-yl 4-methylbenzenesulfonate **8** (288 mg, 0.6 mmol) and PhB(OH)₂ (147 mg, 1.2 mmol) under N₂, followed by THF (3 mL) with stirring. The sealed tube was screw capped and heated to 80 $^{\circ}$ C (oil bath). After stirring for 6 h, the reaction

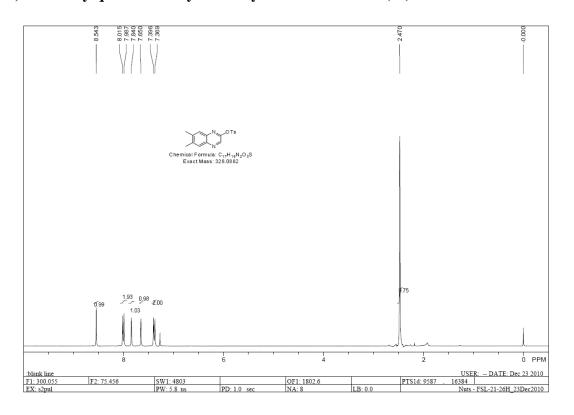

mixture was cooled to room temperature, and diluted with ethyl acetate, washed with

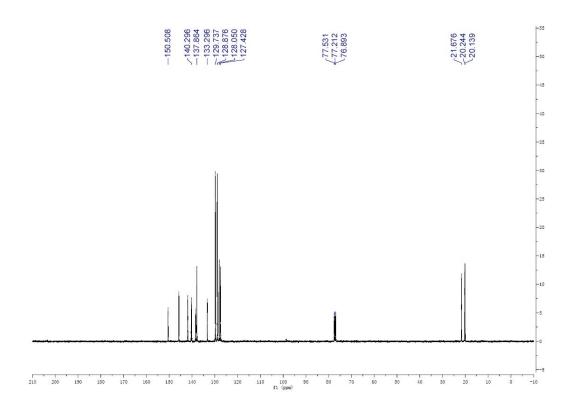
brine, dried over Na₂SO₄, filtered and concentrated. The product (190 mg, 85% yield) as a white solid was purified with silica gel chromatography (Petroleum ether / Ethyl ether = 50:1). M.P. 113 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 6.9 Hz, 1H), 7.60 (t, J = 6.9 Hz, 1H), 7.55-7.49 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.7, 146.6, 144.8 (dm, J = 249.1 Hz), 141.4 (dm, J = 253.8 Hz), 137.8 (dm, J = 251.6 Hz), 137.3, 130.1, 130.0, 129.5, 128.7, 128.6, 127.7, 126.1, 125.8, 122.9, 115.7 (t, J = 16.8 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -142.9 (dd, J = 21.7 Hz, 7.9 Hz, 2F), -153.8 (t, J = 21.7 Hz, 1F), -162.0 (td, J = 21.7 Hz, 7.9 Hz, 2F). IR (KBr): v_{max} 1551, 1524, 1457 cm⁻¹. MS (EI): m/z (%) 372 (M⁺+H⁺), 371 (M⁺, 100), 176. Anal. Calcd. for C₂₁H₁₀F₅N: N, 3.77; C, 67.93; H, 2.71; Found: N, 3.64; C, 68.20; H, 2.81.

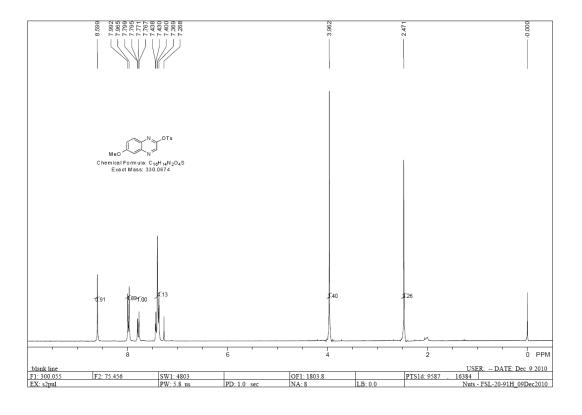

References:

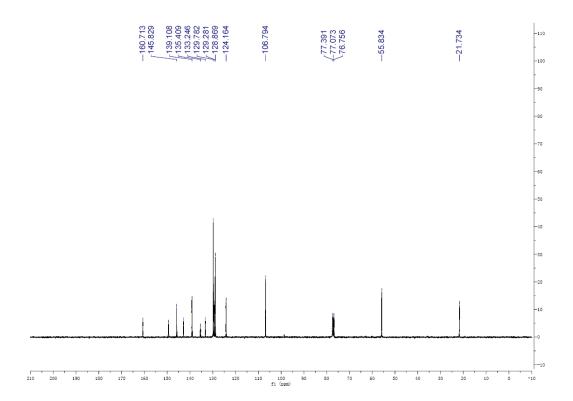

- (1) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem. Int. Ed. 2009, 48, 348.
- (2) Bhayana, B.; Fors, B.; Buchwald, S. L. Org. Lett., 2009, 11, 3954.
- (3) Cavallito; Haskell. J. Am. Chem. Soc. 1944, 66, 1927.
- (4) Bunett; Basset. J. Org. Chem. 1962, 27, 1887.
- (5) Gogsig, T. M.; Lindhardt, A. T.; Grouleff, J.; Skrydstrup, T.; Dekhane, M. Chem. Eur. J., 2009, 15, 5950.
- (6) Do, H.-Q.; Khan, R.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.

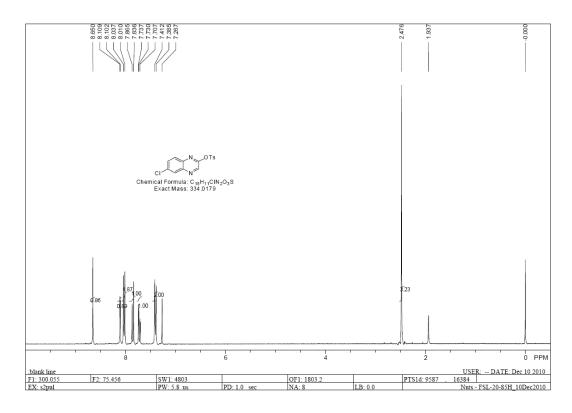
Quinoxalin-2-yl 4-methylbenzenesulfonate (2a).

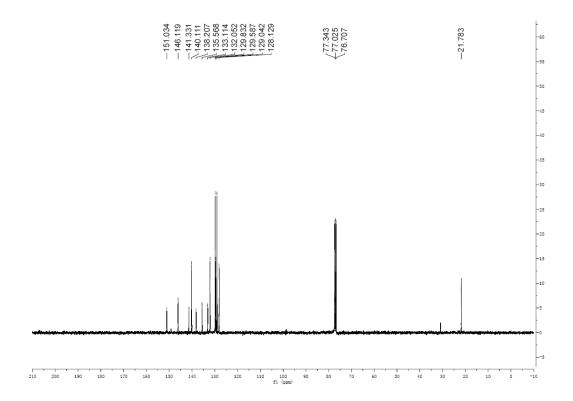



6-methylquinoxalin-2-yl 4-methylbenzenesulfonate (2b).

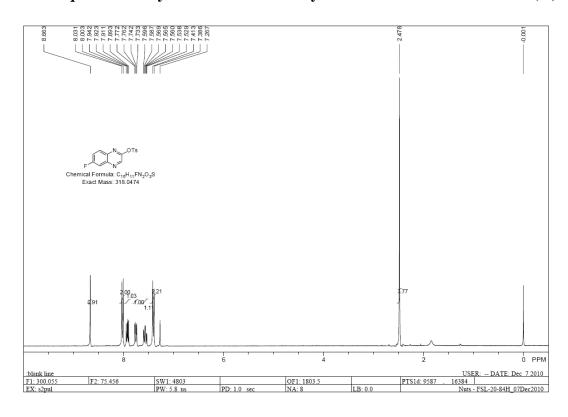


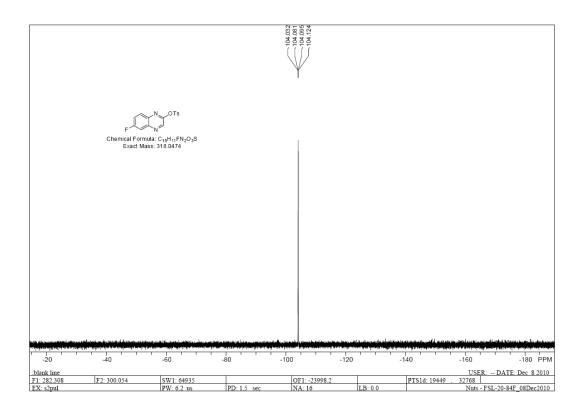

6,7-Dimethylquinoxalin-2-yl 4-methylbenzene sulfonate (2c).

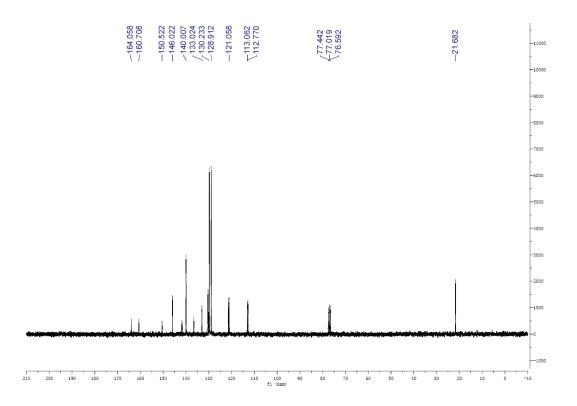



$\hbox{6-Methoxyquinoxalin-2-yl 4-methylbenzene sulfonate (2d).}\\$

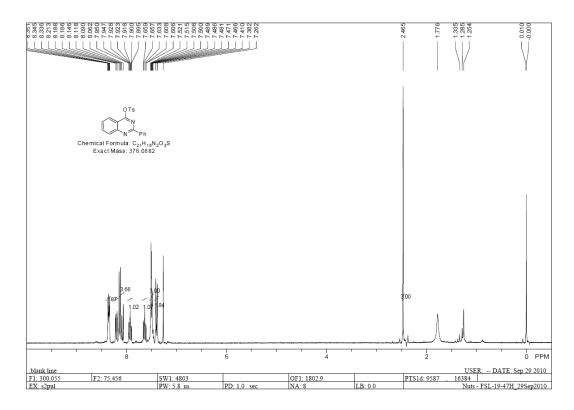
6-Chloroquinoxalin-2-yl 4-methylbenzenesulfonate (2e).

