

Supporting Information

Lyotropic Chiral Nematic Liquid Crystalline
Aliphatic Conjugated Polymers Based on
Di-Substituted Polyacetylene Derivatives
that Exhibit High Dissymmetry Factors in
Circularly Polarized Luminescence

Benedict A. San Jose, Satoshi Matsushita, Kazuo Akagi*

*Department of Polymer Chemistry, Kyoto University, Katsura,
Kyoto 615-8510, Japan*

*EMAIL ADDRESS: akagi@fps.polym.kyoto-u.ac.jp

Table of Contents:

1. Syntheses of the Precursor Compounds
2. Liquid Crystallinity of PA1 Polymers
3. Supporting Information Schemes, Figures, and Tables

1. Syntheses of the Precursor Compounds

4-(1-Octynyl)-phenol (1)

4-(1-Octynyl)-phenol (**1**) was synthesized as follows. Into a 300 mL three-necked flask were added 0.16 g (0.23 mmol) of $\text{PdCl}_2(\text{TPP})_2$, 93 mg of CuI (0.49 mmol), 1-octyne (3.00 g, 27 mmol) and 4-iodophenol (5.00 g, 23 mmol), and 120 mL THF under argon. After all the reagents were dissolved, 80 mL of 0.5 M aqueous NH_3 was added dropwise into the solution. The solution was stirred at room temperature overnight under argon atmosphere. Thin layer chromatography (TLC) indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl_3 (3×). The organic layer was dried over anhydrous Na_2SO_4 . The solution was evaporated and purified by open column chromatography (silica gel, hexane/ethyl acetate = 2 : 1). The collected liquid was evaporated and dried under vacuum and dried in *vacuo* to give 3.24 g (16 mmol) of **1** as a viscous deep red liquid. Yield = 70%.

Anal. Chemical Formula: $(\text{C}_{14}\text{H}_{18}\text{O})_n$ (202.14) $_n$: Calcd. C 83.12, H 8.97, O 7.91; Found C 81.18, H 8.39.

^1H NMR (400 MHz, CDCl_3): δ = 0.92 (t, 3H, J = 6.8 Hz, $-\text{CH}_3$), 1.21–1.67 (m, 8H, $-(\text{CH}_2)_4-$), 2.39 (t, 2H, J = 7.2 Hz, $-\text{C}\equiv\text{C}-\text{CH}_2(\text{CH}_2)_4\text{CH}_3$), 4.75 (s, 1H, $\text{HO}-\text{Ar}-\text{C}\equiv\text{C}-(\text{CH}_2)_5\text{CH}_3$), 6.75 (d, 2H, J = 8.8 Hz, Ar–H *ortho* to HO–), 7.30 (d, 2H, J = 8.4 Hz, Ar–H *meta* to HO–). ^{13}C NMR (400 MHz, CDCl_3): δ = 14.0, 19.4, 22.5, 28.5, 28.8, 31.3, 88.8, 105.5, 115.1, 132.9, 159.6. HRMS (DART) calcd for $\text{C}_{14}\text{H}_{18}\text{O}$ [$\text{M} + \text{H}^+$]: 203.1430. Found: 203.1431.

4-(Phenylethynyl)phenol (2)

4-(Phenylethynyl)phenol (**2**) was synthesized as follows. The reagents 4-iodophenol (4.7 g, 21 mmol), phenyl acetylene (2.8 g, 28 mmol), $\text{PdCl}_2(\text{TPP})_2$ (297 mg, 0.42 mmol), CuI (162 mg, 0.85 mmol), 25 mL Et_3N , and 10 mL THF were added under argon atmosphere into a 200 mL three necked flask. After continuous stirring, solution was heated to 65 °C and left overnight. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl_3 (3×). The organic layer was dried over anhydrous Na_2SO_4 . The

solution was evaporated and purified by open column chromatography (silica gel, hexane/ethyl acetate = 1 : 1). The product was recrystallized from *n*-hexane and dried in vacuo to give 2.7 g (13.4 mmol) of **2** as a yellowish crystal. Yield = 66%.

Anal. Chemical Formula: $(C_{14}H_{10}O)_n$ (194.23)_{*n*}; Calcd. C, 86.57; H, 5.19; O, 8.24; Found C 86.81, H 5.37. ¹H NMR (400 MHz, CDCl₃): δ = 4.90 (s, 1H, $-C\equiv C-Ar-OH$), 6.81 (d, 2H, *J* = 8.8 Hz, Ar–H *ortho* to –OH), 7.33 (m, 3H, Ar–H *meta* and *para* to $-C\equiv C-C_6H_4OH$), 7.43 (d, 2H, *J* = 8.8 Hz, Ar–H *meta* to –OH), 7.50 (d, 2H, *J* = 8.8 Hz, Ar–H *ortho* to $-C\equiv C-C_6H_4OH$). ¹³C NMR (400 MHz, CDCl₃): δ = 89.8, 115.3, 115.5, 127.8, 128.1, 131.3, 133.1. HRMS (DART) calcd for C₁₄H₁₀O [M + H⁺]: 195.0804. Found: 195.0806.

1-Iodo-4-(nonan-2-yloxy)benzene (3)

1-Iodo-4-(nonan-2-yloxy)benzene (**3**) was synthesized as follows. Into a 300 mL three-necked flask were added TPP (10.38 g, 40 mmol) and 4-iodophenol (9.50 g, 43 mmol) under argon gas and dissolved in THF (60 mL). In the addition funnel, a mixture of DEAD (20.00 g, 40 wt% in toluene, 40 mmol), 2-nonal (5.20 g, 36 mmol), and 50 mL THF were prepared. After dissolving the reagents under constant stirring, the flask was placed in an ice bath and the THF solution in the addition funnel was added dropwise to the solution in the flask. The solution was left overnight at room temperature. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was washed with water and extracted with CHCl₃ (3×). The residue was dried over anhydrous Na₂SO₄ and the crude product was then purified by open column chromatography using CHCl₃ as eluent. The collected liquid was evaporated and dried under vacuum to give compound **3** (9.56 g, 27.6 mmol) as a light amber colored oil. Yield = 77%.

