Metal-Free Synthesis of Diaryl Sulfones from Arylsulfinic Acid Salts and Diaryliododnium Salts

Natalie Umerski, Georg Manolikakes*

Department of Organic Chemsitry and Chemical Biology, Goethe University Frankfurt

Supporting Information

General

Solvents All anhydrous solvents were purchased from commercial suppliers and stored over MS4A under an atmosphere of Argon. Solvents for column chromatography were technical standard.

Regents All starting materials which were purchased from commercial sources were used without further purification.

Sulfinic acid sodium salts were purchased. Non-commercially available sulfinic acid sodium salts were prepared from the corresponding sulphonyl chlorides according to Deng et. al. 1

Commercially available diphenyliodonium salts were purchased. Following diaryliodonium salts were synthesized according to literature: Bis(4-methylphenyl)iodonium triflate (2f), triflate bis(2,4,6-trimethylphenyl)iodonium triflate bis(2,4-dimethylphenyl)iodonium (2h), (2g), bis(4-bromophenyl)iodonium triflate (2j), bis(4-fluorophenyl)iodonium triflate (2k), bis(4-chlorophenyl)iodonium triflate (2I), (2,4,6-trimethylphenyl)(phenyl)iodonium triflate (2m), (2-methylphenyl)(2,4,6-trimethylphenyl)iodonium triflate (2p),² (2,4,6-triisopropylphenyl)(phenyl) iodonium bis(4-methoxyphenyl)iodonium (2i),⁴ (3-trifluoromethylphenyl) triflate tosylate (4-methoxyphenyl)iodonium tosylate (20), (2-methylphenyl)(2,4,6-triisopropylphenyl)iodonium triflate (2q).

Chromatography Column chromatography was performed with Silica 0.04-0.063 mm/ 230-400 mesh. Thin layer chromatography was done using aluminium plates coated with SiO_2 . The spots were visualized by ultraviolet light.

NMR spectroscopy 1 H and 13 C NMR spectra were recorded at 250 or 400 MHz and 63 or 101 MHz, respectively. Chemical shifts are reported as δ - values relative to the residual CDCl₃-peak (δ = 7.26 ppm for 1 H and δ = 77.16 ppm for 13 C). Coupling constants (J) are given in Hz and multiplicities of the signals are abbreviated as follows: s = singlet; d = doublet; t = triplet; q = quartett; sp = septet; m = multiplet; dd = doublet of doublets and dt = doublet of triplets.

Mass Spectrometry Mass spectra (MS) were measured on a *VG Plattform II* - spectrometer using ESI (electrospray ionisation) techniques at the Department of Chemistry.

Melting points are reported uncorrected.

Reactions All reactions were carried out under an inert atmosphere in dried glassware unless otherwise noted. All yields refer to isolated yields of compounds estimated to be > 95% pure as determined by ¹H-NMR.

TP 1: Typical Procedure for Sulfones

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirrer and a rubber septum was charged with diaryiodonium salt $\mathbf{2}$ (1.1 equiv), arylsulfinic acid sodium salt $\mathbf{1}$ (1.0 equiv) and DMF (2.0 mL/mmol sodium salt, 0.5 M). The reaction mixture was heated to 90 °C and stirred at this temperature for 24 h. After cooling to room temperature, 10 mL sat. aqueous NH₄Cl-solution was added and the aqueous layers were extracted three times with 15 mL CH₂Cl₂. The combined organic layers were washed with 15 mL dest. H₂O, dried over Na₂SO₄ and the solvents were removed under reduced pressure. Purification by column chromatography (Cyclohexane:EtOAc) afforded the analytically pure product.

1-(Phenylsulfonyl)benzene (3a)

1-(Phenylsulfonyl)benzene (3a) was synthesized according to TP 1 from diphenyliodonium triflate (2a) (0.55 mmol, 236.6 mg) and benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $9:1 \rightarrow 4:1$) yielded the product as colorless solid (104.2 mg, 96 %).

m.p.: 122-124 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.96-7.93 (m, 4H), 7.58-7.47 (m, 6H).

¹³**C-NMR** (101 MHz, CDCl₃): δ = 141.73, 133.30, 129.40, 127.77.

MS: m/z: calc. for $C_{12}H_{10}O_2S+Na^+$ 241.03, found 241.08.

R_f (Cyclohexane:EtOAc 9:1): 0.18.