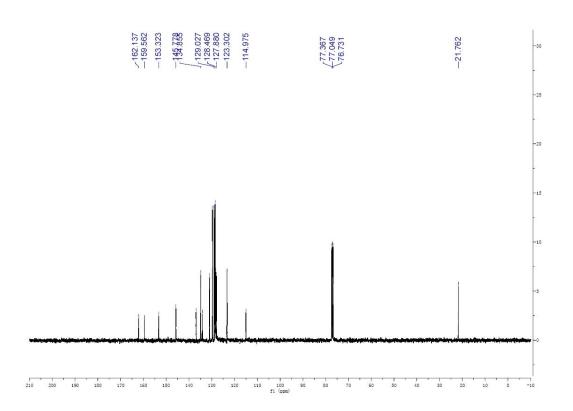


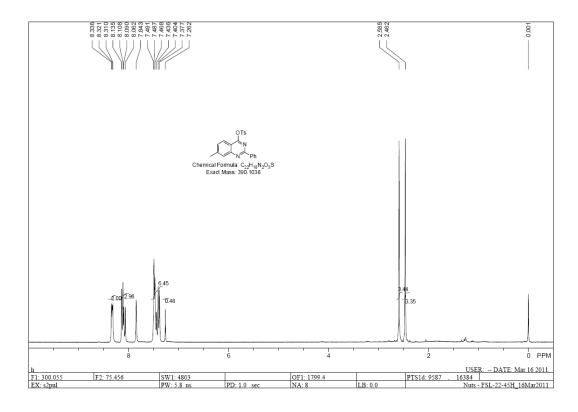


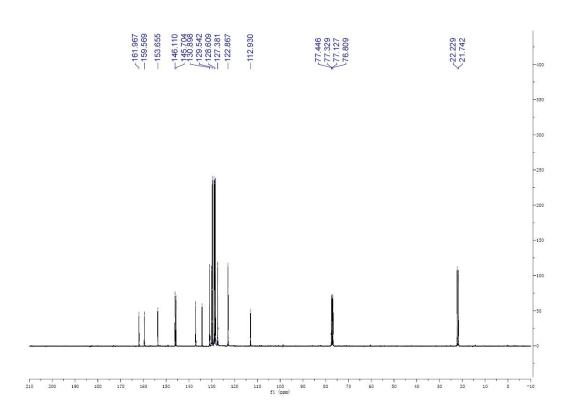

6-Fluoroquinoxalin-2-yl

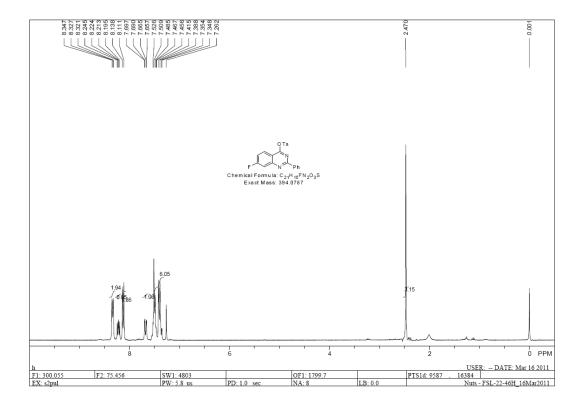
4-methylbenzenesulfonate

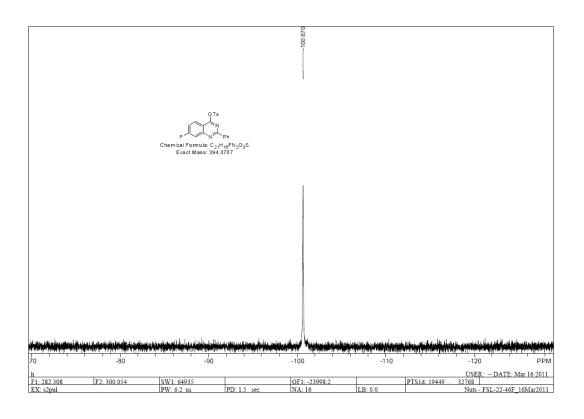

(2f).

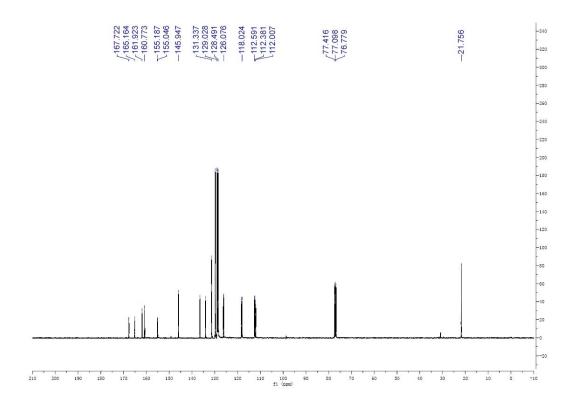


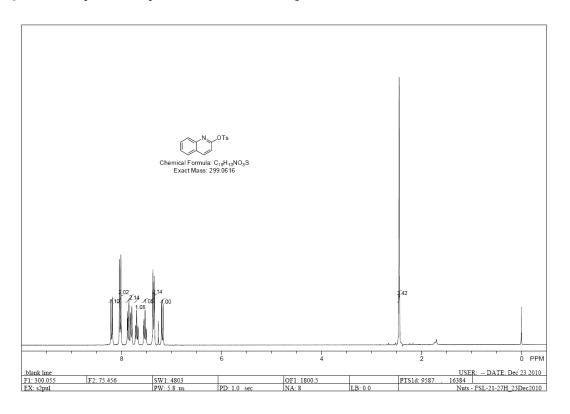


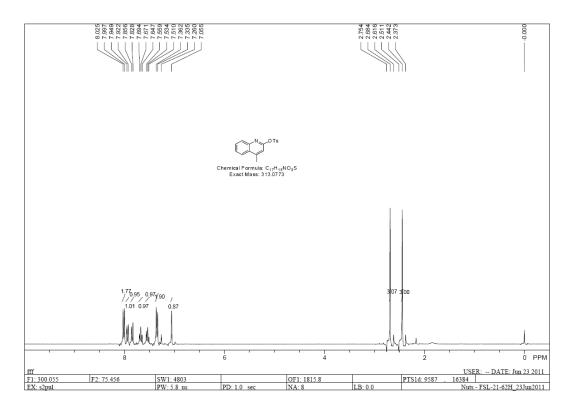

2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (2g).

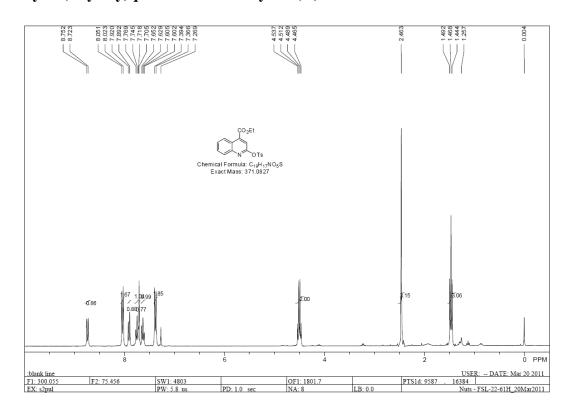


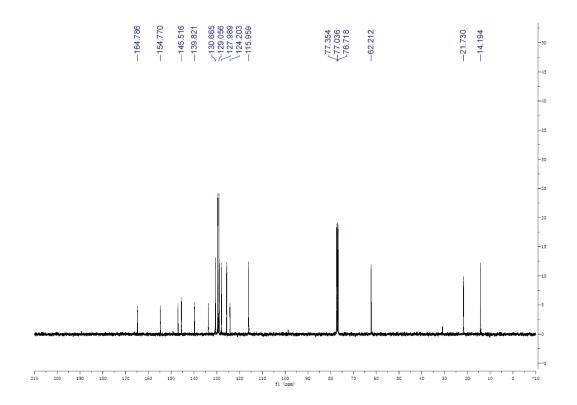

7-Methyl-2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (2h).



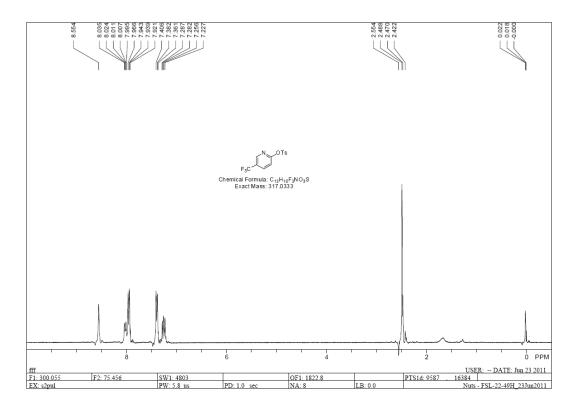

7-Fluoro-2-phenylquinazolin-4-yl 4-methylbenzenesulfonate (2i).

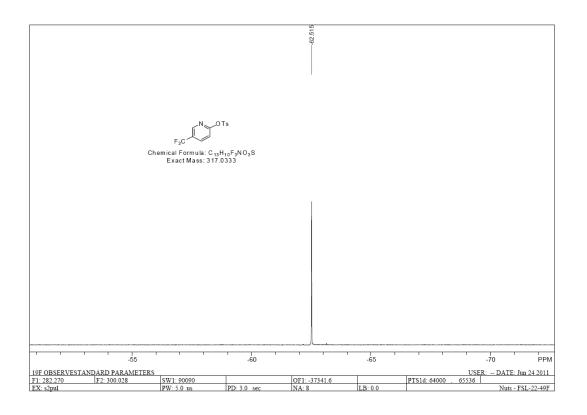


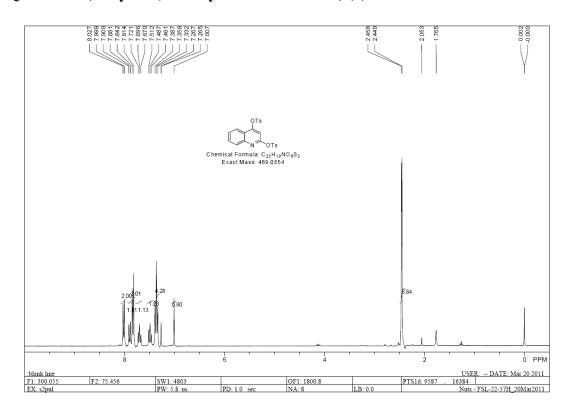

Quinolin-2-yl 4-methylbenzenesulfonate (2j).



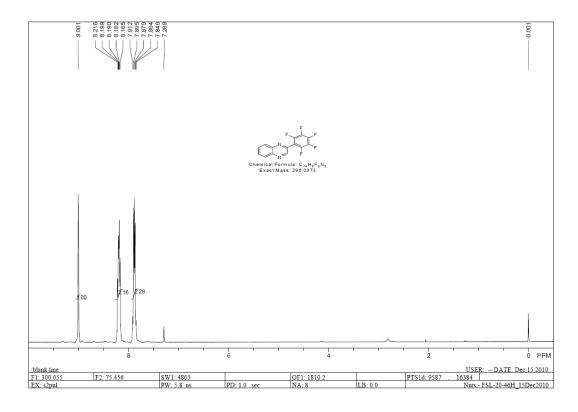
4-Methylquinolin-2-yl 4-methylbenzenesulfonate (2k).

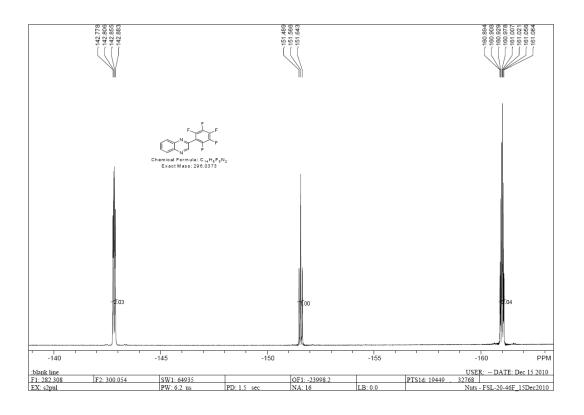


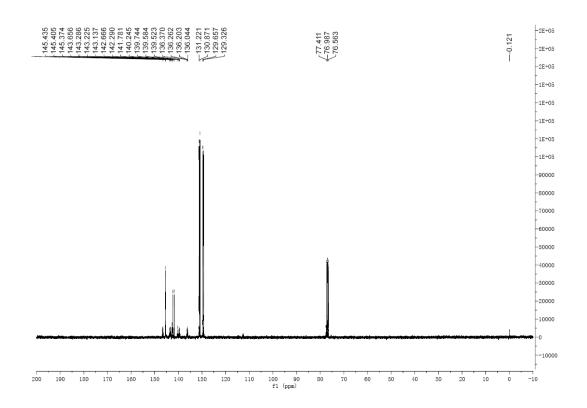

Ethyl 2-(tosyloxy)quinoline-4-carboxylate (21).