Anal. Chemical Formula: $(C_{15}H_{23}IO)_n$ (346.25)_{*n*}; Calcd. C, 52.03; H, 6.70; I, 36.65; O, 4.62; Found C, 52.17; H, 6.82. ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, 3H, *J* = 6.8 Hz, $-CH_3$), 1.15–1.50 (m, 13H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃, 1.51–1.75 (m, 2H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 4.22–4.36 (m, 1H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 6.65 (d, 2H, *J* = 8.8 Hz, Ar–H *meta* to –I), 7.53 (d, 2H, *J* = 8.6 Hz,

Ar–H *ortho* to –I). ^{13}C NMR (400 MHz, CDCl_3): δ = 14.1, 19.6, 22.6, 25.5, 29.2, 29.5, 31.7, 36.3, 74.1, 82.1, 118.1, 138.0, 157.9. HRMS (APCI) calcd for $\text{C}_{15}\text{H}_{23}\text{IO} [\text{M}^+]$: 346.0788. Found: 346.0783.

(R)-1-Iodo-4-(nonan-2-yloxy)benzene (4)

(R)-1-Iodo-4-(nonan-2-yloxy)benzene (4) was synthesized as follows. Into a 300 mL three-necked flask were added TPP (10.00 g, 38 mmol) and 4-iodophenol (9.14 g, 42 mmol) under argon gas and dissolved in THF (80 mL). In the addition funnel, a mixture of DEAD (19.26 g, 40 wt% in toluene, 38 mmol), (S)-(+)-2-nonal (5.00 g, 34 mmol), and 50 mL THF was prepared. After dissolving the reagents under constant stirring, the flask was placed in an ice bath and the THF solution in the addition funnel was added dropwise to the solution in the flask. The solution was left overnight at room temperature. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was washed with water and extracted with CHCl_3 (3×). The residue was dried over anhydrous Na_2SO_4 and the crude product was then purified by open column chromatography using CHCl_3 as eluent. The collected liquid was evaporated and dried under vacuum to give compound 4 (8.12 g, 23.6 mmol) as a light amber colored oil. Yield = 68%.

Anal. Chemical Formula: $(\text{C}_{15}\text{H}_{23}\text{IO})_n$ (346.25)_{*n*}: Calcd. C, 52.03; H, 6.70; I, 36.65; O, 4.62; Found C, 52.25; H, 6.76. ^1H NMR (400 MHz, CDCl_3): δ = 0.86 (t, 3H, J = 7.2 Hz, $-\text{CH}_3$), 1.23–1.50 (m, 13H, Ar–O–CH(CH_3) CH_2 (CH_2)₅ CH_3 , 1.51–1.71 (m, 2H, Ar–O–CH(CH_3) CH_2 (CH_2)₅ CH_3), 4.27–4.32 (m, 1H, Ar–O–CH(CH_3) CH_2 (CH_2)₅ CH_3), 6.54 (d, 2H, J = 7.2 Hz, Ar–H *meta* to –I), 7.53 (d, 2H, J = 6.8 Hz, Ar–H *ortho* to –I). ^{13}C NMR (400 MHz, CDCl_3): δ = 14.1, 19.6, 22.6, 25.5, 29.2, 29.5, 31.8, 36.3, 74.1, 82.1, 118.1, 138.1, 158.0. HRMS (APCI) calcd for $\text{C}_{15}\text{H}_{23}\text{IO} [\text{M}^+]$: 346.0788. Found: 346.0783. $[\alpha]^{25}_{\text{D}} = -3.54^\circ$ (*c* 1.0, CHCl_3).

(S)-1-Iodo-4-(nonan-2-yloxy)benzene (5)

(S)-1-Iodo-4-(nonan-2-yloxy)benzene (5) was synthesized as follows. TPP (10.00 g, 38.2 mmol), 4-iodophenol (9.14 g, 42 mmol) were added under argon gas into a 300 mL three necked flask,

dissolved in THF (70 mL) and then stirred. In the addition funnel, a mixture of DEAD (19.28 g, 40 wt% in toluene, 38.2 mmol), (*R*)-(-)-2-nonal (5.00 g, 34 mmol), and 50 mL THF was prepared. After dissolving the reagents under constant stirring, the flask was placed in an ice bath and the THF solution in the addition funnel was added dropwise to the solution in the flask. The solution was left overnight at room temperature. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was washed with water and extracted with CHCl₃ (3×). The residue was dried over anhydrous Na₂SO₄ and the crude product was then purified by open column chromatography using CHCl₃ as eluent. The collected liquid was evaporated and dried under vacuum to give compound **5** (9.34 g, 27.0 mmol) as a light amber colored oil. Yield = 78%.

Anal. Chemical Formula: (C₁₅H₂₃IO)_n (346.25)_n: Calcd. C, 52.03; H, 6.70; I, 36.65; O, 4.62; Found C, 52.59; H, 6.85. ¹H NMR (400 MHz, CDCl₃): δ = 0.86 (t, 3H, *J* = 7.2 Hz, *-CH*₃), 1.21–1.56 (m, 13H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃, 1.64–1.72 (m, 2H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 4.24–4.31 (m, 1H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 6.64 (d, 2H, *J* = 6.4 Hz, Ar–H *meta* to –I), 7.50 (d, 2H, *J* = 6.4 Hz, Ar–H *ortho* to –I). ¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.6, 22.6, 25.5, 29.2, 29.5, 31.8, 36.3, 74.1, 82.1, 118.1, 138.0, 157.9. HRMS (APCI) calcd for C₁₅H₂₃IO [M⁺]: 346.0788. Found: 346.0782. [α]_D²⁵ +3.66° (c 1.0, CHCl₃).

Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (**6**)

Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (**6**) was synthesized as follows. Into a 200 mL three-necked flask were added compound **3** (9.4 g, 27.1 mmol), trimethylsilylacetylene (4.00 g, 40.7 mmol), PdCl₂(TPP)₂ (0.38 g, 0.54 mmol), CuI (0.21 g 1.10 mmol), 30 mL Et₃N, and 120 mL THF under argon. After continuous stirring, solution was heated to 65 °C and left overnight. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography using CHCl₃ as eluent. The

product was evaporated and dried under vacuum to give compound **6** (7.76 g, 24.5 mmol) as a light amber colored oil. Yield = 90%.