Analytical data are consistent with literature.⁷

1-Methyl-4-(phenylsulfonyl)benzene (3b)

1-Methyl-4-(phenylsulfonyl)benzene (**3b**) was prepared according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and p-toluenebenzenesulfinic acid sodium salt (**1b**) (0.5 mmol, 93.8 mg) in 1.0 mL DMF.

Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 9:1) yielded the product as colorless solid (111.4 mg, 96 %).

1-Methyl-4-(phenylsulfonyl)benzene **(3b)** was also synthesized according to TP 1 from bis(4-methylphenyl)iodonium triflate **2f** (0.55 mmol, 252.0 mg) and benzenesulfinic acid sodium salt **(1a)** (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as colorless solid (107.0 mg, 92 %).

m.p.: 127-129 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 7.98 – 7.89 (m, 2H), 7.86 – 7.79 (m, 2H), 7.58 – 7.44 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H).

¹³C-NMR (63 MHz, CDCl₃): δ = 144.27, 142.19, 138.85, 133.09, 130.03, 129.33, 127.86, 127.63, 21.67.

MS: m/z: calc. for $C_{13}H_{12}O_2S+Na^+$ 255.05, found 255.09.

R_f (Cyclohexane:EtOAc 9:1): 0.27.

Analytical data are consistent with literature.⁷

1-(4-Methoxyphenylsulfonyl)benzene (3c)

1-(4-Methoxyphenylsulfonyl)benzene (**3c**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 4-methoxybenzenesulfinic acid sodium salt (**1c**) (0.5 mmol, 102.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 4:1$) yielded the product as colorless solid (111.7 mg, 90 %).

1-(4-Methoxyphenylsulfonyl)benzene (3c) was also prepared according to TP 1 from bis(4-methoxyphenyl)iodonium tosylate (2i) (0.55 mmol, 248.8 mg) and benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 4:1$) yielded the product as colorless solid (108.0 mg, 87 %).

m.p.: 92-93 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.97 – 7.79 (m, 4H), 7.59 – 7.40 (m, 3H), 7.04 – 6.86 (m, 2H), 3.83 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃): δ = 163.50, 142.50, 133.24, 132.95, 130.00, 129.31, 127.42, 114.63, 55.76.

MS: m/z: calc. for C₁₃H₁₂O₃S+Na⁺ 271.04, found 271.08.

R_f (Cyclohexane:EtOAc 9:1): 0.13.

Analytical data are consistent with literature.⁷

1-Bromo-4-(phenylsulfonyl)benzene (3d)

1-Bromo-4-(phenylsulfonyl)benzene (**3d**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 4-bromobenzenesulfinic acid sodium salt (**1d**) (0.5 mmol, 135.3 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 4:1) yielded the product as yellow solid (133.0 mg, 90 %).

1-Bromo-4-(phenylsulfonyl)benzene (**3d**) was also prepared according to TP 1 from bis(4-bromophenyl) iodonium triflate (**2j**) (0.55 mmol, 323.4 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL NMP. Purification by chromatography (Cyclohexane:EtOAc $9:1 \rightarrow 4:1$) yielded the product as yellow solid (90.6 mg, 61 %).

m.p.: 98-99 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.98 – 7.87 (m, 2H), 7.84 – 7.76 (m, 2H), 7.68 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.55 – 7.46 (m, 2H).

¹³C-NMR (101 MHz, CDCl₃): δ = 141.30, 140.83, 133.59, 132.74, 129.55, 129.33, 128.59, 127.79.

MS: m/z: calc. for $C_{12}H_9BrO_2S+Na^+318.94$, found 318.99.

R_f (Cyclohexane:EtOAc 9:1): 0.29.

Analytical data are consistent with literature.⁷

1-(4-Fluorophenylsulfonyl)benzene (3e)

1-(4-Fluorophenylsulfonyl)benzene (**3e**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 4-fluorobenzenesulfinic acid sodium salt (**1e**) (0.5 mmol, 96.1 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 4:1$) yielded the product as colorless solid (97.8 mg, 83 %).

1-(4-Fluorophenylsulfonyl)benzene (**3e**) was also prepared according to TP 1 from bis(4-fluorophenyl)iodonium triflate (**2k**) (0.55 mmol, 256.4 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL NMP. Purification by chromatography (Cyclohexane:EtOAc $9:1 \rightarrow 4:1$) yielded the product as colorless solid (55.0 mg, 47 %).

m.p.: 112-113 °C.