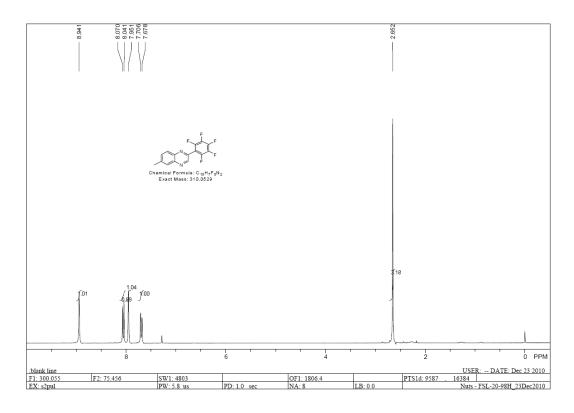


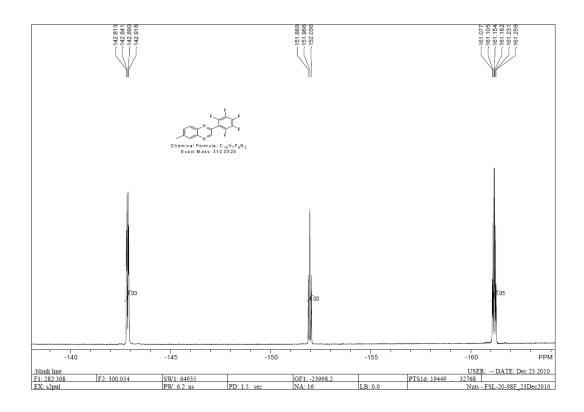
$5\hbox{-}(Ttrifluoromethyl) pyridin-2-yl\ 4-methyl benzenesul fon at e\ (2m).$

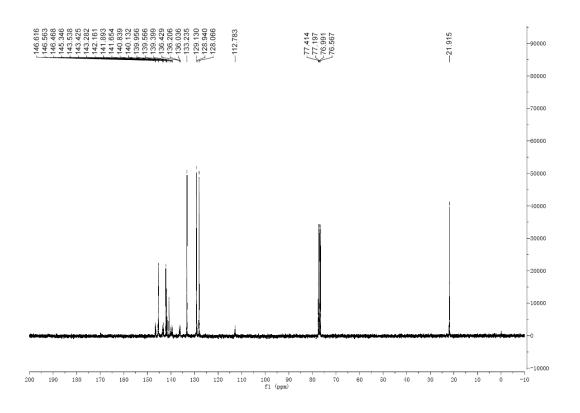


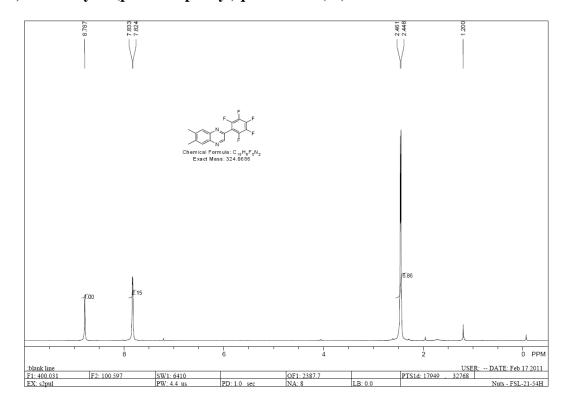


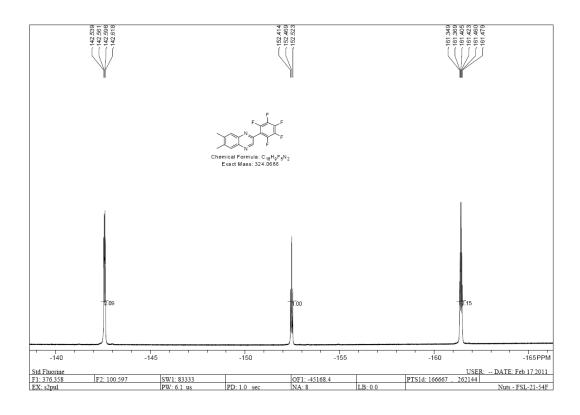

Quinoline-2,4-diyl bis(4-methylbenzenesulfonate) (4).

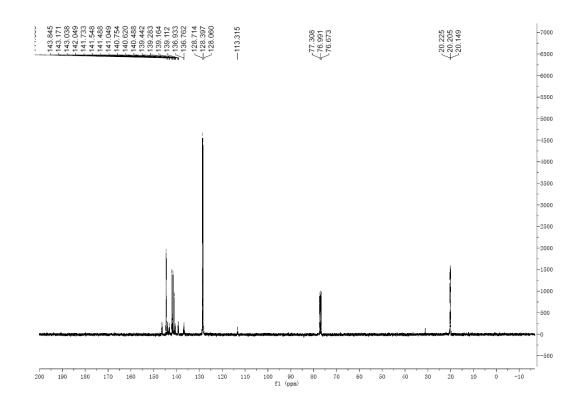

2-(Perfluorophenyl)quinoxaline (3a)

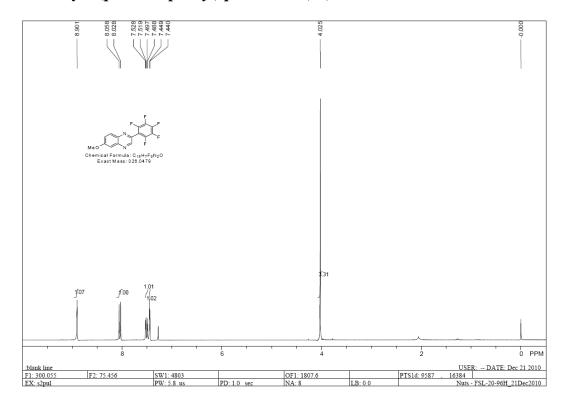


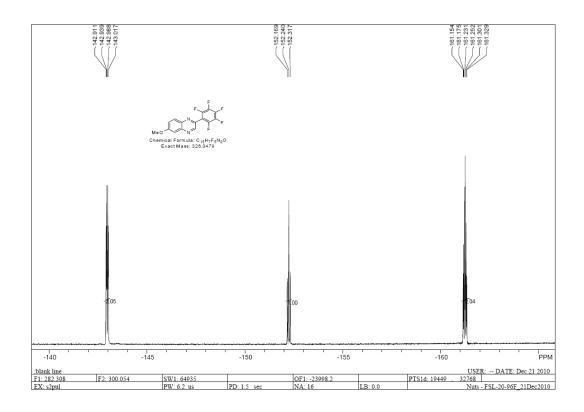


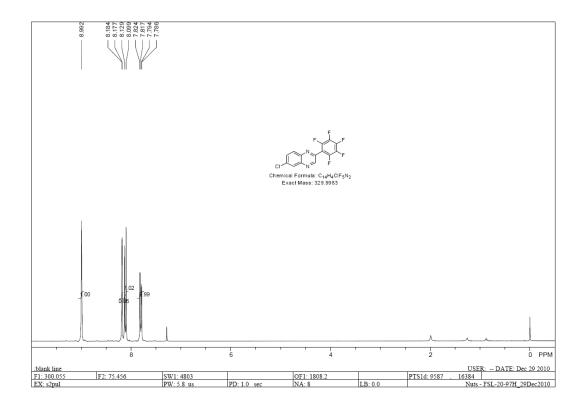

$\hbox{6-Methyl-2-(perfluor ophenyl)} quino xaline~(3b)$

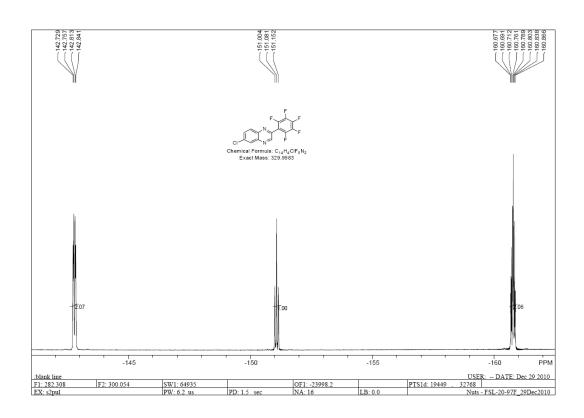


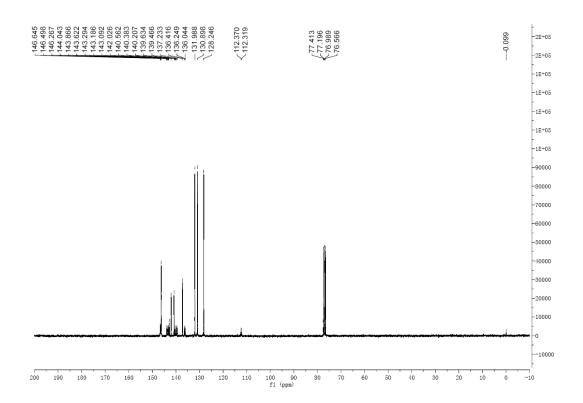


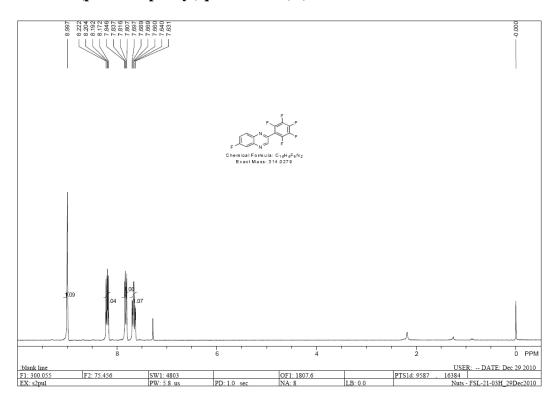

6,7-Dimethyl-2-(perfluorophenyl)quinoxaline (3c)