Anal. Chemical Formula: $(C_{20}H_{32}OSi)_n$ (316.55)_{*n*}; Calcd. C, 75.88; H, 10.19; O, 5.05; Si, 8.87. Found C, 75.80; H, 10.40. ¹H NMR (400 MHz, CDCl₃): δ = 0.00 (t, 9H, Ar-C≡C-Si(CH₃)₃), 0.64 (t, 3H, *J* = 7.3 Hz, Ar-O-CH(CH₃)(CH₂)₆CH₃), 0.91–1.31 (m, 13H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 1.33–1.59 (m, 2H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 4.09–4.14 (m, 1H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 6.55 (d, 2H, *J* = 8.8 Hz, Ar-H *meta* to -C≡C-Si(CH₃)₃), 7.14 (d, 2H, *J* = 8.6 Hz, Ar-H *ortho* to -C≡C-Si(CH₃)₃). ¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.0, 22.0, 24.8, 28.6, 28.9, 31.2, 35.7, 73.3, 91.5, 114.8, 132.7, 157.7. HRMS (APCI) calcd for C₂₀H₃₂OSi [M + H⁺]: 317.2295. Found: 317.2285.

(*R*)-Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (**7**)

(*R*)-Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (**7**) was synthesized as follows. Into a 200 mL three-necked flask were added compound **4** (3.42 g, 9.87 mmol), trimethylsilylacetylene (1.45 g, 14.81 mmol), PdCl₂(TPP)₂ (139 mg, 0.20 mmol), CuI (75 mg, 0.39 mmol), 20 mL Et₃N, and 70 mL THF under argon. After continuous stirring, solution was heated to 65 °C and left overnight. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography using CHCl₃ as eluent. The product was evaporated and dried under vacuum to give compound **7** (2.75 g, 8.69 mmol) as a light amber colored oil. Yield = 88%.

Anal. Chemical Formula: $(C_{20}H_{32}OSi)_n$ (316.55)_{*n*}; Calcd. C, 75.88; H, 10.19; O, 5.05; Si, 8.87. Found C, 75.67; H, 9.92. ¹H NMR (400 MHz, CDCl₃): δ = 0.00 (t, 9H, Ar-C≡C-Si(CH₃)₃), 0.64 (t, 3H, *J* = 7.3 Hz, Ar-O-CH(CH₃)(CH₂)₆CH₃), 1.04–1.31 (m, 13H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 1.31–1.55 (m, 2H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 4.09–4.14 (m, 1H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 6.54 (d, 2H, *J* = 6.8 Hz, Ar-H *meta* to -C≡C-Si(CH₃)₃), 7.14 (d, 2H, *J* = 6.8 Hz, Ar-H *ortho* to -C≡C-Si(CH₃)₃).

¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.6, 22.6, 25.5, 29.2, 29.5, 31.8, 36.3, 73.9, 92.1, 115.4, 133.3, 158.0. HRMS (APCI) calcd for C₂₀H₃₂OSi [M + H⁺]: 317.2295. Found: 317.2285. [α]²⁵_D -0.62° (c 1.0, CHCl₃).

(S)-Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (8)

(S)-Trimethyl((4-(nonan-2-yloxy)phenyl)ethynyl)silane (8) was synthesized as follows. The reagents compound 5 (2.2 g, 6.35 mmol), trimethylsilylacetylene (0.94 g, 9.53 mmol), PdCl₂(TPP)₂ (89 mg, 0.13 mmol), CuI (48 mg, 0.26 mmol), 10 mL Et₃N, and 50 mL THF were added under argon atmosphere into a 300 mL three-mouthed flask and stirred. The solution was stirred at 65 °C overnight under argon atmosphere. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography using CHCl₃ as eluent. The product was evaporated and dried under vacuum to give compound 8 (1.83 g, 5.78 mmol) as a light amber colored oil. Yield = 91%.

Anal. Chemical Formula: (C₂₀H₃₂OSi)_n (316.55)_n; Calcd. C, 75.88; H, 10.19; O, 5.05; Si, 8.87; Found C, 75.89; H, 10.43. ¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ = 0.00 (t, 9H, Ar-C≡C-Si(CH₃)₃), 0.62 (t, 3H, *J* = 7.2 Hz, Ar-O-CH(CH₃)(CH₂)₆CH₃), 1.00–1.28 (m, 13H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 1.30–1.55 (m, 2H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 4.10–4.14 (m, 1H, Ar-O-CH(CH₃)CH₂(CH₂)₅CH₃), 6.53 (d, 2H, *J* = 7.0 Hz, Ar-H *meta* to -C≡C-Si(CH₃)₃), 7.20 (d, 2H, *J* = 6.8 Hz, Ar-H *ortho* to -C≡C-Si(CH₃)₃). ¹³C NMR (400 MHz, CDCl₃): δ = 14.0, 19.5, 22.5, 25.4, 29.1, 29.4, 31.7, 36.2, 73.8, 92.0, 115.3, 133.2, 158.2. HRMS (APCI) calcd for C₂₀H₃₂OSi [M + H⁺]: 317.2295. Found: 317.2284. [α]²⁵_D +0.67° (c 1.0, CHCl₃).

1-Ethynyl-4-(nonan-2-yloxy)benzene (9)

1-Ethynyl-4-(nonan-2-yloxy)benzene (9) was synthesized as follows. Into a 100 mL round-bottom flask were added compound 6 (7.39 g, 23.4 mmol), K₂CO₃ (1.61 g, 11.7 mmol), 10 mL MeOH, and 10

mL THF. After continuous stirring, solution was left overnight at room temperature. The solution was then filtered, evaporated and the residue was thoroughly washed with water and extracted with CHCl_3 (3×). The organic layer was dried over anhydrous Na_2SO_4 . The solution was evaporated and purified by open column chromatography using CHCl_3 as eluent. The product was evaporated and dried under vacuum to give compound **9** (5.44 g, 22.3 mmol) as an amber colored oil. Yield = 92%.

Anal. Chemical Formula: $(\text{C}_{17}\text{H}_{24}\text{O})_n$ (244.37)_{*n*}: Calcd. C, 83.55; H, 9.90; O, 6.55. Found C, 83.42; H, 10.02. ^1H NMR (400 MHz, CDCl_3): δ = 0.88 (t, 3H, *J* = 6.8 Hz, $-\text{CH}_3$), 1.19–1.47 (m, 13H, Ar–O–CH(CH_3) $\text{CH}_2(\text{CH}_2)_5\text{CH}_3$), 1.50–1.78 (m, 2H, Ar–O–CH(CH_3) $\text{CH}_2(\text{CH}_2)_5\text{CH}_3$), 2.98 (s, 1H, –O–Ar–C≡CH), 4.33–4.38 (m, 1H, Ar–O–CH(CH_3) $\text{CH}_2(\text{CH}_2)_5\text{CH}_3$), 6.81 (d, 2H, *J* = 6.8 Hz, Ar–H *meta* to $-\text{C}\equiv\text{C–Si}(\text{CH}_3)_3$), 7.40 (d, 2H, *J* = 7.0 Hz, Ar–H *ortho* to $-\text{C}\equiv\text{C–Si}(\text{CH}_3)_3$). ^{13}C NMR (400 MHz, CDCl_3): δ = 14.1, 19.6, 22.6, 25.5, 29.2, 29.5, 31.8, 36.4, 75.5, 83.7, 113.6, 115.5, 133.4, 158.5. HRMS (APCI) calcd for $\text{C}_{17}\text{H}_{24}\text{O}$ [M + H⁺]: 245.1900. Found: 245.1894.