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.15 - 7.74$ (m, 4H), 7.65 - 7.42 (m, 3H), 7.18 (t, J = 8.4 Hz, 2H).

¹³C-NMR (101 MHz, CDCl₃): δ = 165.58 (d, J = 255.9 Hz), 141.63, 137.85 (d, J = 3.3 Hz), 133.45, 130.62 (d, J = 9.6 Hz), 129.51, 127.71, 116.73 (d, J = 22.7 Hz).

MS: m/z: calc. for $C_{12}H_9FO_2S+Na^+$ 259.02, found 259.06.

 R_f (Cyclohexane:EtOAc 9:1): = 0.23.

Analytical data are consistent with literature. 7

1-(4-tert-Butylphenylsulfonyl)benzene (3f)

1-(4-tert-Butylphenylsulfonyl)benzene (**3f**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.50 mmol, 215.1 mg) and 4-tert-butylbenzenesulfinic acid sodium salt (**1f**) (0.55 mmol, 165.3 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 4:1) yielded the product as white solid (73.4 mg, 54 %).

m.p.: 127-128 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.97 - 7.94 (m, 2H), 7.87 - 7.84 (m, 2H), 7.57 – 7.47 (m, 5H), 1.30 (s, 9H).

¹³C-NMR (101 MHz, CDCl₃): δ = 157.21, 142.10, 138.69, 133.12, 129.34, 127.74, 127.66, 126.44, 35.31, 31.16.

MS: m/z: calc. for $C_{16}H_{18}O_2S+Na^+$ 297.09, found 297.19.

R_f (Cyclohexane:EtOAc 9:1): 0.31.

Analytical data are consistent with literature.8

1-(4-Nitrophenylsulfonyl)benzene (3g)

1-(4-Nitrophenylsulfonyl)benzene (**3g**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 4-nitrobenzenesulfinic acid sodium salt (**1g**) (0.50 mmol, 139.5 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 4:1$) yielded the product as yellowish powder (104.6 mg, 81 %).

m.p.: 143-145 °C.

¹H-NMR (400 MHz, CDCl₃): δ = 8.37 – 8.28 (m, 2H), 8.17 – 8.08 (m, 2H), 8.02 – 7.91 (m, 2H), 7.67 – 7.59 (m, 1H), 7.60 – 7.51 (m, 2H).

¹³C-NMR (101 MHz, CDCl₃): δ = 150.48, 147.50, 140.16, 134.25, 129.82, 129.10, 128.16, 124.65.

MS: m/z: calc. for $C_{12}H_9NO_4S+H^+$ 264.03, found 263.95.

R_f (Cyclohexane:EtOAc 9:1): 0.30.

Analytical data are consistent with literature.9

2-(Phenylsulfonyl)naphthalene (3h)

2-(Phenylsulfonyl)naphthalene (**3h**) was prepared according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 2-naphtalenesulfinic acid sodium salt (**1h**) (0.5 mmol, 107.1 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as colorless solid (84.4 mg, 63 %).

m.p.: 119-121 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 8.58 (s, 1H), 8.05 – 7.96 (m, 3H), 7.93 (d, J = 8.7 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.68 – 7.47 (m, 5H).

¹³C-NMR (101 MHz, CDCl₃): δ = 141.66, 138.42, 135.01, 133.15, 132.22, 129.63, 129.40, 129.27, 129.14, 129.09, 127.91, 127.71, 127.62, 122.69.

MS: m/z: calc. for $C_{16}H_{12}O_2S+Na^+$ 291.05, found 291.09.

R_f (Cyclohexane:EtOAc 9:1): 0.20.

Analytical data are consistent with literature. 10

1-(Trifluoromethyl)-4-(phenylsulfonyl)benzene (3i)

1-(Trifluoromethyl)-4-(phenylsulfonyl)benzene (**3i**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 4-triflouromethylbenzenesulfinic acid sodium salt (**1i**) (0.5 mmol, 122.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 9:1) yielded the product as colorless solid (118.4 mg, 83 %).

m.p.: 90-91 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 8.07 (d, J = 8.2 Hz, 2H), 8.02 – 7.89 (m, 2H), 7.79 (d, J = 8.8 Hz, 2H), 7.67 – 7.49 (m, 3H).

¹³C-NMR (101 MHz, CDCl₃): δ = 145.38, 140.71, 134.97 (d, J = 33.1 Hz), 133.91, 129.67, 128.34, 128.03, 126.57 (g, J = 3.7 Hz), 123.23 (d, J = 273.1 Hz).

