Iodide as an Activating Agent for Acid Chlorides in Acylation Reactions.

Russell J. Wakeham^a, James E. Taylor^a, Steven D. Bull^a, James A. Morris^b and Jonathan M. J. Williams^a

^aDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom and ^bSyngenta Research and Development, Jealott's Hill, Bracknell, RG41 6EY, United Kingdom

Supporting information

Contents:

1. Materials and Methods	S2
2. Iodide Optimization	S5
3. Solvent Screen and Optimization	S7
4. NMR mechanistic studies	S8
5. Acid iodide vs Acid chloride NMR experiment	S10
6. Characterization of Products	S11
7. ¹ H and ¹³ C NMR Spectra	S20

Materials and Methods

All reactions requiring an anhydrous, inert atmosphere were carried out under a nitrogen atmosphere using evacuated carousel or ampules. Unless preparative details are provided, all reagents were purchased from commercial suppliers Acros Organics, Aldrich, Alfa Aesar, Fluka, Lancaster, Maybridge, Strem or TCI UK and used without further purification. Thin layer chromatography was carried out on aluminium or plastic backed silica plates, purchased from Aldrich. The plates were visualised under UV (254 nm) light, followed by staining with phosphomolybdic acid dip or potassium permanganate and gentle heating. During compound separations, column chromatography was carried out using 60 micron dry silica purchased from Aldrich. Organic layers were routinely dried with anhydrous MgSO4 and concentrated using a Büchi rotary evaporator.

¹H NMR / ¹³C NMR spectra were run in deuterated (≥99.5%) solvents purchased from Fluorochem unless stated otherwise, on either a Bruker Avance 500 (500 MHz) or a Bruker Avance 300 (300 MHz). Any chemical shifts (δ) are reported as parts per million (ppm) with reference to tetramethylsilane (TMS) (δH = 0.00 ppm) unless otherwise stated. The coupling constants (J) are reported in Hz and signal multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), quintet (qu), doublet of doublets (dd), doublet of triplets (dt), triplet of triplets (tt), multiplet (m), or broad singlet (br. s).

For mass spectrometry data acquisition a micrOTOF electrospray time-of-flight (ESI-TOF) mass spectrometer (Bruker Daltonik, GmbH, Bremen, Germany) was used; this was coupled to an Agilent 1200 LC system (Agilent Technologies, Waldbronn, Germany). The LC system was used as an auto sampler only. 10 μ L of sample was injected into a 30:70 flow of water:acetonitrile at 0.3 mL/min to the mass spectrometer. For each acquisition 10 μ L of a calibrant of 5 mM sodium formate was injected after the sample. The observed mass and isotope pattern matched the corresponding theoretical values as calculated from the expected elemental formula.

Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer, using a Universal ATR accessory for sampling, with relevant absorbance quoted as v in cm-1. Optical rotations were measured on an AA-10 Automatic Polarimeter. HPLC traces were measured using a Perkin Elmer 200 Series HPLC system. Enantiomeric excess measurements were carried out using a Chiracel column as specified for each compound, eluting with HPLC grade hexane and isopropyl alcohol. All other HLPC experiments were carried out using a Phenomenex Prodigy 5 μ m column and an acetonitrile (0.05% TFA): water (0.05% TFA) gradient elution system. Melting points were determined using Stuart SMP10 melting point equipment using closed end glass capillary tubes and are uncorrected.

Iodide source screening and optimization procedure I:

To oven dried Radleys carousel tubes an iodide source (0.2 mmol) and p-toluenesulfonamide (171 mg, 1 mmol) were added, 1 mL of anhydrous acetonitrile dissolved the reagents, benzoyl chloride (140 μ L, 1.2 mmol) was added to the solution using a micropipette. The tube was then sealed and the reaction mixture was immediately heated to 82 °C and stirred for 24 hours. The resulting reaction mixture was then cooled to room temperature and washed with DCM and sodium thiosulfate solution. The organic components were then dried and concentrated *in vacuo*. The resulting crude products were analysed by their ¹H NMR spectra against an internal standard of 2,5-dimethylfuran (0.5 mmol).