(*R*)-1-Ethynyl-4-(nonan-2-yloxy)benzene (10**)**

(*R*)-1-Ethynyl-4-(nonan-2-yloxy)benzene (**10**) was synthesized as follows. Into a 100 mL round-bottom flask were added compound **7** (2.65 g, 8.36 mmol), K_2CO_3 (2.31 g, 16.72 mmol), 50 mL MeOH, and 50 mL THF. After continuous stirring, solution was left overnight at room temperature. The solution was then filtered, evaporated and the residue was thoroughly washed with water and extracted with CHCl_3 (3×). The organic layer was dried over anhydrous Na_2SO_4 . The solution was evaporated and purified by open column chromatography using CHCl_3 as eluent. The product was evaporated and dried under vacuum to give compound **10** (1.88 g, 7.69 mmol) as an amber colored oil. Yield = 92%.

Anal. Chemical Formula: $(\text{C}_{17}\text{H}_{24}\text{O})_n$ (244.37)_{*n*}: Calcd. C, 83.55; H, 9.90; O, 6.55. Found C, 83.28; H, 9.97. ^1H NMR (400 MHz, CDCl_3): δ = 0.86 (t, 3H, *J* = 7.0 Hz, $-\text{CH}_3$), 1.25–1.39 (m, 13H, Ar–O–CH(CH_3) $\text{CH}_2(\text{CH}_2)_5\text{CH}_3$), 1.51–1.69 (m, 2H, Ar–O–CH(CH_3) $\text{CH}_2(\text{CH}_2)_5\text{CH}_3$), 2.96 (s, 1H,

$-\text{O}-\text{Ar}-\text{C}\equiv\text{CH}$), 4.31–4.36 (m, 1H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 6.78 (d, 2H, J = 6.8 Hz, Ar–H *meta* to $-\text{C}\equiv\text{C}-\text{Si}(\text{CH}_3)_3$), 7.38 (d, 2H, J = 7.0 Hz, Ar–H *ortho* to $-\text{C}\equiv\text{C}-\text{Si}(\text{CH}_3)_3$). ¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.7, 22.6, 25.5, 29.1, 29.5, 31.8, 36.3, 76.6, 81.0, 113.5, 115.5, 133.4, 157.0. HRMS (APCI) calcd for C₁₇H₂₄O [M + H⁺]: 245.1900. Found: 245.1892. $[\alpha]^{25}_{\text{D}} -6.24^\circ$ (*c* 1.0, CHCl₃).

(*S*)-1-Ethynyl-4-(nonan-2-yloxy)benzene (11)

(*S*)-1-Ethynyl-4-(nonan-2-yloxy)benzene (**11**) was synthesized as follows. Compound **8** (1.80 g, 5.69 mmol), K₂CO₃ (0.39 g, 2.84 mmol), 50 mL MeOH, and 50 mL THF were added to a 100 mL round-bottom flask. The solution was stirred overnight at room temperature under argon atmosphere. The solution was then filtered, evaporated and the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography using CHCl₃ as eluent. The product was evaporated and dried under vacuum to give compound **11** (1.21 g, 4.94 mmol) as an amber colored oil. Yield = 87%.

Anal. Chemical Formula: (C₁₇H₂₄O)_n (244.37)_n: Calcd. C, 83.55; H, 9.90; O, 6.55. Found C, 83.31; H, 10.11. ¹H NMR (400 MHz, CDCl₃): δ = 0.81 (t, 3H, J = 6.8 Hz, $-\text{CH}_3$), 1.21–1.40 (m, 13H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 1.46–1.49 (m, 2H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 2.91 (s, 1H, $-\text{O}-\text{Ar}-\text{C}\equiv\text{CH}$), 4.26–4.31 (m, 1H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 6.74 (d, 2H, J = 8.0 Hz, Ar–H *meta* to $-\text{C}\equiv\text{C}-\text{Si}(\text{CH}_3)_3$), 7.33 (d, 2H, J = 6.8 Hz, Ar–H *ortho* to $-\text{C}\equiv\text{C}-\text{Si}(\text{CH}_3)_3$). ¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.6, 22.6, 25.4, 29.2, 29.5, 31.8, 36.4, 75.4, 83.7, 113.5, 115.5, 133.4, 158.5. HRMS (APCI) calcd for C₁₇H₂₄O [M + H⁺]: 245.1900. Found: 245.1892. $[\alpha]^{25}_{\text{D}} +6.39^\circ$ (*c* 1.0, CHCl₃).

4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (12)

4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (**12**) was synthesized as follows. The reagents compound **9** (4.00 g, 16.4 mmol), 4-iodophenol (3.28 g, 14.9 mmol), PdCl₂(TPP)₂ (0.21 g, 0.30 mmol), CuI (0.11 g, 0.60 mmol), 30 mL Et₃N, and 70 mL THF were added under argon atmosphere into a 100

mL three-mouthed flask and stirred. The solution was stirred at 65 °C overnight under argon atmosphere. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography (silica gel, hexane/ethyl acetate = 3 : 1). The product was evaporated and dried under vacuum to give compound **12** (3.66 g, 10.89 mmol) as a reddish solid. Yield = 73%.