MS: m/z: calc. for $C_{13}H_9F_3O_2S+Na^+$ 309.02, found 309.07.

R_f (Cyclohexane:EtOAc 9:1): 0.26.

Analytical data are consistent with literature. 11

1,3,5-Triisopropyl-2-(phenylsulfonyl)benzene (3j)

1,3,5-Triisopropyl-2-(phenylsulfonyl)benzene (**3j**) was prepared according to TP 1 from (2,4,6-triisopropylphenyl)(phenyl)iodonium triflate (**2n**) (0.55 mmol, 311.5 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1) yielded the product as colorless solid (162.0 mg, 94 %).

1,3,5-Triisopropyl-2-(phenylsulfonyl)benzene (3j) was also synthesized according to TP 1 from diphenyliodonium triflate (2a) (0.55 mmol, 236.6 mg) and 1,3,5-triisopropylbenzenesulfinic acid sodium salt (1j) (0.45 mmol, 161.3 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as colorless solid (84.5 mg, 61 %).

m.p.: 122- 123 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.81 – 7.69 (m, 2H), 7.58 – 7.42 (m, 3H), 7.16 (s, 2H), 4.18 (hept, J = 6.7 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H), 1.13 (d, J = 6.8 Hz, 12H).

¹³C-NMR (101 MHz, CDCl₃): δ = 153.99, 151.45, 145.46, 132.37, 132.33, 129.07, 125.76, 124.15, 34.35, 29.54, 24.72, 23.69.

MS: m/z: calc. for $C_{21}H_{28}O_2S+Na^+$ 367.17, found 367.22.

EA: calc.: C 73.21 H 8.19 S 9.31 found: C 73.09 H 8.18 S 9.28

IR (cm⁻¹): 2960, 1597, 1444, 1292, 1147, 1090, 1057, 886, 760, 691, 556, 573.

R_f (Cyclohexane:EtOAc 9:1): 0.50.

8-(Phenylsulfonyl)quinoline (3k)

8-(Phenylsulfonyl)quinoline (**3k**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.55 mmol, 236.6 mg) and 8-quinolinesulfinic acid sodium salt (**1k**) (0.55 mmol, 120.0 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 4:1) yielded the product as colorless solid (120.4 mg, 90 %).

m.p.: 188-190 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 8.96 (dd, J = 4.0, 1.3 Hz, 1H), 8.73 (d, J = 7.3 Hz, 1H), 8.22 (dd, J = 7.5, 6.1 Hz, 2H), 8.19 – 8.02 (m, 2H), 7.69 (t, J = 7.8 Hz, 1H), 7.56 – 7.38 (m, 4H).

¹³C-NMR (63 MHz, CDCl₃): δ = 151.25, 143.89, 142.04, 138.09, 136.36, 134.68, 132.97, 131.90, 129.31, 129.06, 128.39, 125.61, 122.1.

MS: m/z: calc. for $C_{15}H_{11}NO_2S+H^+$ 270.05, found 270.11.

R_f (Cyclohexane:EtOAc 4:1): 0.11.

Analytical data are consistent with literature. 12

2-(Phenylsulfonyl)pyridine (3I)

2-(Phenylsulfonyl)pyridine (3I) was synthesized according to TP 1 from diphenyliodonium triflate (2a) (0.55 mmol, 236.6 mg) and 2-pyridinesulfinic acid sodium salt (1I) (0.5 mmol, 87.0 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 1:1$) yielded the product as colorless solid (44.0 mg, 40 %).

m.p.: 92-93 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 8.72 – 8.63 (m, 1H), 8.25 – 8.17 (m, J = 7.9, 0.9 Hz, 1H), 8.12 – 8.03 (m, 2H), 7.93 (td, J = 7.8, 1.7 Hz, 1H), 7.67 – 7.49 (m, 3H), 7.46 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H).

¹³C-NMR (63 MHz, CDCl₃): δ = 159.10, 150.62, 139.16, 138.20, 133.87, 129.25, 129.11, 127.00, 122.33.

MS: m/z: calc. for $C_{11}H_9NO_2S+Na^+$ 242.02, found 242.09.

R_f (Cyclohexane:EtOAc 4:1): 0.11.