General procedure II:

To oven dried Radleys carousel tubes potassium iodide (299 mg, 1.8 mmol) and sulfonamide (3 mmol) were added, 3 mL of anhydrous MeCN dissolved the reagents, acid chloride (3.6 mmol) was added to the solution using a micropipette. The tube was then sealed and the reaction mixture was immediately heated to 82 °C and stirred for 24 hours. The resulting reaction mixture was then cooled to room temperature and washed with DCM and sodium thiosulfate solution. The organic components were then dried and concentrated *in vacuo*. Purification by column chromatography or recrystallization were carried out as necessary.

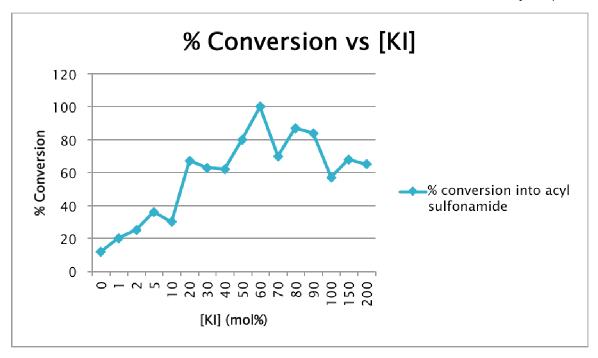
General procedure III:

To oven dried Radleys carousel tubes lithium iodide (402 mg, 3 mmol) and *N*-methylpyrrole (3.9 mmol) were added, 3 mL of anhydrous MeCN dissolved the reagents (4 Å molecular sieves), acid chloride (3 mmol) was added to the solution using a micropipette. The tube was then sealed and the reaction mixture was immediately heated to 82 °C and stirred for 24 hours. The resulting reaction mixture was then cooled to room temperature and washed with DCM and sodium thiosulfate solution. The organic components were then dried and concentrated *in vacuo*. Purification by column chromatography or recrystallization were carried out as necessary.

General procedure IV:

To oven dried Radleys carousel tubes potassium iodide (598 mg, 3.6 mmol) and a hindered phenol (3 mmol) were added, 3 mL of anhydrous MeCN dissolved the reagents, acid chloride (7.2 mmol) was added to the solution using a micropipette. The tube was then sealed and the reaction mixture was immediately heated to 82 °C and stirred for 24 hours. The resulting reaction mixture was then cooled to room temperature and washed with DCM and sodium thiosulfate solution. The organic components were then dried and concentrated *in vacuo*. Purification by column chromatography or recrystallization were carried out as necessary.

Iodide optimization


lodide Source 20 mol %	% conversion into acyl sulfonamide ^a
No lodide	9
Lil	13
Nal	78
KI	69
RbI	46
CsI	18
NH ₄ I	61
Bu ₄ NI	10

 $^{^{\}mathrm{a}}$ Conversions determined by $^{\mathrm{1}}$ H NMR using 2,5 dimethylfuran as an internal standard

Salt 20 mol %	% conversion into acyl sulfonamide ^a
NaCl	41
KCI	8
KBr	44
KI	72

1 mmol p-toluenesulfonamide, 1.2 mmol benzoyl chloride, reflux, MeCN 1 mL, 24 hours.

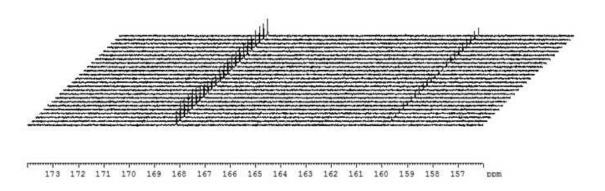
^aConversions determined by ¹H NMR using 2,5 dimethylfuran as an internal standard

1 mmol p-toluenesulfonamide, 1.2 mmol benzoyl chloride, reflux, MeCN 1 mL, 24 hours.