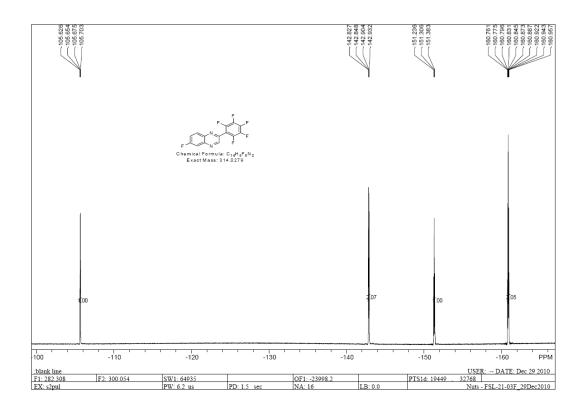


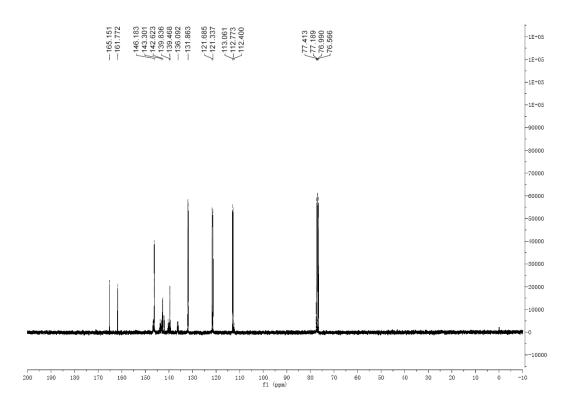

$\hbox{6-Methoxy-2-(perfluor ophenyl)} quino xaline~(3d)$

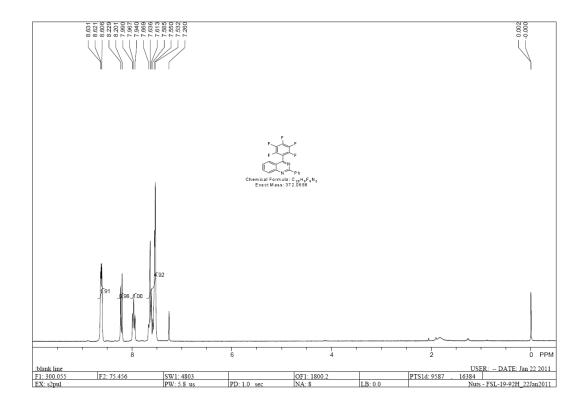


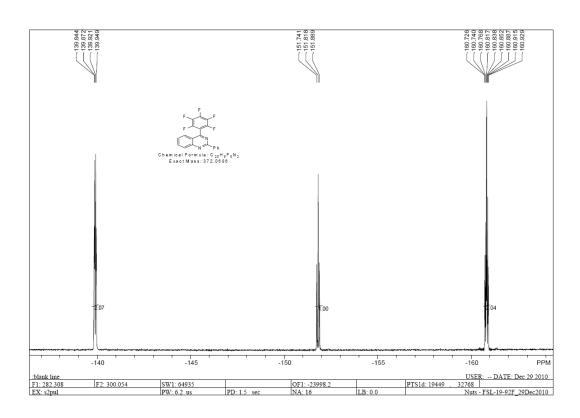


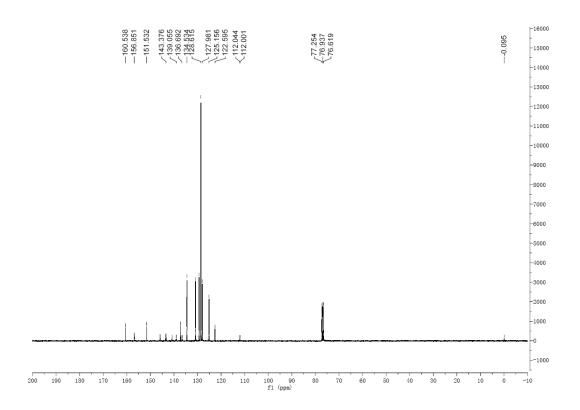

6-Chloro-2-(perfluorophenyl)quinoxaline (3e)

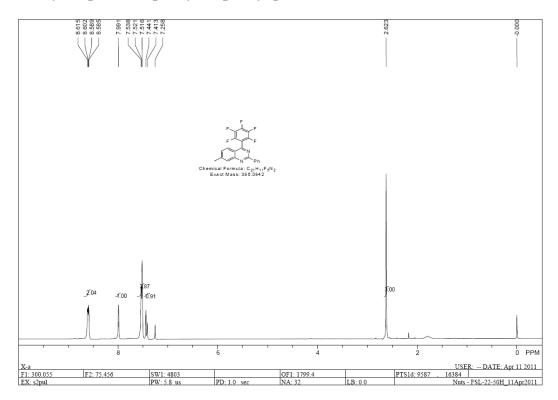


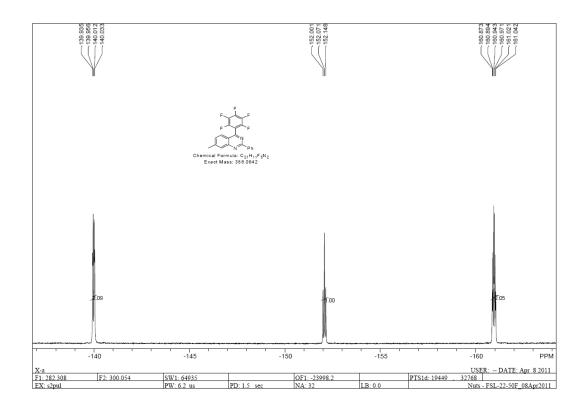


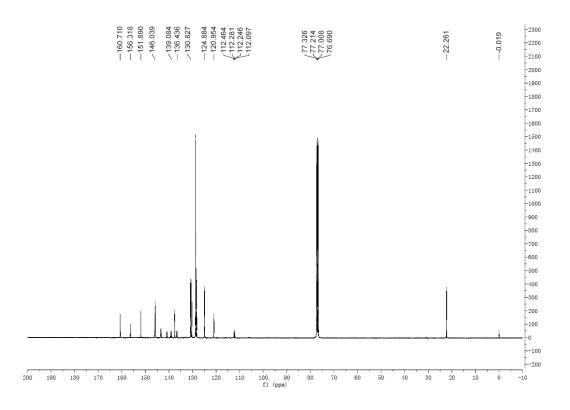

$\hbox{\bf 6-Fluoro-2-(perfluor ophenyl)} quino xaline~(3f)$

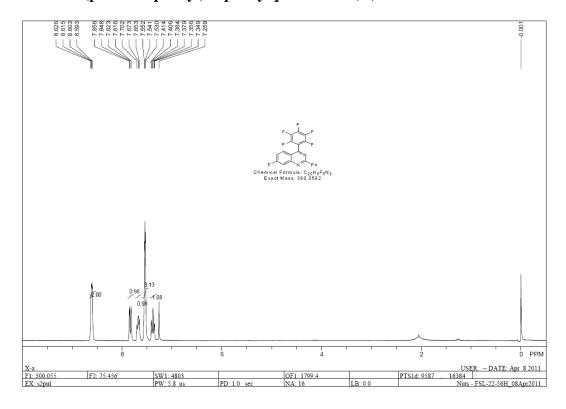


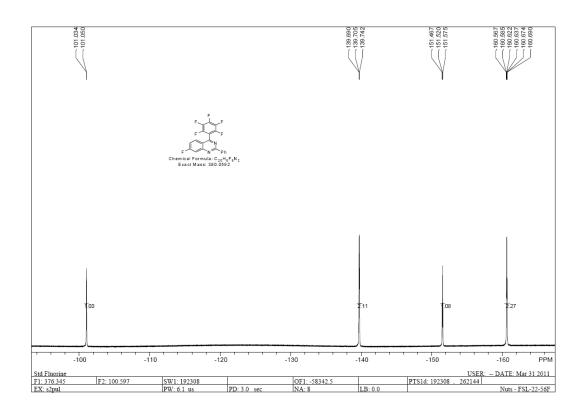


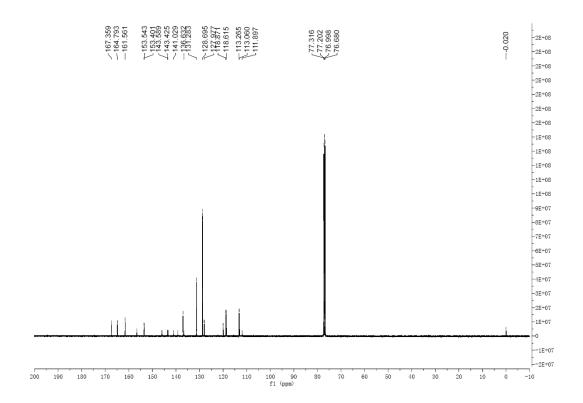

4-(Perfluorophenyl)-2-phenylquinazoline (3g)

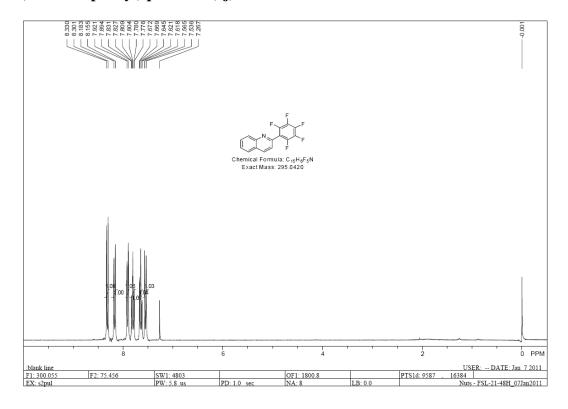


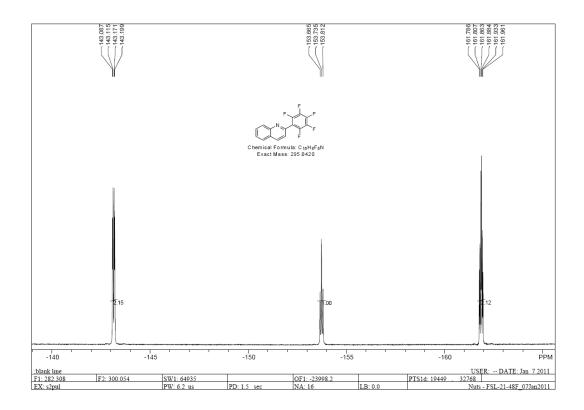


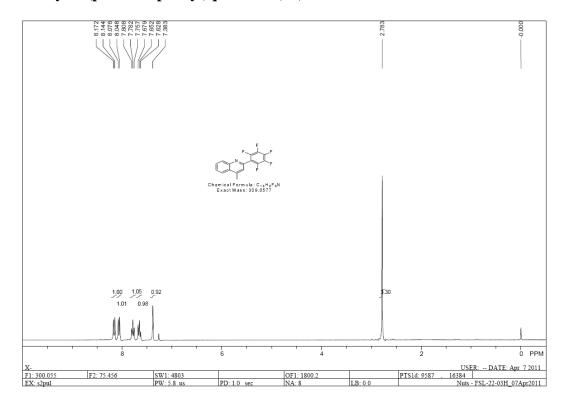

7-Methyl-4-(perfluorophenyl)-2-phenylquinazoline (3h)

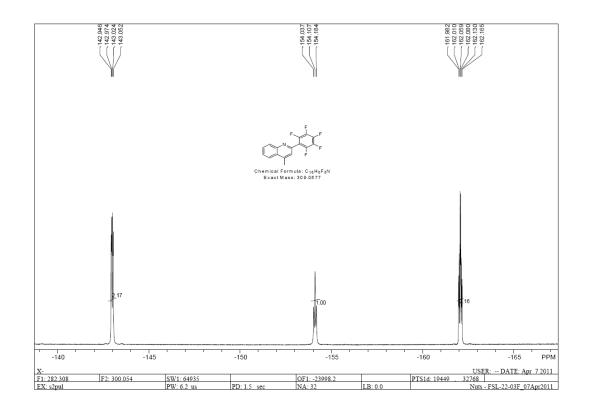


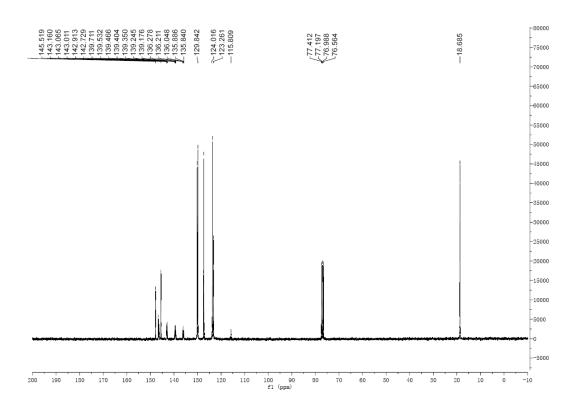


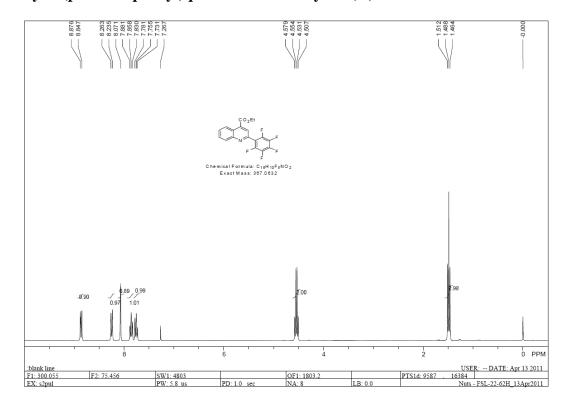

7-Fluoro-4-(perfluorophenyl)-2-phenylquinazoline (3i)