Analytical data are consistent with literature.9

2-(Phenylsulfonyl)thiophene (3m)

2-(Phenylsulfonyl)thiophene (**3m**) was synthesized according to TP 1 from diphenyliodonium triflate (**2a**) (0.50 mmol, 215.1 mg) and 2-thiophenesulfinic acid sodium salt (**1m**) (0.55 mmol, 98.5 mg) in 1.0 mL DMSO. Purification by chromatography (Cyclohexane:EtOAc 9:1 \rightarrow 4:1) yielded the product as colorless solid (93.6 mg, 83 %).

m.p.: 123-125 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 8.08 – 7.89 (m, 2H), 7.73 – 7.62 (m, 2H), 7.62 – 7.44 (m, 3H), 7.08 (dd, J = 4.9, 3.8 Hz, 1H).

¹³C-NMR (63 MHz, CDCl₃): δ = 143.27, 142.29, 133.98, 133.51, 133.43, 129.45, 127.97, 127.47.

MS: m/z: calc. for $C_{10}H_8O_2S_2+Na^+$ 246.99, found 247.03.

R_f (Cyclohexane:EtOAc 9:1): 0.18.

Analytical data are consistent with literature.9

1,3,5-Trimethyl-2-(phenylsulfonyl)benzene (3n)

1,3,5-Trimethyl-2-(phenylsulfonyl)benzene (**3n**) was prepared according to TP 1 from bis(2,4,6-trimethylphenyl)iodonium triflate (**2g**) (0.55 mmol, 297.0 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 9:1) yielded the product as white solid (118.4 mg, 91 %).

1,3,5-Trimethyl-2-(phenylsulfonyl)benzene (**3n**) was also synthesized according to TP 1 from (2,4,6-trimethylphenyl)(phenyl)iodonium triflate (**2m**) (0.55 mmol, 259.7 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as white solid (114.0 mg, 88 %).

m.p.: 87-89 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.83 – 7.72 (m, 2H), 7.54 (dd, J = 8.4, 6.3 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 6.94 (s, 2H), 2.59 (s, 6H), 2.30 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃): δ = 143.70, 143.51, 140.25, 133.94, 132.69, 132.34, 129.02, 126.35, 22.94, 21.15.

MS: m/z: calc. for $C_{15}H_{16}O_2S+Na^+$ 283.08, found 283.13.

R_f (Cyclohexane:EtOAc 9:1): 0.34.

Analytical data are consistent with literature.⁷

1,4-Dimethyl-2-(phenylsulfonyl)benzene (3o)

1,4-Dimethyl-2-(phenylsulfonyl)benzene (3o) was prepared according to TP 1 from bis(2,5-dimethylphenyl)iodonium triflate (2h) (0.55 mmol, 297.2 mg) and benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as white solid (103.9 mg, 84 %).

m.p.: 112-114 °C.

¹**H-NMR** (250 MHz, CDCl₃): δ = 8.04 (s, 1H), 7.90 – 7.82 (m, 2H), 7.60 – 7.44 (m, 3H), 7.32 – 7.26 (m, 1H), 7.10 (d, J = 7.7 Hz, 1H), 2.39 (d, J = 10.6 Hz, 6H).

¹³C-NMR (63 MHz, CDCl₃): δ = 141.68, 138.56, 136.59, 134.95, 134.46, 133.03, 132.74, 129.89, 129.10, 127.70, 21.01, 19.81.

MS: m/z: calc. for $C_{14}H_{14}O_2S+Na^+$ 269.06, found 269.10.

R_f (Cyclohexane:EtOAc 9:1): 0.29.

Analytical data are consistent with literature.⁷

1-(4-Chlorophenylsulfonyl)benzene (3p)

1-(4-Chlorophenylsulfonyl)benzene (**3p**) was prepared according to TP 1 from bis(4-chlorophenyl)iodonium triflate (**2l**) (0.55 mmol, 274.5 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc $20:1 \rightarrow 9:1$) yielded the product as white solid (120.9 mg, 96 %).

m.p.: 96-97 °C.

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.02 - 7.79$ (m, 4H), 7.63 – 7.43 (m, 5H).

¹³C-NMR (63 MHz, CDCl₃): δ = 141.40, 140.34, 140.03, 133.55, 129.74, 129.54, 129.26, 127.78.

MS: m/z: calc. for $C_{12}H_9ClO_2S+Na^+$ 274.99, found 275.04.

R_f (Cyclohexane:EtOAc 9:1): 0.29.