Conversions determined by ¹H NMR using 2,5 dimethylfuran as an internal standard

Solvent Screen:

Solvent (1mL)	% conversion into acyl sulfonamide ^a
Toluene	0
Acetonitrile	46
Hexane	0
THF	0
DCM	0
EtOAc	14
DMSO	0
DMF	0

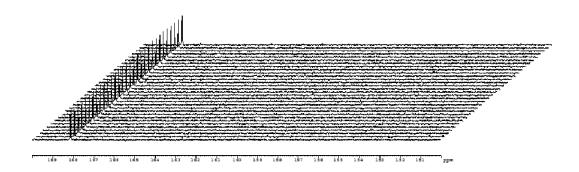

¹ mmol p-toluenesulfonamide, 1.2 mmol benzoyl chloride, 0.6 mmol KI, room temperature, 24 hours.

^aConversions determined by ¹H NMR using 2,5 dimethylfuran as an internal standard

NMR Studies

¹³C NMR (Bruker Advance 500 MHz) heated to 343 K, a spectrum was taken every hour over a 24 hour period, the diagram below shows the first spectrum to the last, bottom to top.

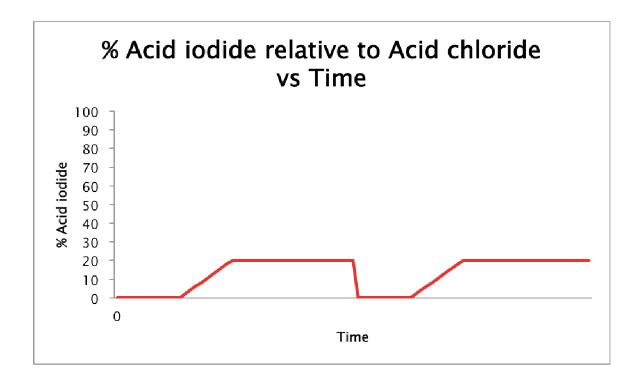
Benzoyl chloride and potassium iodide in deuterated acetonitrile at 343 K, each spectrum represents 1 hour



peak at 168.3 ppm represents acid chloride carbonyl carbon shift beak at 159.6 ppm represents acid iodide carbonvl carbon shift

1.2 mmol benzoyl chloride, 1 mL CD₃CN, 60 mol % KI.

¹³C NMR (Bruker Advance 500 MHz) heated to 343 K, a spectrum was taken every hour over a 24 hour period, the diagram below shows the first spectrum to the last, bottom to top.


Casbonyl segion shows no sold iodide peak with nBe4NI 343 K, CD3CH, each spectrum taken at 20 min intervals, earliest in the foreground. Bensoyl chloride and nBu4NI

1.2 mmol benzoyl chloride, 1 mL CD_3CN , 60 mol % Bu_4NI .

Acid iodide vs Acid chloride NMR experiment:

- benzoyl chloride and KI allowed to equilibrate at 343K in 1 mL deuterated MeCN.
- Estimated 20% average acid iodide at equilibrium
- Add 20 mol % of benzylamine and triethylamine
- Acid iodide carbonyl peak (159.7 ppm) disappears
- After 3 hours the equilibrium returns and 20% of acid iodide is observed

% Acid iodide calculated by the relative intensities of acid chloride C=O peak versus acid iodide C=O peak in the 13 C NMR.

Characterization of products:

N-tosylbenzamide (Table 1, Entry 1)

Following **general procedure II**, *p*-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and benzoyl chloride (418 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as an off-white solid (739 mg, 89% yield) after column chromatography eluting with 3:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.36 (1H, br.s, MePhSO₂NHCOPh), 7.97 (2H, d, *J* = 8.4 Hz, Ar), 7.75 (2H, d, *J* = 8.6 Hz, Ar), 7.56-7.40 (1H, m, Ar), 7.34 (2H, t, *J* = 7.6 Hz, Ar), 7.27 (2H, d, *J* = 8.1 Hz, Ar), 2.36 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 164.4, 145.3, 135.5, 133.5, 131.1, 129.7, 128.7, 127.9, 21.75. IR (film, cm⁻¹): ν max = 1703 (C=O). ESI-MS of [C₁₄H₁₂NO₃S]; theoretical m/z of [M-H]⁻ = 274.0537, measured m/z of [M-H]⁻ = 274.0537.