Anal. Chemical Formula: (C₂₃H₂₈O₂)_n (336.47)_n: Calcd. C, 82.10; H, 8.39; O, 9.51. Found C, 81.22; H, 8.36. ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, 3H, *J* = 7.1 Hz, *-CH*₃), 1.22–1.35 (m, 13H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 1.51–1.78 (m, 2H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 4.31–4.42 (m, 1H, Ar–O–CH(CH₃)CH₂(CH₂)₅CH₃), 4.84 (s, 1H, HO–Ar–C≡C–Ar), 6.79 (d, 2H, *J* = 6.6 Hz, Ar–H *ortho* to –O–CH(CH₃)(CH₂)₆CH₃), 6.81 (d, 2H, *J* = 7.1 Hz, Ar–H *ortho* to HO–), 7.39 (d, 2H, *J* = 5.8 Hz, Ar–H *meta* to HO–), 7.42 (d, 2H, *J* = 6.1 Hz, Ar–H *meta* to –O–CH(CH₃)(CH₂)₆CH₃). ¹³C NMR (400 MHz, CDCl₃): δ = 14.0, 19.7, 22.6, 25.5, 29.2, 29.5, 31.8, 36.4, 73.9, 87.5, 88.5, 115.3, 115.6, 132.7, 132.9, 155.2. HRMS (DART) calcd for C₂₃H₂₈O₂ [M + H⁺]: 337.2162. Found: 337.2160.

(*R*)-4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (**13**)

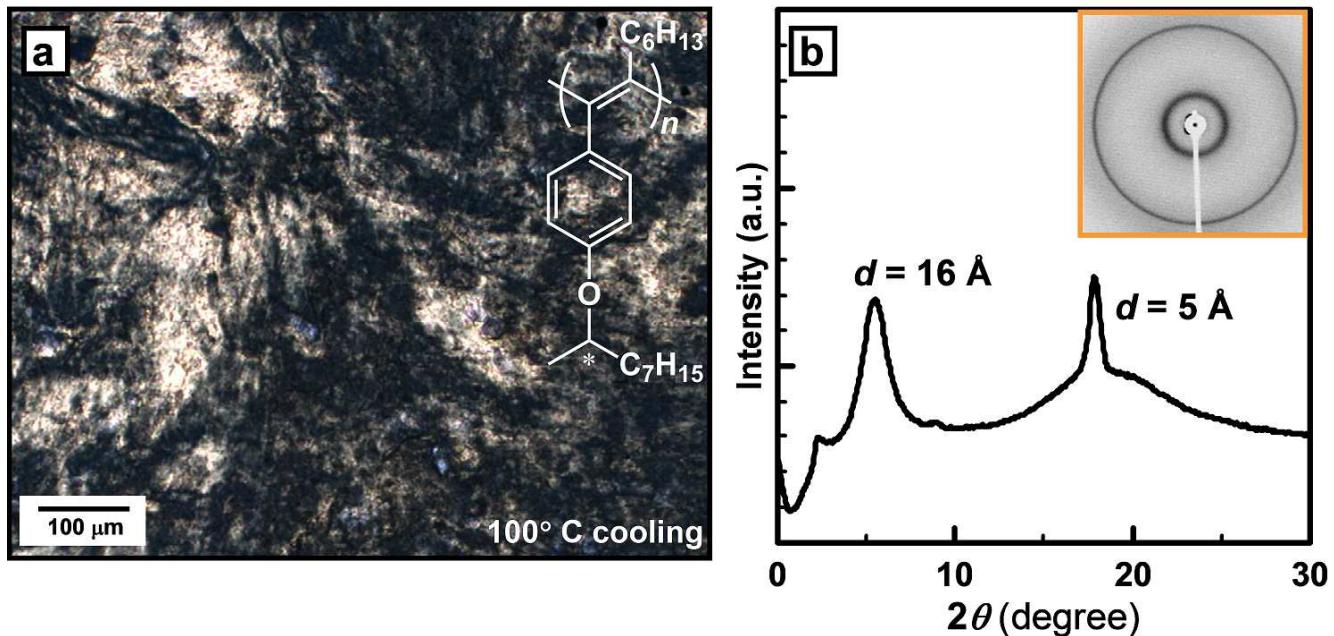
(*R*)-4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (**13**) was synthesized as follows. The reagents compound **10** (1.77 g, 7.3 mmol), 4-iodophenol (1.45 g, 6.6 mmol), PdCl₂(TPP)₂ (93 mg, 0.13 mmol), CuI (50 mg, 0.26 mmol), 10 mL Et₃N, and 10 mL THF were added under argon atmosphere into a Schlenk flask and stirred. The solution was stirred at 65 °C overnight under argon atmosphere. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with CHCl₃ (3×). The organic layer was dried over anhydrous Na₂SO₄. The solution was evaporated and purified by open column chromatography (silica gel, hexane/ethyl acetate = 3 : 1). The product was evaporated and dried under vacuum to give compound **13** (1.39 g, 4.13 mmol) as a reddish solid. Yield = 63%.

Anal. Chemical Formula: $(C_{23}H_{28}O_2)_n$ (336.47)_{*n*}: Calcd. C, 82.10; H, 8.39; O, 9.51. Found C, 81.03; H, 8.29. 1H NMR (400 MHz, $CDCl_3$): δ = 0.88 (t, 3H, J = 7.6 Hz, $-CH_3$), 1.23–1.33 (m, 13H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 1.50–1.77 (m, 2H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 4.32–4.40 (m, 1H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 4.93 (s, 1H, HO –Ar–C≡C–Ar), 6.79 (d, 2H, J = 8.8 Hz, Ar–H *ortho* to $-O$ –CH(CH_3) $(CH_2)_6CH_3$), 6.83 (d, 2H, J = 8.1 Hz, Ar–H *ortho* to HO–), 7.39 (d, 2H, J = 6.1 Hz, Ar–H *meta* to HO–), 7.41 (d, 2H, J = 8.3 Hz, Ar–H *meta* to $-O$ –CH(CH_3) $(CH_2)_6CH_3$). ^{13}C NMR (400 MHz, $CDCl_3$): δ = 14.0, 19.7, 22.6, 25.5, 29.2, 29.5, 31.8, 36.4, 73.9, 83.5, 84.1, 115.3, 115.6, 132.7, 132.9, 156.6. HRMS (DART) calcd for $C_{23}H_{28}O_2$ [M + H $^+$]: 337.2162. Found: 337.2149. $[\alpha]^{25}_D$ +3.26° (*c* 1.0, $CHCl_3$).