Analytical data are consistent with literature.⁷

1-(Trifluoromethyl)-3-(phenylsulfonyl)benzene (3q)

1-(Trifluoromethyl)-3-(phenylsulfonyl)benzene (**3q**) was prepared according to TP 1 from (4-methoxyphenyl) (3-trifluoromethylphenyl)iodonium tosylate (**2o**) (0.55 mmol, 302.7 mg) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg) in 1.0 mL DMF. Purification by chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 9:1) yielded the product as colorless needles (111.7 mg, 78 %).

m.p.: 83-84 °C.

¹**H-NMR** (400 MHz, CDCl₃): δ = 8.22 (s, 1H), 8.13 (d, J = 7.9 Hz, 1H), 8.02 – 7.92 (m, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.71 – 7.49 (m, 4H).

¹³C-NMR (63 MHz, CDCl₃): δ = 142.02 (d, J = 147.0 Hz), 133.89, 132.19 (d, J = 33.6 Hz), 131.10 (d, J = 1.2 Hz), 130.27, 130.02 (q, J = 3.6 Hz), 129.71, 128.02, 124.82 (q, J = 3.9 Hz), 123.24 (d, J = 273.4 Hz).

MS: m/z: calc. for $C_{13}H_9FO_2S+Na^+$ 309.02, found 309.06.

R_f (Cyclohexane:EtOAc 9:1): 0.20.

Analytical data are consistent with literature. 13

Selectivity Studies

Metall-free

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirrer and a rubber septum was charged with (2-methylphenyl)(2,4,6-trimethylphenyl)iodonium triflate (**2p**) (0.55 mmol, 267.5 mg, 1.1 equiv) and benzenesulfinic acid sodium salt (**1a**) (0.5 mmol, 82.2 mg, 1.0 equiv) in 1.0 mL DMF. After heating to 90 °C, the reaction mixture was stirred at this temperature for 24 h. After cooling to room temperature, 10 mL sat. aq. NH₄Cl-solution was added and the aqueous layers were extracted three times with 15 mL CH₂Cl₂. The combined organic layers were washed with 15 mL dest. H₂O, dreid over Na₂SO₄ and the solvents were removed under reduced pressure. Purification by column chromatography (Cyclohexan:EtOAc 20:1 \rightarrow 9:1) yielded two products, **3n** (94.8 mg, 73 %) and **3r** (23.1 mg, 20 %), as colorless solids.

Cu(I)-catalyzed

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirrer and a rubber septum was charged with (2-methylphenyl)(2,4,6-trimethylphenyl)iodonium triflate (2p) (0.55 mmol, 267.5 mg, 1.1 equiv), benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg, 1.0 equiv) and CuI (0.05 mmol, 9.5 mg, 10 mol-%) in 1.0 mL DMF. After stirring at 90 °C for 24 h, the reaction was cooled to room temperature and 10 mL mL sat. aq. NH₄Cl-solution was added and the aqueous layers were extracted three times with 15 mL CH₂Cl₂. The combined organic layers were washed with 15 mL dest. H₂O, dried over Na₂SO₄ and the solvents were removed under reduced pressure. Isolation by column chromatography (Cyclohexan:EtOAc 100:1 \rightarrow 9:1) afforded also two products, 3n (22.5 mg, 17 %) and 3r (65.9 mg, 57 %), as colorless solids.

Metall-free

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirrer and a rubber septum was charged with (2-methylphenyl)(2,4,6-triisopropylphenyl)iodonium triflate (2q) (0.55 mmol, 313.17 mg, 1.1 equiv) and

benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg, 1.0 equiv) in 1.0 mL DMF. After heating to 90 °C, the reaction mixture was stirred at this temperature for 24 h. After cooling to room temperature, 10 mL sat. aq. NH₄Cl-solution was added and the aqueous layers were extracted three times with 15 mL CH₂Cl₂. The combined organic layers were washed with 15 mL dest. H₂O, dried over Na₂SO₄ and the solvents were removed under reduced pressure. Purification by column chromatography (Cyclohexane:EtOAc 20:1 \rightarrow 4:1) yielded only product 3j (173.8 mg, 96 %) as colorless solid.