N-tosylpentanamide (Table 1, Entry 2)

Following **general procedure II**, p-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and valeroyl chloride (434 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as an off-white solid (676 mg, 88% yield) after column chromatography eluting with 3:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.13 (1H, br.s, NH), 7.94 (2H, d, J = 8.4 Hz, Ar), 7.34 (2H, d, J = 8.0 Hz, Ar), 2.43 (3H, s, CH₃), 2.31-2.20 (2H, m, CH₂), 1.52 (2H, dt, J = 15.2, 7.4 Hz, CH₂), 1.24 (2H, dq, J = 14.5, 7.3 Hz, CH₂), 0.82 (3H, t, J = 7.3 Hz, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 171.5, 145.2, 135.6, 129.7, 128.3, 36.0, 26.3, 22.0, 21.7, 13.7. IR (film, cm⁻¹): ν _{max} = 1704 (C=O). ESI-MS of [C₁₂H₁₆NO₃S]⁻; theoretical m/z of [M-H]⁻ = 254.0850, measured m/z of [M-H]⁻ = 254.0854.

4-bromo-N-tosylbenzamide (Table1, Entry 3)

Following **general procedure II**, *p*-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and 4-bromobenzoyl chloride (790 mg, 3.6 mmol) as the acid chloride species. The title compound was recovered as a grey solid (711 mg, 67% yield) after column chromatography eluting with 3:1

Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.09 (1H, br.s, NH), 8.03 (2H, d, J = 8.4 Hz, Ar), 7.66 (2H, d, J = 8.7 Hz, Ar), 7.58 (2H, d, J = 8.8 Hz, Ar), 7.36 (2H, d, J = 8.0 Hz, Ar), 2.45 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 163.4, 145.5, 135.3, 132.3, 130.1, 129.7, 129.3, 128.7, 126.5, 21.7. IR (film, cm⁻¹): v_{max} = 1703 (C=O). ESI-MS of [C₁₄H₁₁BrNO₃S]⁻; theoretical m/z of [M-H]⁻ = 351.9643, measured m/z of [M-H]⁻ = 351.9649.

N-tosyl-p-toluamide (Table 1, Entry 4)

Following **general procedure II**, *p*-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and *o*-toluoyl chloride (470 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as an off-white solid (800 mg, 92% yield) after column chromatography eluting with 3:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 8.75 (1H, br.s, NH), 7.93 (2H, d, J = 8.4 Hz, Ar), 7.39-7.21 (4H, m, Ar), 7.12(2H, d, J = 7.5 Hz, Ar), 2.37 (3H, s, CH₃), 2.27 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 166.3, 145.2, 138.0, 135.5, 132.1, 131.8, 131.7, 129.7, 128.5, 127.3, 126.0, 21.8, 20.1. IR (film, cm⁻¹): v_{max} = 1698 (C=O). ESI-MS of [C₁₅H₁₄NO₃S]; theoretical m/z of [M-H]⁻¹ = 288.0694, measured m/z of [M-H]⁻¹ = 288.0688.

N-tosylhydrocinnamide (Table 1, Entry 5)

Following **general procedure II**, *p*-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and hydrocinnamoyl chloride (535 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a pale yellow solid (829 mg, 92% yield) after column chromatography eluting with 3:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.03 (1H, br.s, NH), 7.89 (2H, d, J = 8.4 Hz, Ar), 7.31 (2H, d, J = 8.1 Hz, Ar), 7.25-7.13 (3H, m, Ar), 7.06 (2H, dd, J = 7.5, 1.9 Hz, Ar), 2.86 (2H, t, J = 7.7 Hz, CH₂), 2.56 (2H, t, J = 7.7 Hz, CH₂), 2.45 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 170.5, 145.2, 139.7, 135.4, 129.7, 128.6, 128.4, 128.3, 126.4, 37.9, 30.3, 21.8. IR (film, cm⁻¹): ν _{max} = 1680 (C=O). ESI-MS of [C₁₆H₁₆NO₃S]; theoretical m/z of [M-H]⁻ = 302.0851, measured m/z of [M-H]⁻ = 302.0855.