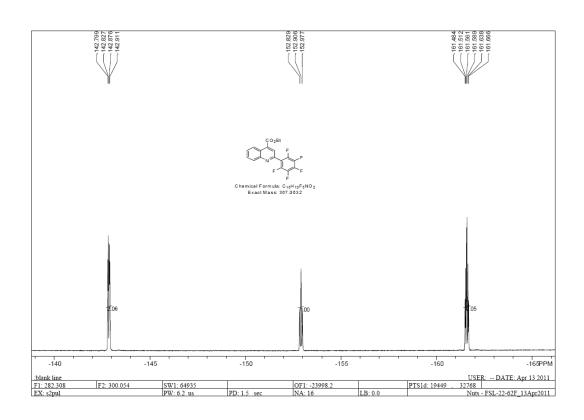


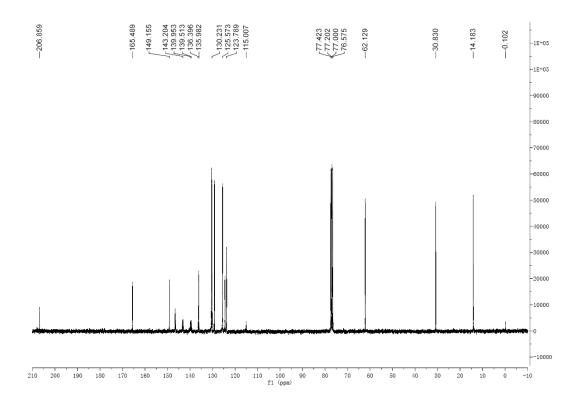


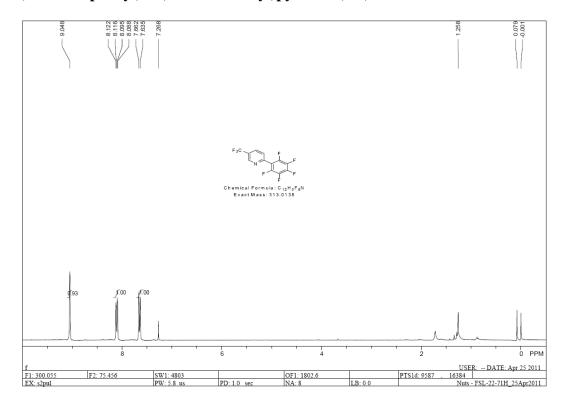

2-(Perfluorophenyl)quinoline (3j)

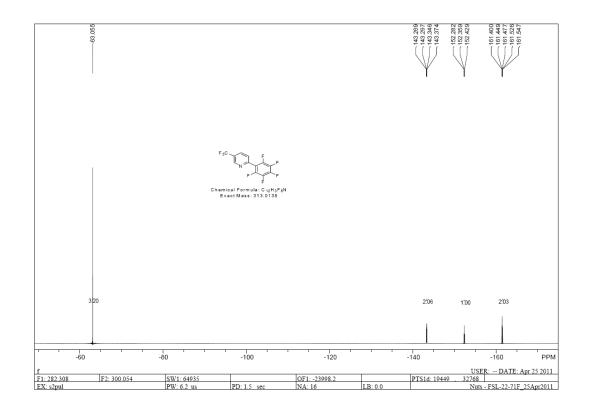


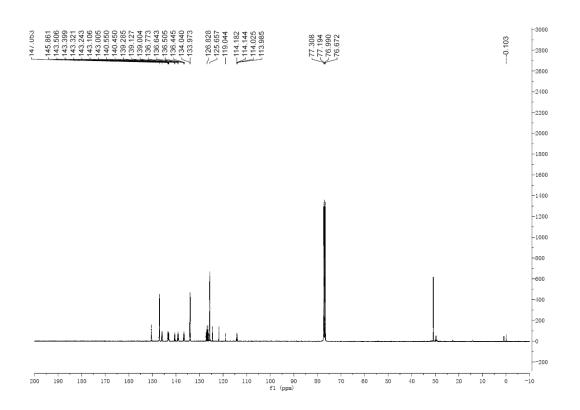

$\hbox{\bf 4-Methyl-2-(perfluor ophenyl)} quino line~(3k)$

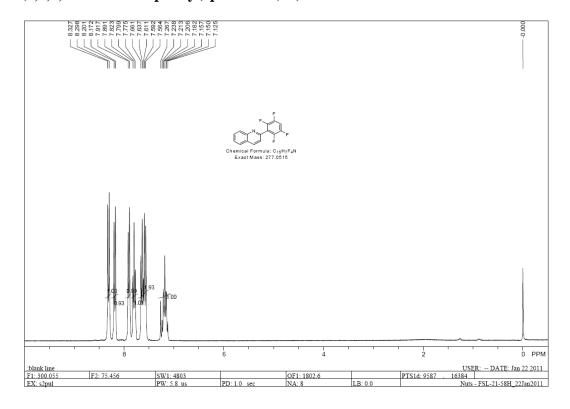


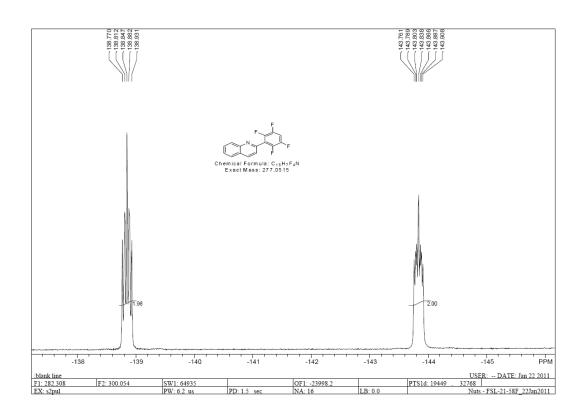


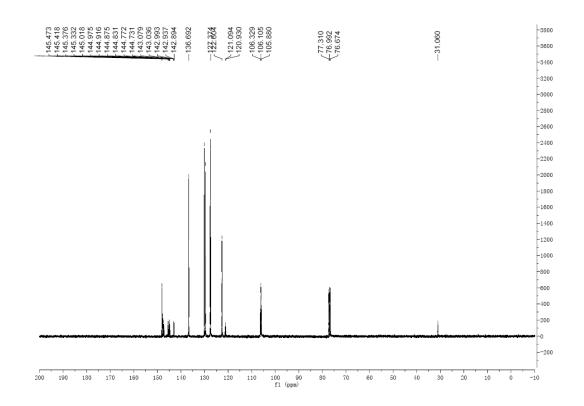

Ethyl 2-(perfluorophenyl)quinoline-4-carboxylate (3l)

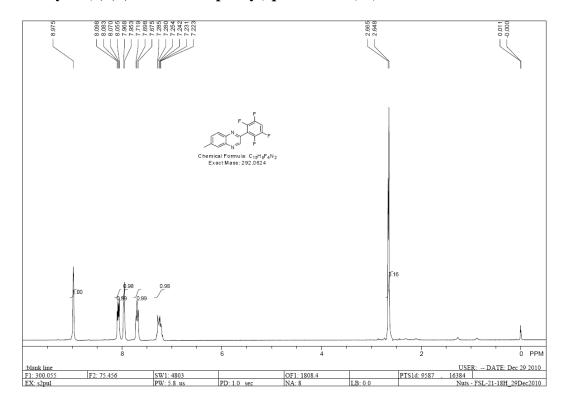


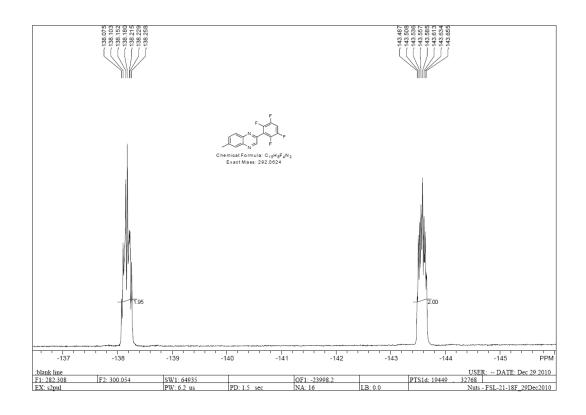


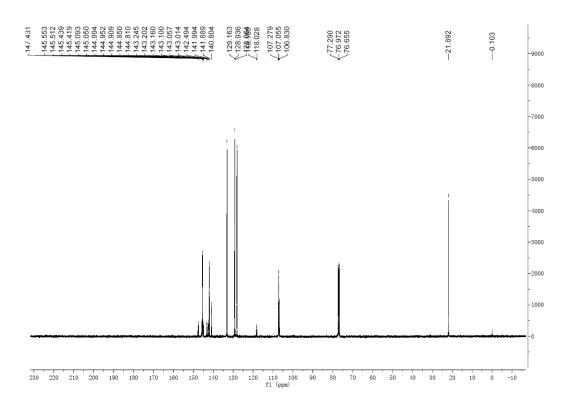

$\hbox{$2$-(Perfluor ophenyl)-5$-(trifluor omethyl) pyridine (3m)}\\$

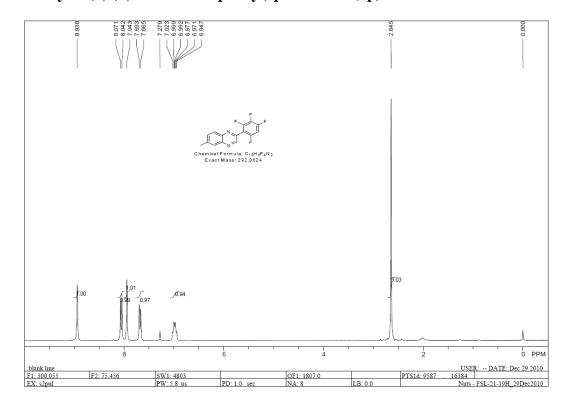


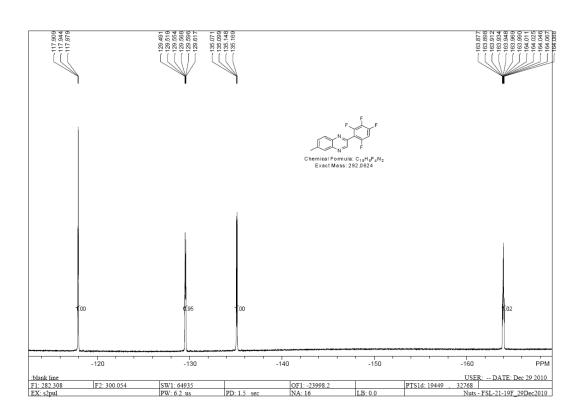


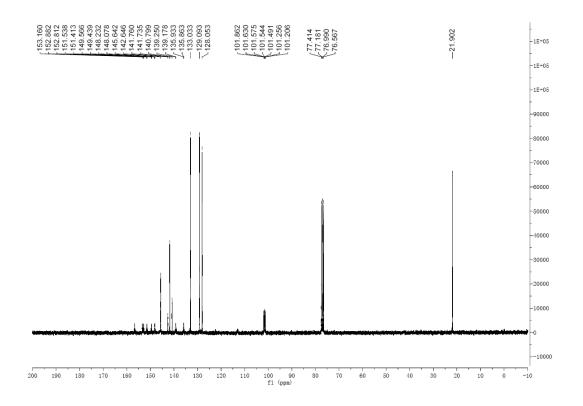

2-(2,3,5,6-Tetrafluorophenyl)quinoline (3n)