Cu(I)-catalyzed

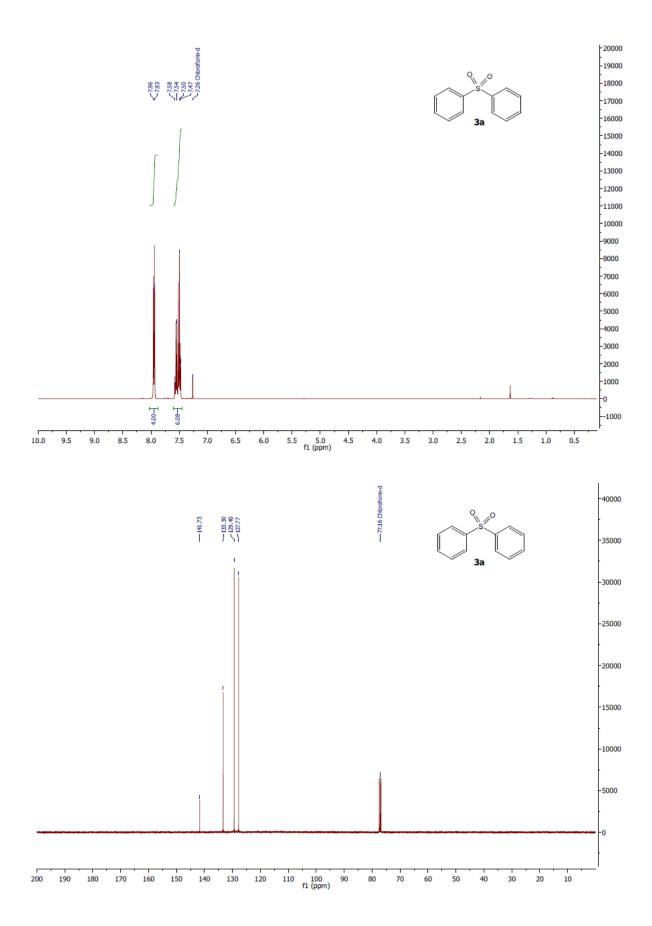
A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirrer and a rubber septum was charged with (2-methylphenyl)(2,4,6-triisopropylphenyl)iodonium triflate (2q) (0.55 mmol, 313.17 mg, 1.1 equiv), benzenesulfinic acid sodium salt (1a) (0.5 mmol, 82.2 mg, 1.0 equiv) and CuI (0.05 mmol, 9.5 mg, 10 mol-%) in 1.0 mL DMF. After stirring at 90 °C for 24 h, the reaction was cooled to room temperature and 10 mL mL sat. aq. NH₄Cl-solution was added and the aqueous layers were extracted three times with 15 mL CH₂Cl₂. The combined organic layers were washed with 15 mL dest. H₂O, dried over Na₂SO₄ and the solvents were removed under reduced pressure. Isolation by column chromatography (Cyclohexan:EtOAc 20:1 \rightarrow 9:1) afforded the other sulfone 3r (74.0 mg, 64 %) as colorless solids.

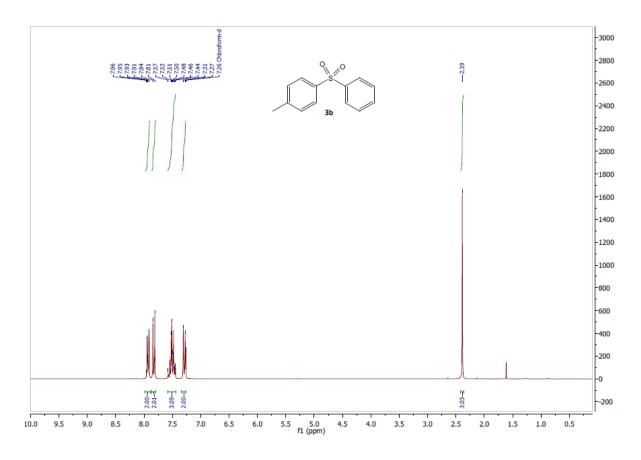
1-methyl-2-(phenylsulfonyl)benzene (3r)

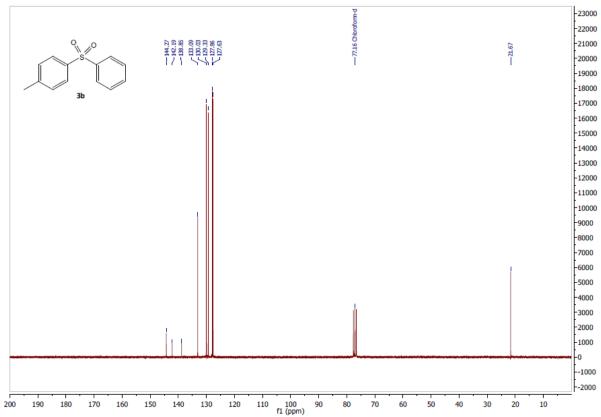
m.p.: 73-73 °C.