N-tosylpivalamide (Table 1, Entry 6)

Following **general procedure II**, p-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and pivaloyl chloride (445 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as an off-white solid (614 mg, 80% yield) after column chromatography eluting with 3:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) ¹H NMR: (CDCl₃, 300 MHz) δ 8.74 (1H, br.s, NH), 7.88 (2H, d, J = 8.4 Hz, Ar), 7.27 (2H, d, J = 8.0 Hz, Ar), 2.37 (3H, s, CH₃), 1.07 (9H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 176.2, 145.0, 135.5, 129.6, 128.4, 40.0, 26.7, 21.7. IR (film, cm⁻¹): v_{max} = 1708 (C=O). ESI-MS of [C₁₆H₁₆NO₃S], theoretical m/z of [M-H] = 254.0851, measured m/z of [M-H] = 254.0846.

4-methoxy-N-tosylbenzamide (Table 1, Entry 7)

Following **general procedure II**, *p*-toluenesulfonamide (514 mg, 3 mmol) was used as the sulfonamide species and 4-methoxybenzoyl chloride (487 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a pale yellow solid (893 mg, 97% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.28 (1H, br.s, NH), 8.04 (2H, d, J = 8.4 Hz, Ar), 7.79 (2H, d, J = 8.9 Hz, Ar), 7.34 (2H, d, J = 8.1 Hz, Ar), 6.89 (2H, d, J = 8.9 Hz, Ar), 3.82 (3H, s, CH₃), 2.43 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 163.8, 145.1, 135.6, 130.1, 129.6, 128.6, 123.3, 114.2, 55.6, 21.7. IR (film, cm⁻¹): ν _{max} = 1766 (C=O). ESI-MS of [C₁₅H₁₆NO₄S]⁺; theoretical m/z of [M+H]⁺ = 306.0800, measured m/z of [M+H]⁺ = 306.0781.

N-benzenesulfonamide benzoyl (Table 1, Entry 8)

Following **general procedure II**, benzenesulfonamide (471 mg, 3 mmol) was used as the sulfonamide species and benzoyl chloride (418 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a yellow solid (752 mg, 96% yield) after column chromatography eluting with 2:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.10(1H, br.s, NH), 8.10 (2H, d, J = 7.1 Hz, Ar), 7.73 (2H, d, J = 7.1 Hz, Ar), 7.59 (1H, 1, J = 7.4 Hz, Ar), 7.49 (3H, t, J = 7.5 Hz, Ar), 7.36 (2H, t, J = 7.6 Hz, Ar). ¹³C NMR (75.5

MHz, CDCl₃, 298K), (δ ppm): 164.2, 138.5, 134.1, 133.6, 131.1, 129.0, 129.0, 128.6, 127.8. IR (film, cm⁻¹): $v_{max} = 1694$ (C=O). ESI-MS of [C₁₃H₁₀NO₃S]⁻; theoretical m/z of [M-H]⁻ = 260.0381, measured m/z of [M-H]⁻ = 260.0374.

benzoyl N-4-methoxy-benzenesulfonamide (Table 1, Entry 9)

Following **general procedure II**, 4-methoxybenzenesulfonamide (562 mg, 3 mmol) was used as the sulfonamide species and benzoyl chloride (418 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a pale yellow solid (728 mg, 83% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 9.32 (1H, br.s, NH), 8.10 (2H, d, J = 9.1 Hz, Ar), 7.82 (2H, d, J = 7.2 Hz, Ar), 7.55 (1H, t, J = 8.0 Hz, Ar), 7.42 (2H, t, J = 7.6 Hz, Ar), 7.01 (2H, d, J = 9.1 Hz, Ar), 3.87 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 164.4, 164.1, 133.5, 131.2, 131.1, 129.7, 128.9, 127.8, 114.2, 55.8. IR (film, cm⁻¹): ν max = 1695 (C=O). ESI-MS of [C₁₄H₁₂NO₄S]⁻; theoretical m/z of [M-H]⁻ = 290.0487, measured m/z of [M-H]⁻ = 290.0479.