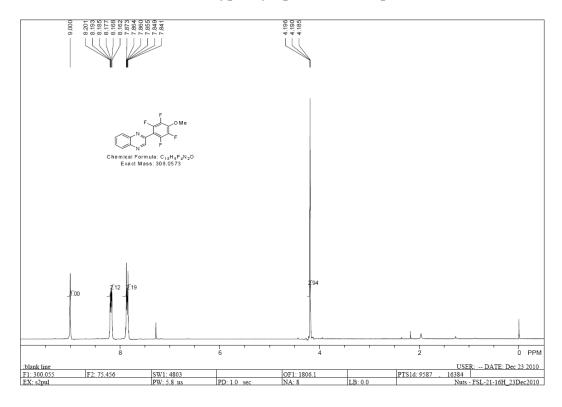


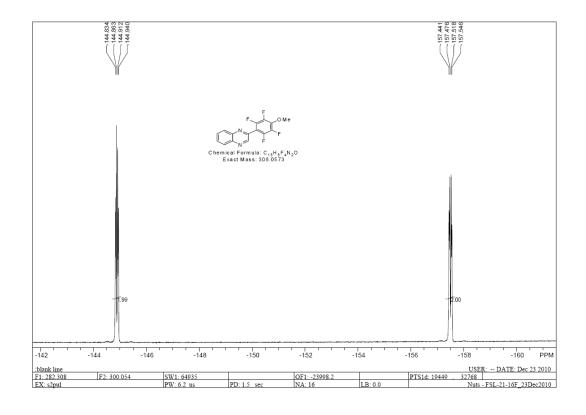


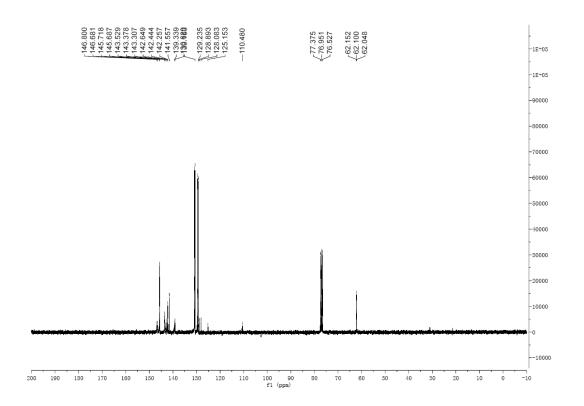

6-Methyl-2-(2,3,5,6-tetrafluorophenyl)quinoxaline (30)

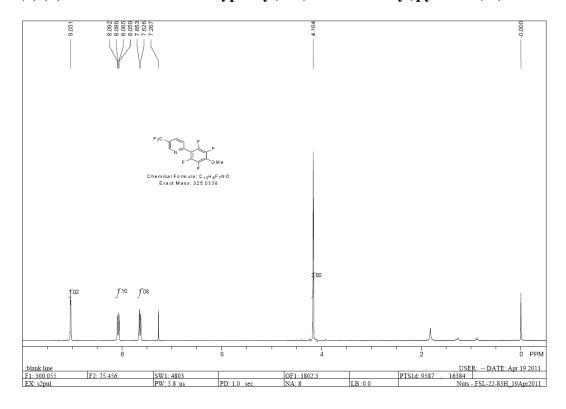


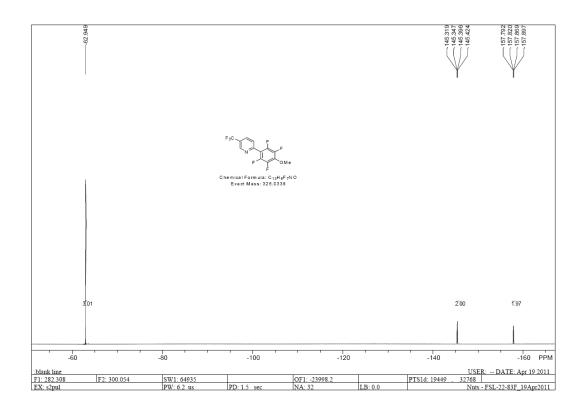


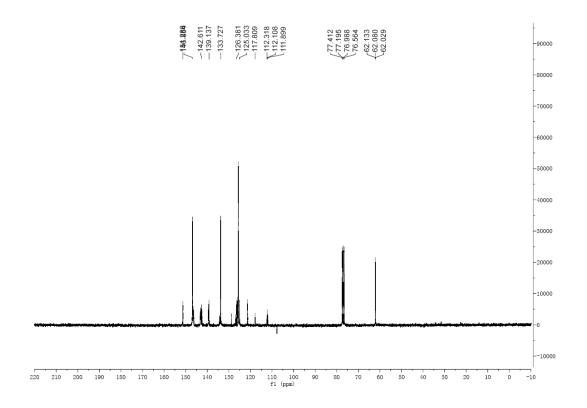

6-Methyl-2-(2,3,4,6-tetrafluorophenyl)quinoxaline (3p)

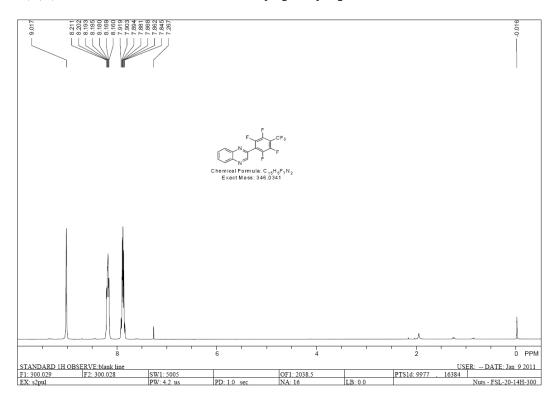


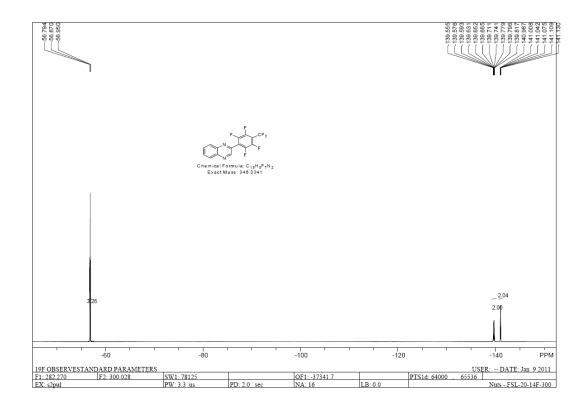


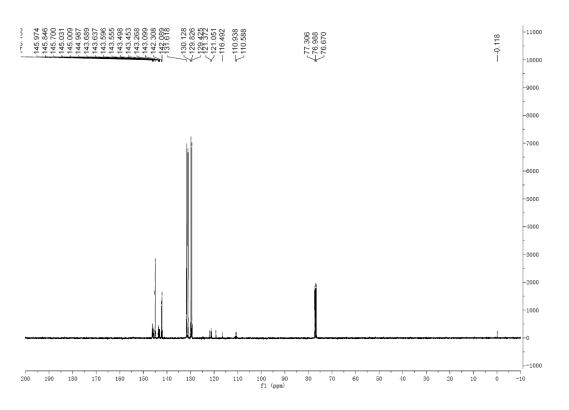

$\hbox{$2$-(2,3,5,6-Tetrafluoro-4-methoxyphenyl) quinoxaline (3q)}\\$

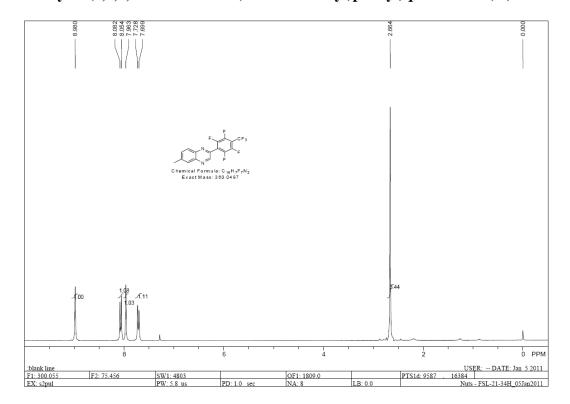


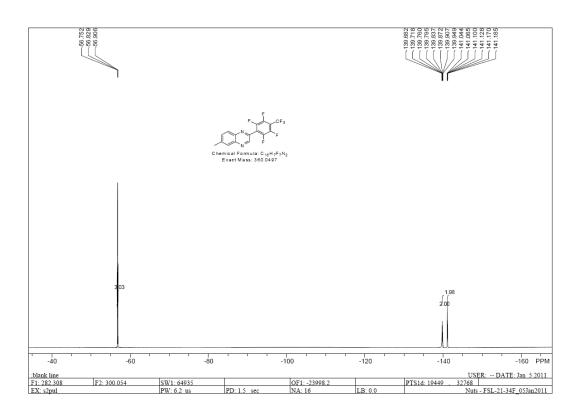


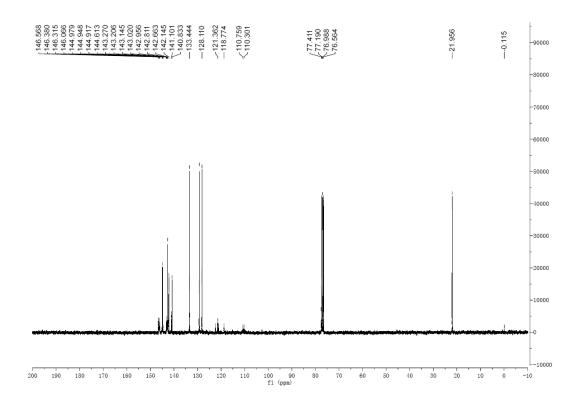

$\hbox{$2$-(2,3,5,6-Tetrafluoro-4-methoxyphenyl)-5$-(trifluoromethyl) pyridine (3r)}$