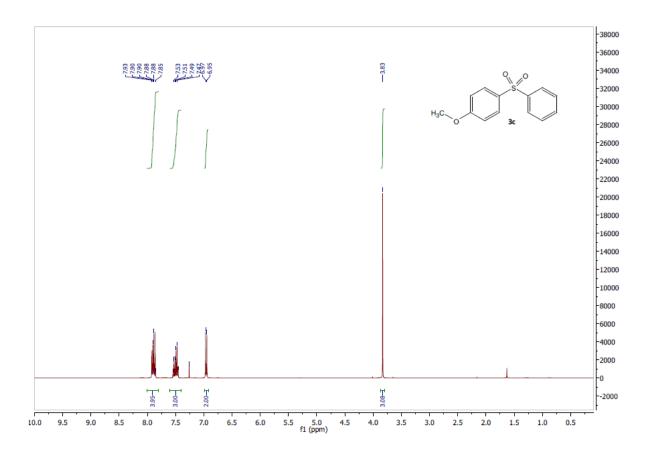
¹**H-NMR** (250 MHz, CDCl₃): δ = 8.21 (dd, J = 7.8, 1.5 Hz, 1H), 7.90 – 7.81 (m, J = 3.7, 2.7 Hz, 2H), 7.62 – 7.44 (m, 4H), 7.44 – 7.34 (m, J = 7.5 Hz, 1H), 7.23 (d, J = 7.4 Hz, 1H), 2.44 (s, 3H).

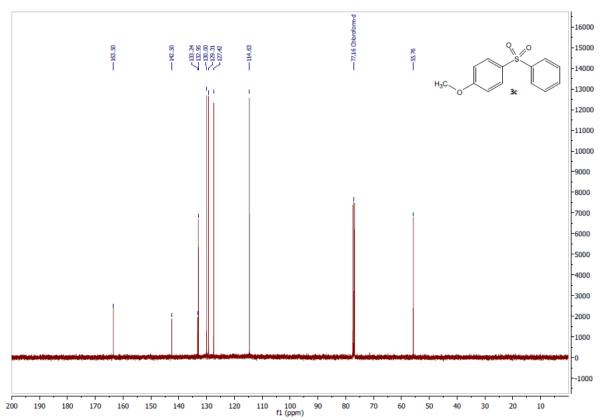
¹³C-NMR (63 MHz, CDCl₃): δ = 141.49, 139.00, 138.13, 133.72, 133.13, 132.80, 129.56, 129.14, 127.77, 126.59, 20.29.


MS: m/z: calc. for $C_{13}H_{12}O_2S+Na^+$ 255.05, found 255.08.


R_f (Cyclohexane:EtOAc 9:1): 0.24.


Analytical data are consistent with literature. 14


References:


- (1) Zhou, X.; Luo, J.; Liu, J.; Peng, S.; Deng, G.-J. Org. Lett. 2011 13, 1432-1435.
- (2) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610 2618.
- (3) Petersen, T. B.; Khan, R.; Olofsson, B. Org. Lett. 2011, 13, 3462-3465.
- (4) Zhu, M.; Jalalian, N.; Olofsson, B. Synlett 2008, 4, 592-596.
- (5) Bouma, M. J.; Olofsson., B. Chem. Eur. J. 2012, 18, 14140–14149.
- (6) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172 8174.
- (7) Marquie, J.; Laporterie, A.; Dubac, J. J. Org. Chem. 2001, 66, 421-425.
- (8) Eroglu, F.; Kâhya, D.; Erdik, E. J. Organomet. Chem. 2010, 695, 267-270.
- (9) Yuan, Y.-q.; Guo, S.-r. Synlett 2011, 18, 2750–2756.
- (10) Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. J. Org. Chem. 2001, 66, 8616-8620.
- (11) Huang, F.; Batey, R. A. Tetrahedron 2007, 63, 7667-7672.
- (12) Gialdi; Ponci Farmaco, Ed. Sci. 1957, 12, 370-372.
- (13)Petrillo, G.; Novi, M.; Garbarino, G.; Dell'Erba, C. Tetrahedron 1987 43, 4625-4634.
- (14) Lee, H. W.; Lam, F. L.; So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. *Angew. Chem. Int. Ed.* **2009**, *48*, 7436-7439.