N-benzoyl-2,4,6-trimethylbenzenesulfonamide (Table 1, Entry 10)

Following **general procedure II**, 2,4,6-trimethylbenzenesulfonamide (598 mg, 3 mmol) was used as the sulfonamide species and benzoyl chloride (418 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a pale yellow solid (664 mg, 73% yield) after column chromatography eluting with 8:1 Hexane:EtOAc, mp 174-176 °C, ¹H NMR: (CDCl₃, 300 MHz) δ 9.41 (1H, br.s, NH), 7.76 (2H, dd, J = 8.4, 1.2 Hz, Ar), 7.50 (1H, t, J = 8.0 Hz, Ar), 7.37 (2H, t, J = 8.0 Hz, Ar), 6.93 (2H, s, Ar), 2.71 (6H, s, CH₃); 2.23 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 164.8, 143.9, 140.7, 133.5, 132.2, 131.2, 129.0, 127.8, 22.9, 21.1. IR (film, cm⁻¹): ν_{max} = 2986, 1696 (C=O), 1600, 1452, 1337, 1156, 1054, 708. ESI-MS of [C₁₆H₁₆NO₃S] ; theoretical m/z of [M-H] = 304.34, measured m/z of [M-H] = 304.2 Requires C 63.34%; H 5.65%; N 4.62%, found: C 63.40%; H 5.66%; N 4.49%

N-benzoyl-methanesulfonamide (Table 1, Entry 11)

Following **general procedure II**, 2,4,6-trimethylbenzenesulfonamide (285 mg, 3 mmol) was used as the sulfonamide species and benzoyl chloride (418 μ L, 3.6 mmol) as the acid chloride species. The title compound was recovered as a white solid (496 mg, 83% yield) recrystallized after layering hexane on DCM solution. ¹H NMR: (CDCl₃, 300 MHz) δ 8.98 (1H, br.s, NH), 7.81 (2H, d, J = 7.1 Hz, Ar), 7.56 (1H, t, J = 7.4 Hz, Ar), 7.43 (2H, t, J = 7.6 Hz, Ar), 3.37 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 165.5, 133.9, 130.9, 129.1, 127.9, 41.8. IR (film, cm⁻¹): v_{max} = 1678 (C=O). ESI-MS of [C₈H₈NO₃S]⁻; theoretical m/z of [M-H]⁻ = 198.0225, measured m/z of [M-H]⁻ = 198.0228.

(S)-2-phenyl-N-tosylpropanamide (Table 1, Entry 12)

Following **general procedure II**, *p*-toluenesulfonamide (171 mg, 1 mmol) was used as the sulfonamide species and (s)-2-phenylpropoyl chloride (205 μ L, 1.2 mmol, >99% enantiomeric excess) as the acid chloride species. The title compound was recovered as an off-white solid (164 mg, 54% yield, 80% enantiomeric excess) after preparative chiral HPLC. ¹H NMR: (CDCl₃, 300 MHz) δ 8.17 (1H, br.s, NH), 7.72 (2H, d, J = 8.4 Hz, Ar), 7.19 (5H, d, J = 6.2 Hz, Ar), 7.00 (2H, d, J = 3.6 Hz, Ar), 3.48 (1H, q, CH₃), 2.37 (3H, s, CH₃), 1.30 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 171.5, 145.1, 139.0, 135.2, 130.0, 129.3, 128.4, 127.9, 127.6, 47.4, 21.7, 18.0. IR (film, cm⁻¹): ν _{max} = 1709 (C=O). ESI-MS of [C₁₆H₁₆NO₃S]⁻; theoretical m/z of [M-H]⁻ = 302.0851, measured m/z of [M-H]⁻ = 302.0841.