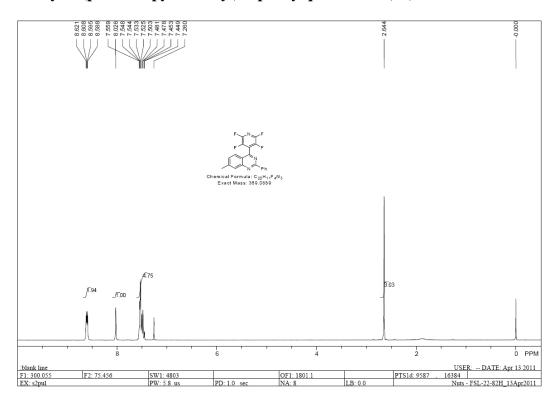


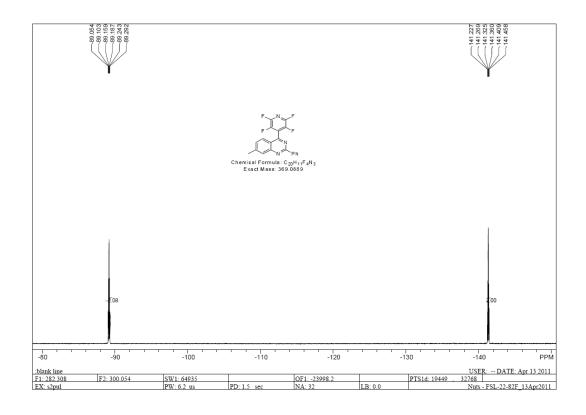


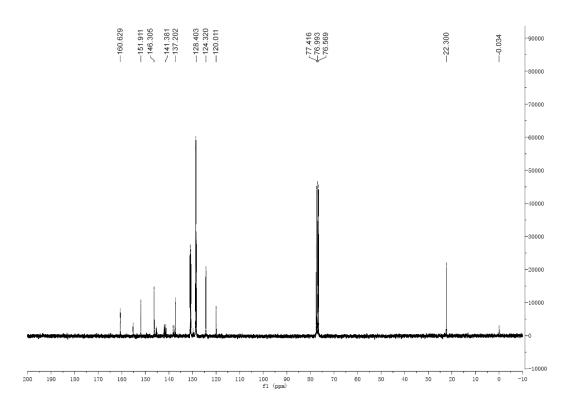

$\hbox{$2$-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl) quinoxaline (3s)}\\$

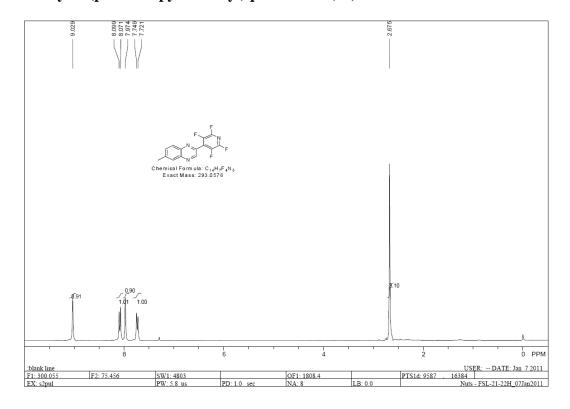


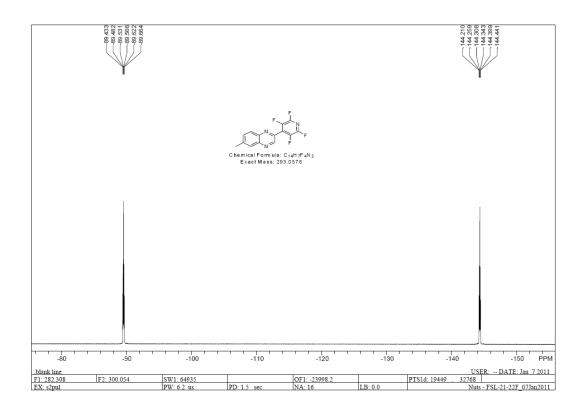


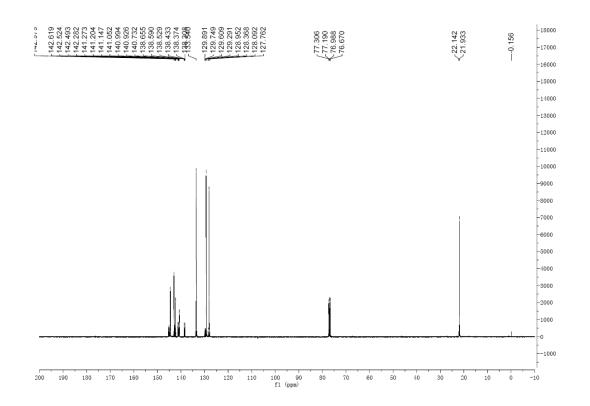

$6-Methyl-2-(2,\!3,\!5,\!6-tetrafluoro-4-(trifluoromethyl)phenyl) quinoxaline~(3t)$

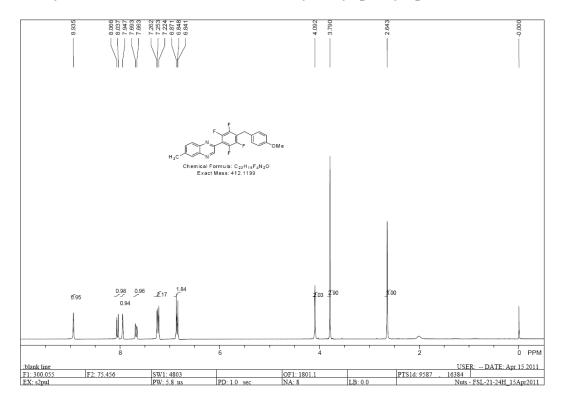


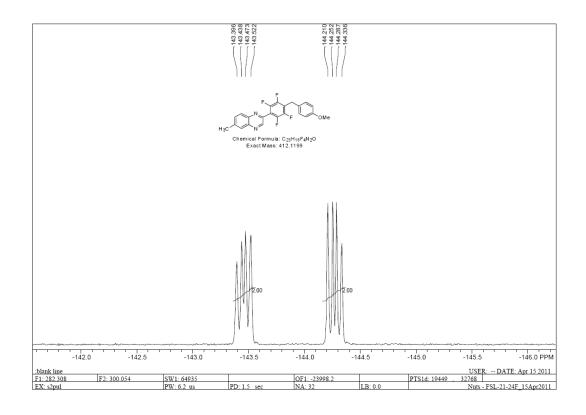


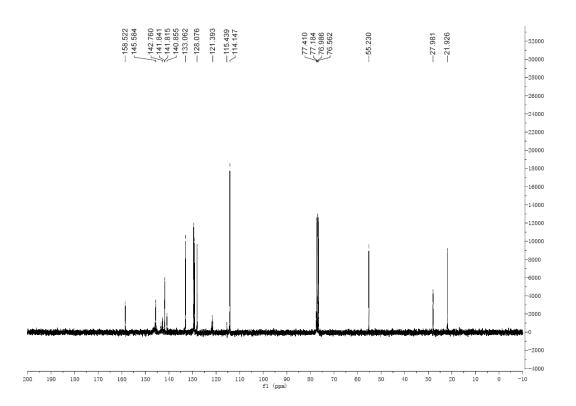

7-Methyl-4-(perfluoropyridin-4-yl)-2-phenylquinazoline (3u)

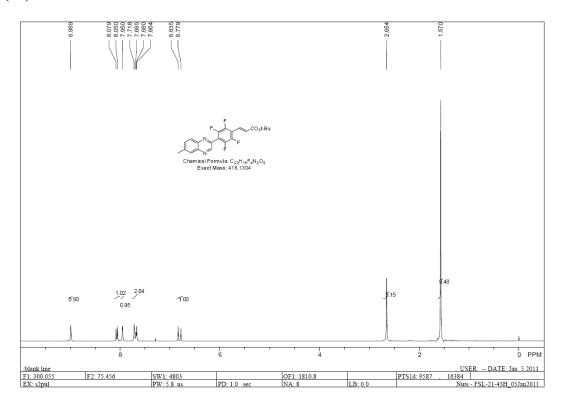


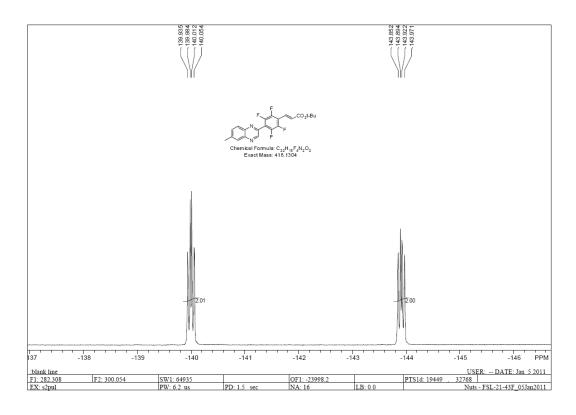


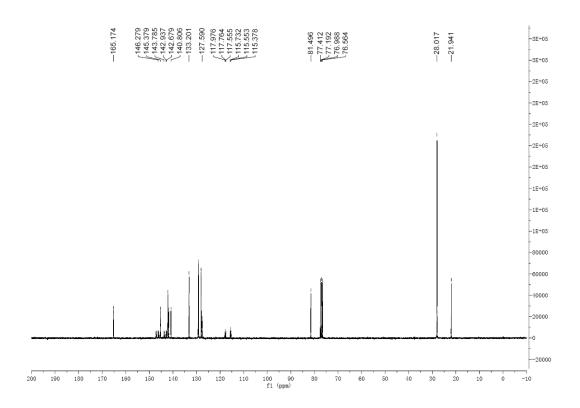

6-Methyl-2-(perfluoropyridin-4-yl)quinoxaline (3v)

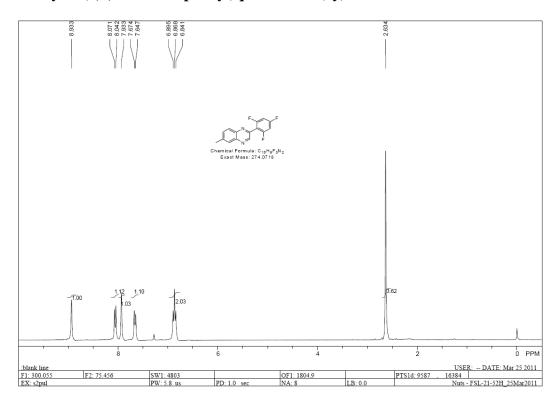




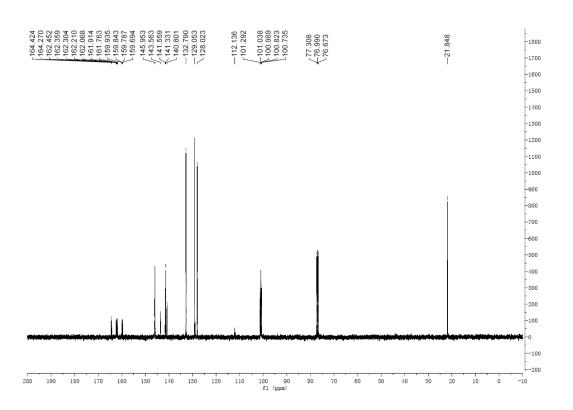

6-Methyl-2-(2,3,5,6-tetrafluoro-4-(4-methoxybenzyl)phenyl)quinoxaline (3w)