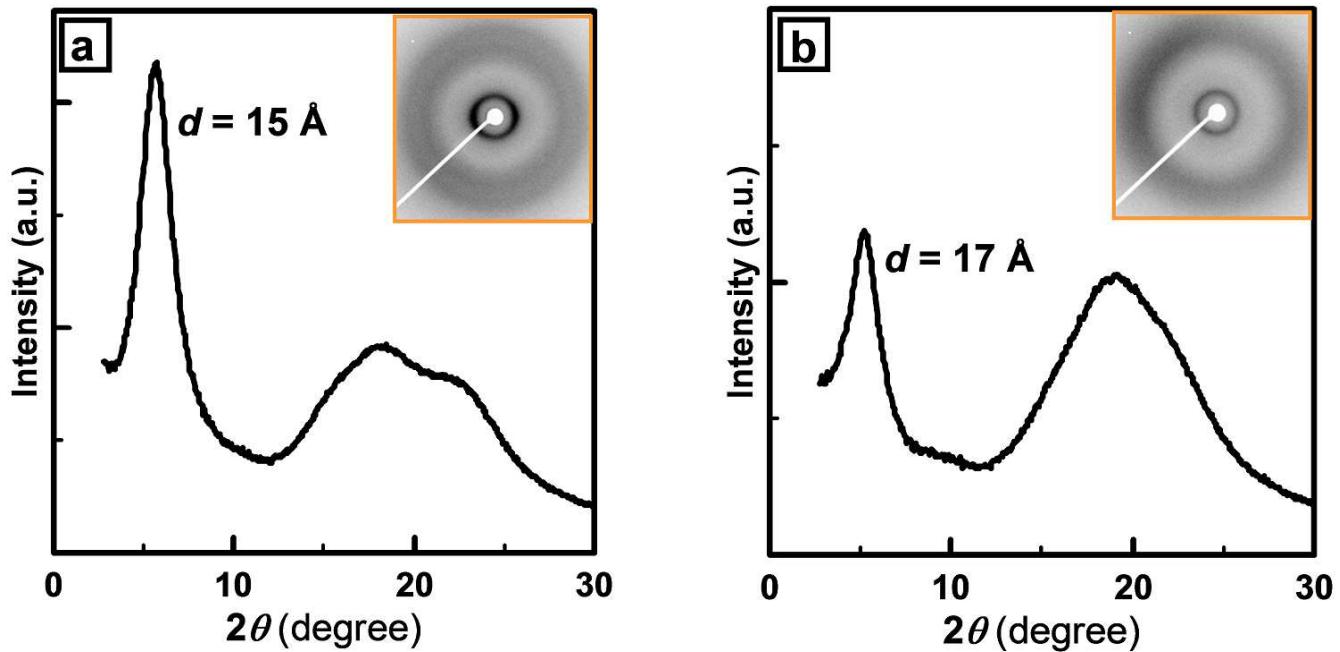
(*S*)-4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (14)

(*S*)-4-((4-(nonan-2-yloxy)phenyl)ethynyl)phenol (14) was synthesized as follows. The reagents compound **11** (0.90 g, 3.7 mmol), 4-iodophenol (0.74 g, 3.3 mmol), $PdCl_2(TPP)_2$ (47 mg, 0.07 mmol), CuI (26 mg, 0.13 mmol), 10 mL Et_3N , and 10 mL THF were added under argon atmosphere into a Schlenk flask and stirred. The solution was stirred at 65 °C overnight under argon atmosphere. TLC indicated completion of the reaction. After evaporation of the solvent, the residue was thoroughly washed with water and extracted with $CHCl_3$ (3×). The organic layer was dried over anhydrous Na_2SO_4 . The solution was evaporated and purified by open column chromatography (silica gel, hexane/ethyl acetate = 3 : 1). The product was evaporated and dried under vacuum to give compound **14** (1.39 g, 2.94 mmol) as a reddish solid. Yield = 88%.

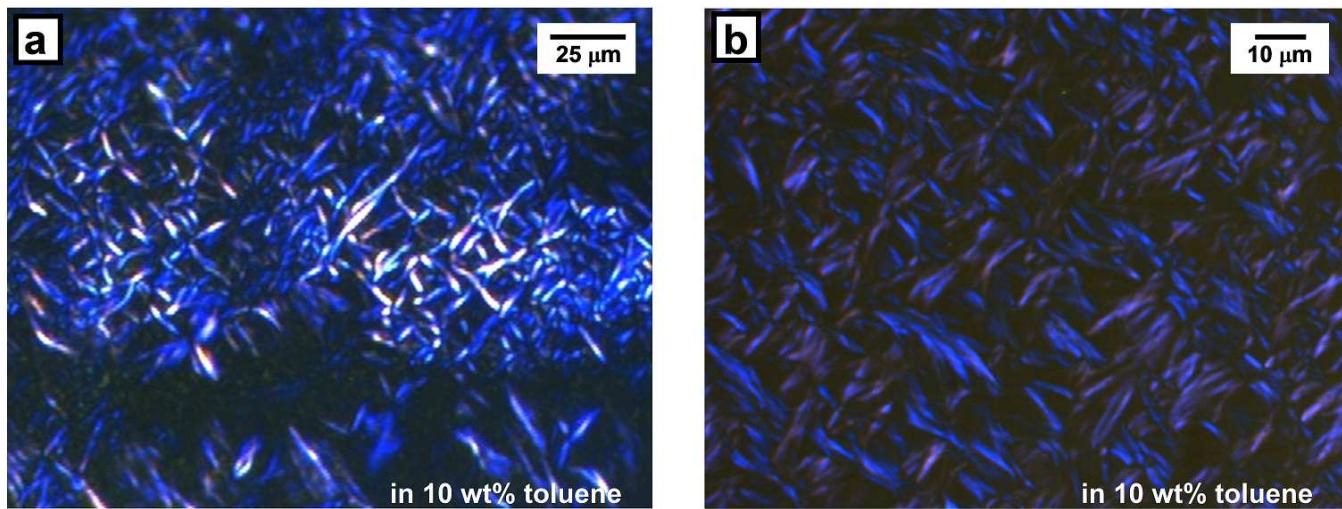
Anal. Chemical Formula: $(C_{23}H_{28}O_2)_n$ (336.47)_{*n*}: Calcd. C, 82.10; H, 8.39; O, 9.51. Found C, 81.06; H, 9.71. 1H NMR (400 MHz, $CDCl_3$): δ = 0.88 (t, 3H, J = 6.8 Hz, $-CH_3$), 1.20–1.46 (m, 13H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 1.50–1.80 (m, 2H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 4.32–4.40 (m, 1H, Ar–O–CH(CH_3) $CH_2(CH_2)_5CH_3$), 4.85 (s, 1H, HO –Ar–C≡C–Ar), 6.79 (d, 2H, J = 8.8 Hz, Ar–H *ortho* to $-O$ –CH(CH_3) $(CH_2)_6CH_3$), 6.83 (d, 2H, J = 8.8 Hz, Ar–H *ortho* to HO–), 7.39 (d, 2H, J = 6.4