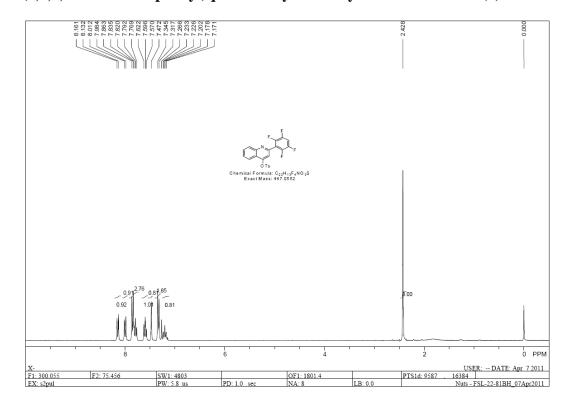


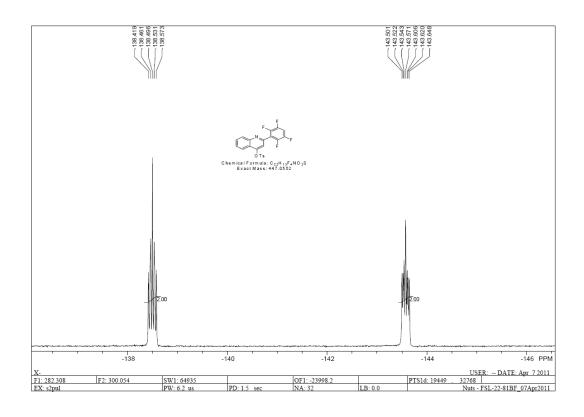


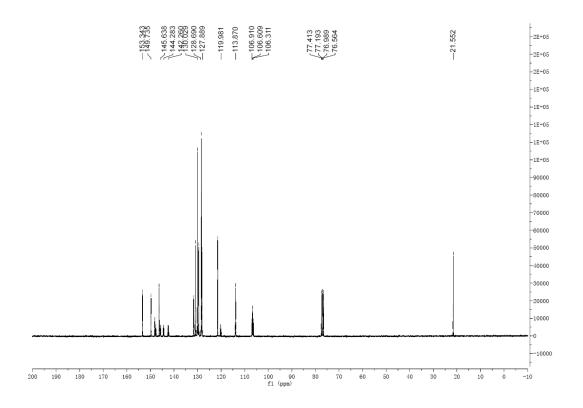

(E)-Tert-butyl 3-(2,3,5,6-tetrafluoro-4-(6-methylquinoxalin-2-yl)phenyl)acrylate (3x)

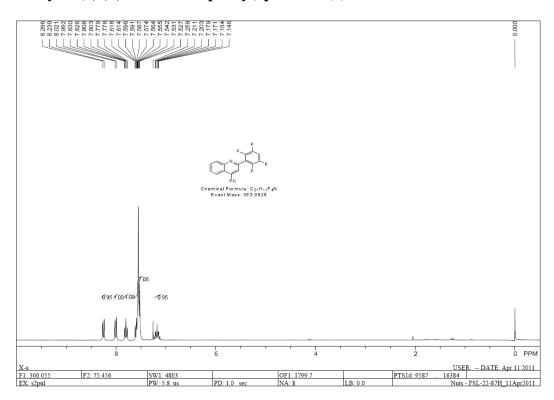


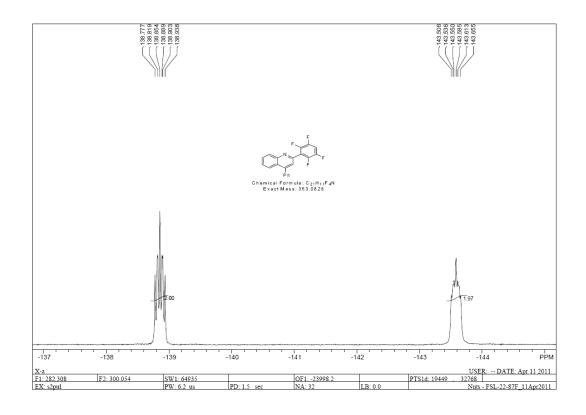


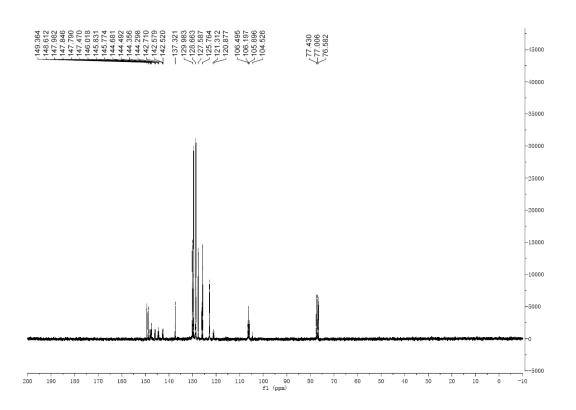

$\hbox{6-Methyl-2-(2,4,6-trifluor ophenyl)} quino xaline~(3y)$

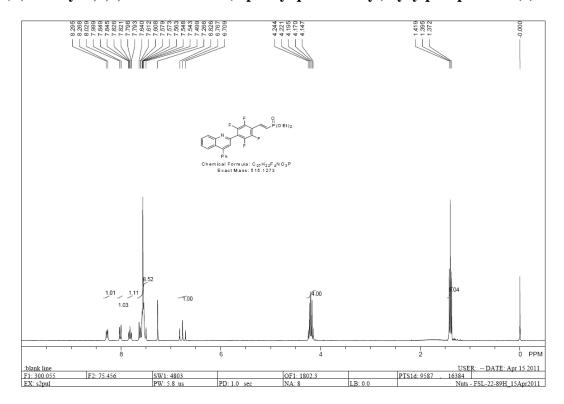


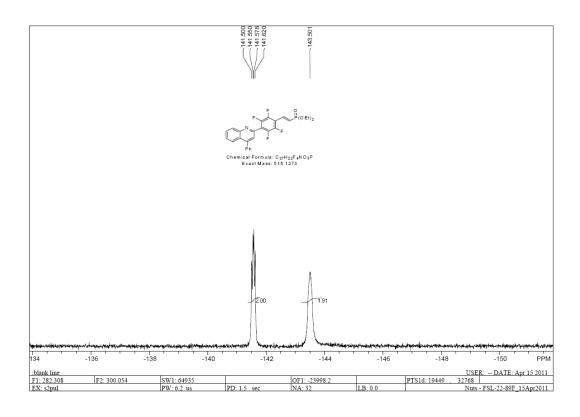



$\hbox{$2$-(2,3,5,6-Tetrafluorophenyl) quinolin-4-yl-4-methylbenzene sulfonate (5)}$

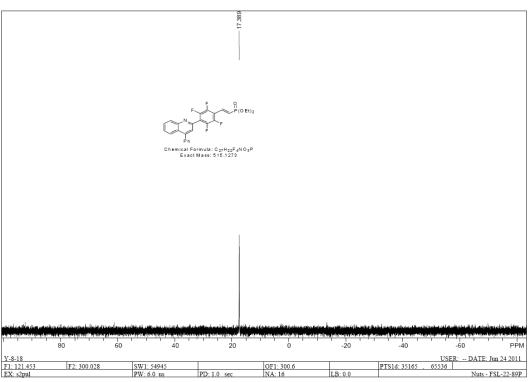




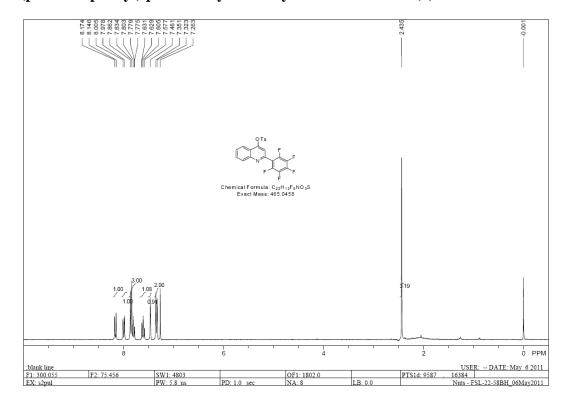

${\bf 4-Phenyl-2-(2,3,5,6-tetrafluor ophenyl) quinoline\ (6)}$

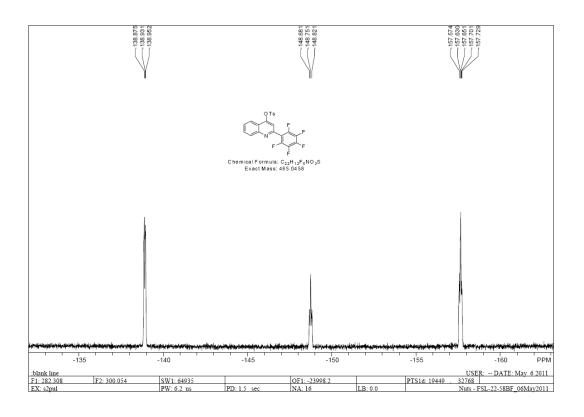


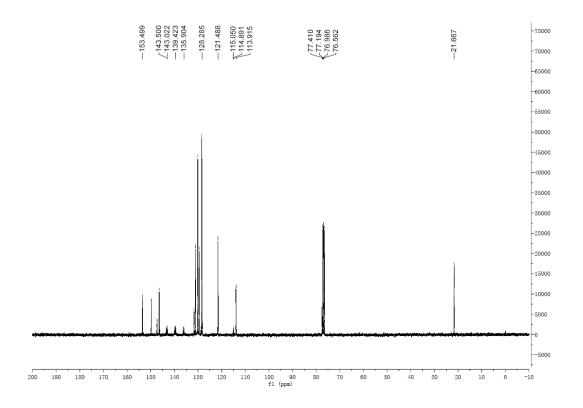


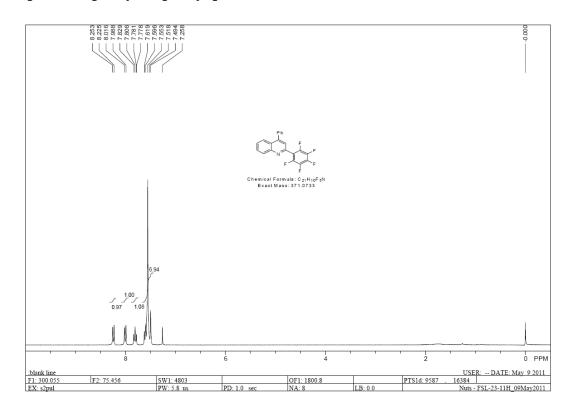


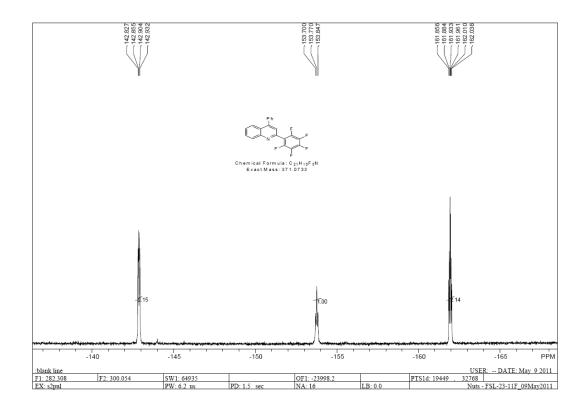
(E)-Diethyl 2,3,5,6-tetrafluoro-4-(4-phenylquinolin-2-yl)styrylphosphonate (7)

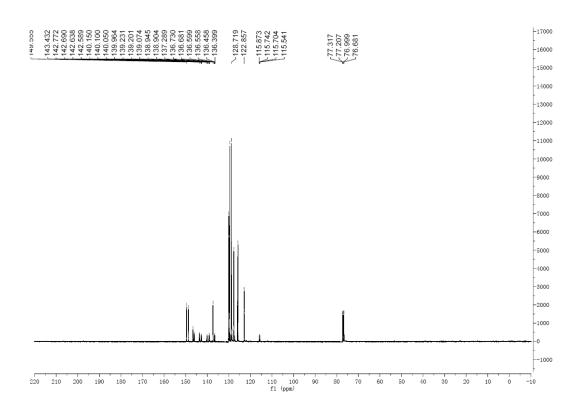







2-(perfluorophenyl)quinolin-4-yl 4-methylbenzenesulfonate (8)





2-(perfluorophenyl)-4-phenylquinoline (9)