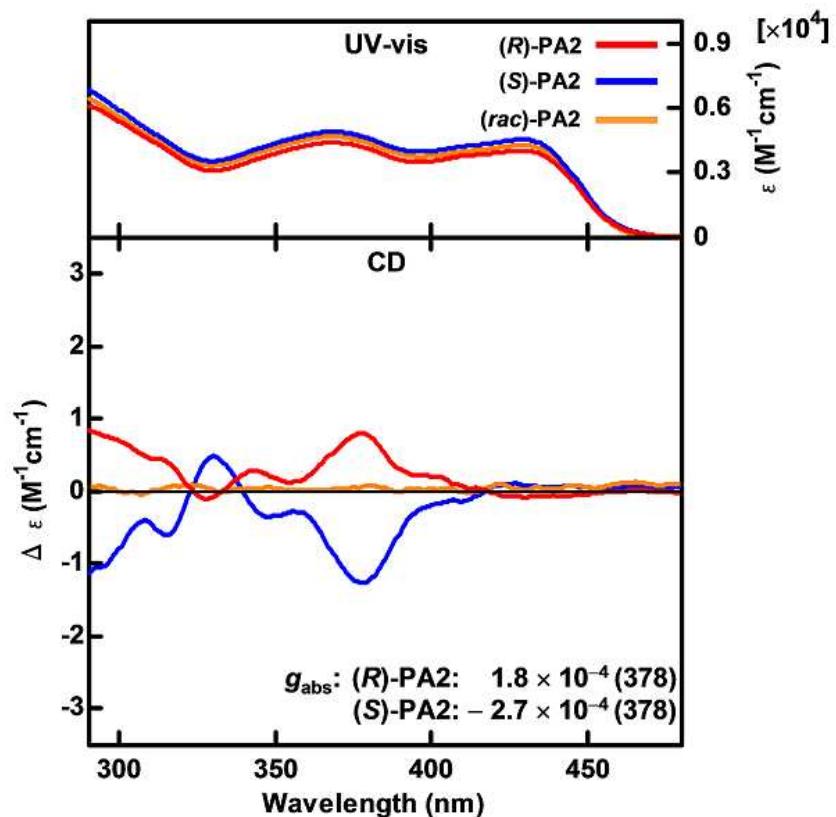

Hz, Ar–H *meta* to HO–), 7.41 (d, 2H, *J* = 6.0 Hz, Ar–H *meta* to –O–CH(CH₃)(CH₂)₆CH₃). ¹³C NMR (400 MHz, CDCl₃): δ = 14.1, 19.7, 22.6, 25.5, 29.2, 29.5, 31.8, 36.4, 73.9, 87.5, 88.0, 115.3, 115.6, 132.7, 132.9, 155.2. HRMS (DART) calcd for C₂₃H₂₈O₂ [M + H⁺]: 337.2162. Found: 337.2152. [α]_D²⁵ –3.21° (*c* 1.0, CHCl₃).

2. Liquid Crystallinity of **PA1** Polymers


PA1, having a PAPA structure, exhibited thermotropic LC behavior having a Smectic A (S_A) LC phase. Polarizing optical microscopy (POM) analysis revealed that **PA1** has a nematic LC (N-LC) phase with a sandy LC texture (Figure S1a) and no isotropic phase. The temperature ranges of the N-LC phase were 95–300 and 65–300 °C in heating and cooling processes, respectively, and thermal decomposition occurred at temperatures over 300 °C.

The LC phase of **PA1** was also investigated using X-ray diffraction (XRD). The XRD patterns of **PA1** have two sharp diffraction peaks at 5.5 and 17.9° in 2θ (Figure S1b), corresponding to distances of 16.0 and 5.0 Å, respectively. The former represents the smectic interlayer distance while the latter corresponds to the distance between phenyl nonyloxy groups. The 16.0 Å smectic interlayer distance is comparable to the 14.5 Å calculated side chain length (L_1) of the side chain having the 4-nonyloxy phenyl moiety. Whereas the side chain with the hexyl moiety has a calculated side chain length (L_2) of 6.9 Å. The lengths of the **PA1** side chains were calculated using molecular mechanics calculations.


3. Supporting Information Schemes, Figures, and Tables


Figure S1. (a) POM image of (R)-PA1 at 100 °C in cooling process. (b) XRD patterns showing the Smectic A (S_A) LC phase of (R)-PA1 (5.5° and 17.9° in 2θ), inset shows the Laue pattern of the polymer.

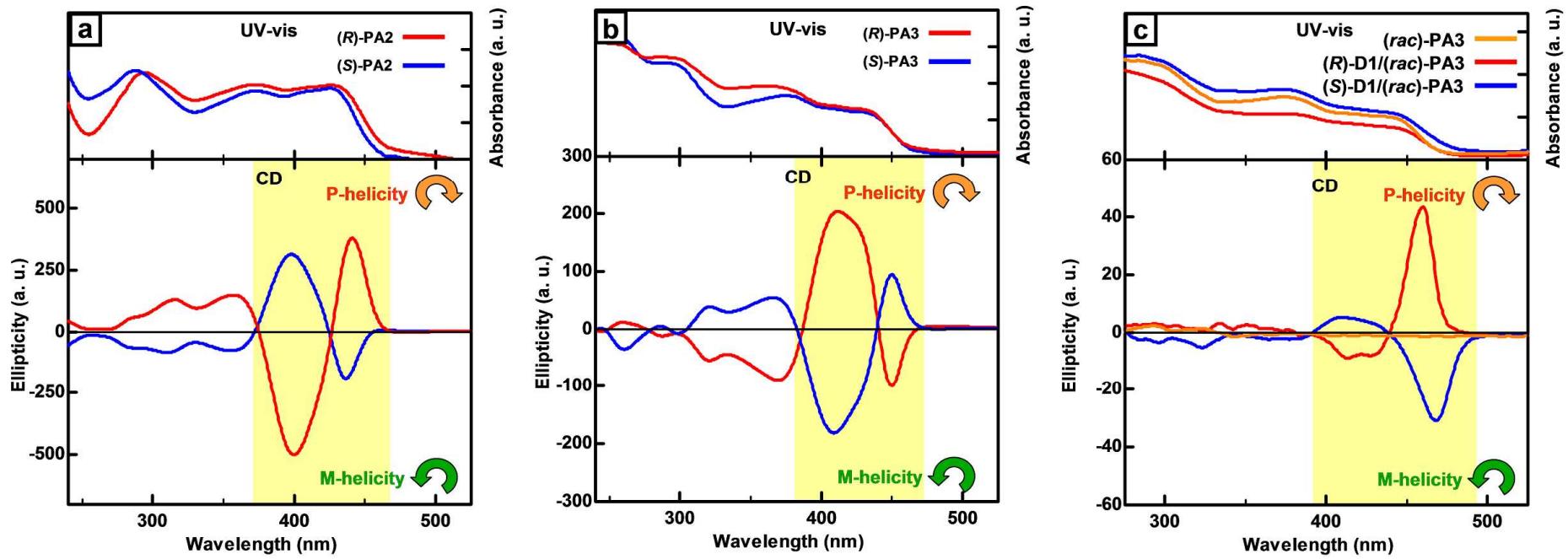

Figure S2. The XRD patterns of (a) (rac)-PA2 N-LC film, and (b) (S)-D1/(rac)-PA2 N*-LC film show reflections describing the polymer interchain distance within the N-LC (5.7° in 2θ) and N*-LC (5.2° in 2θ) domains, respectively. Inset shows the Laue pattern of the polymers.

Figure S3. POM image of (a) **(S)-PA3**, and (b) **(S)-D1** doped **(rac)-PA3** (10 wt%) in 10 wt% lyotropic LC solution in toluene showing a fan like texture of a short pitch N*-LC phase.

Figure S4. UV-vis (upper) and CD spectra (lower) of **PA2** in toluene solution ($c = 1.2 \times 10^{-4}$ M).

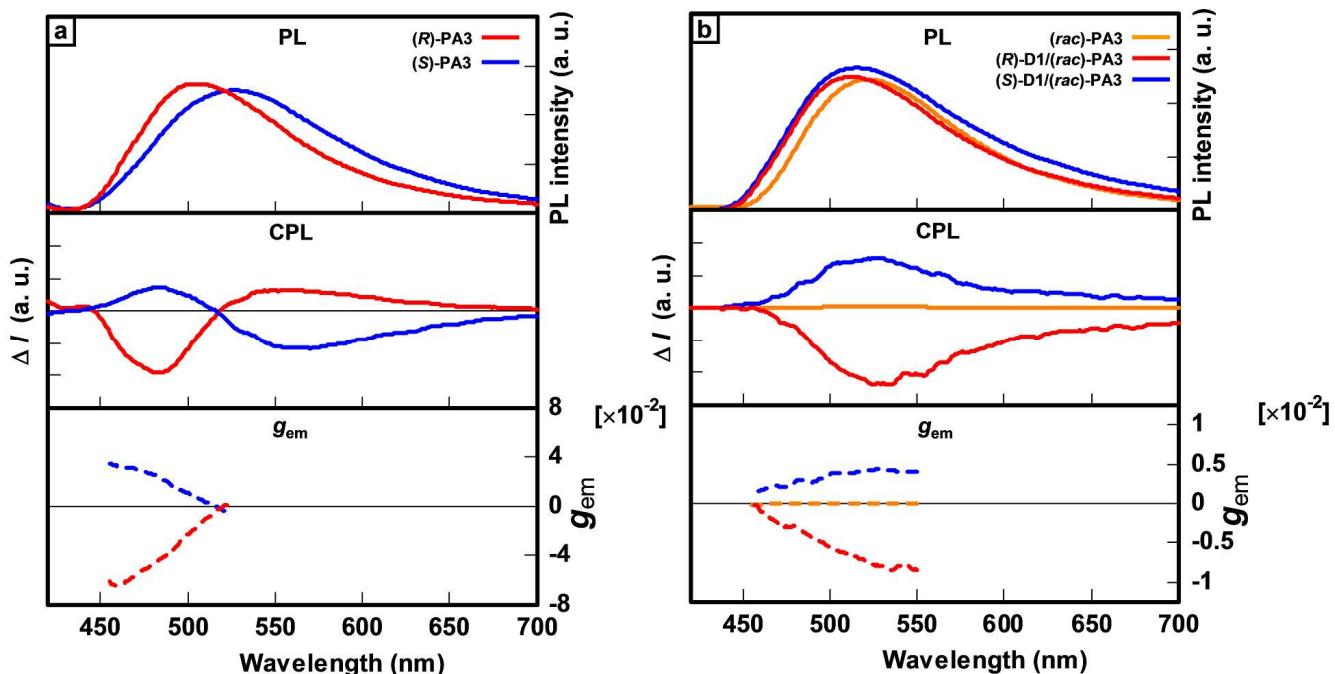

Figure S5. UV-vis (upper) and CD spectra (lower) of (a) (R)-/(S)-PA2 cast film, (b) (R)-/(S)-PA3 cast film, and (c) (R)-/(S)-D1 doped (rac)-PA3 (10 wt%) N*-LC film.

Table S1. Absorption dissymmetry factors (g_{abs}) of the *di*-substituted LCPAs in cast film and N*-LC film.

g_{abs} (wavelength/ nm) ^a	
(R)-PA2	3.7×10^{-2} (445)^b
(S)-PA2	-2.4×10^{-2} (440)^b
(R)-PA3	-4.6×10^{-3} (450)^b
(S)-PA3	7.6×10^{-3} (451)^b
(R)-D1/(rac)-PA3	8.0×10^{-4} (461)^c
(S)-D1/(rac)-PA3	-2.1×10^{-3} (471)^c

^aWavelength at which g_{abs} was evaluated

^bIn cast film, ^cin N*LC film

Figure S6. PL (upper), CPL spectra (middle), and g_{em} (lower) spectra of (a) (R)-/(S)-PA3 N*-LC film, and (b) (R)-/(S)-D1 doped (rac)-PA3 (10 wt%) N*-LC film. The measurements were performed with excitation using unpolarized light at 367 nm.

Table S2. Emission dissymmetry factors (g_{em}) of the *di*-substituted LCPAs in N*-LC films.

g_{em}(wavelength/ nm)^a	
(R)-PA3	-6.4×10^{-2} (458)
(S)-PA3	3.5×10^{-2} (456)
(R)-D1/(rac)-PA3	-8.4×10^{-3} (535)
(S)-D1/(rac)-PA3	4.2×10^{-3} (535)

^aWavelength at which g_{em} was evaluated