N-methyl-2-benzoylpyrrole (Table 2, Entry 1)

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and benzoyl chloride (354 μ L, 3 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (376 mg, 68% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.80 (2H, d, J = 6.8 Hz, Ar), 7.59-7.49 (1H, m, Ar), 7.45 (2H, t, J = 7.2 Hz, Ar), 6.92 (1H, t, J = 2.0 Hz, Ar), 6.74 (1H, dd, J = 4.1, 1.7 Hz, Ar), 4.04 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 186.2, 140.0, 131.4, 130.5,

129.2, 128.1, 122.9, 108.1, 37.4. IR (film, cm $^{-1}$): $v_{max} = 1621$ (C=O). ESI-MS of $[C_{12}H_{12}NO]^{+}$; theoretical m/z of $[M+H]^{+} = 186.0919$, measured m/z of $[M+H]^{+} = 186.0905$.

4-methoxy-(N-methyl-1H-2-pyrrolyl)methanone (Table 2, Entry 2)

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and 4-methoxybenzoyl chloride (406 μ L, 3 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (370 mg, 58% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.84 (2H, d, J = 8.9 Hz Ar), 6.95 (2H, d, J = 8.9 Hz, Ar), 6.90 (1H, t, J = 2.0 Hz, Ar), 6.73 (1H, dd, J = 4.0, 1.7 Hz, Ar), 6.15 (1H, dd, J = 4.0, 2.5 Hz, Ar), 4.01 (3H, s, CH₃), 3.88 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 185.2, 162.5, 132.5, 131.5, 130.9, 130.7, 122.0, 113.3, 107.9, 55.5, 37.2. IR (film, cm⁻¹): ν _{max} = 1620 (C=O). ESI-MS of [C₁₃H₁₄NO₂][†]; theoretical m/z of [M+H][†] = 216.1025, measured m/z of [M+H][†] = 216.1065.

2,2 dichloro-1-(N-methyl-1H-2-pyrrolyl)-ethanone (Table 2, Entry 3)

$$CI \longrightarrow 0$$

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and dichloroacetyl chloride (290 μ L, 3 mmol) as the acid chloride species. The title compound was recovered as a yellow solid (423 mg, 73% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.07 (1H, dd, J = 4.3, 1.5 Hz, Ar), 6.95-6.89 (1H, m, Ar), 6.16 (1H, dd, J = 4.3, 2.4 Hz, Ar), 3.91 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 176.6, 134.0, 125.1, 121.3, 109.3, 68.0, 38.0. IR (film, cm⁻¹): ν _{max} = 1660 (C=O). ESI-MS of [C₇H₈Cl₂NO]⁺; theoretical m/z of [M+H]⁺ = 191.9983, measured m/z of [M+H]⁺ = 191.9982.

(4-bromophenyl)(1-methyl-1*H*-pyrrol-2-yl)methanone (Table 2, Entry 4)

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and 4-bromobenzoyl chloride (658 mg, 3 mmol) as the acid chloride species. The title compound was recovered as a brown solid (482 mg, 61% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.60 (2H, d, J = 8.6, Ar), 7.51 (2H, d, J = 8.6 Hz, Ar), 6.85 (1H, t, J = 2.0 Hz, Ar), 6.62 (1H, dd, J = 4.1, 1.7 Hz, Ar), 6.08 (1H, dd, J = 4.1, 2.5 Hz, Ar), 3.94 (3H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 184.9, 138.7,

131.9, 131.3, 130.7, 130.2, 122.9, 108.4, 37.4. IR (film, cm⁻¹): $v_{\text{max}} = 1623$ (C=O). ESI-MS of $[C_{12}H_{11}BrNO]^{+}$; theoretical m/z of $[M+H]^{+} = 264.0024$, measured m/z of $[M+H]^{+} = 264.0006$.

1-(N-methyl-1H-2-pyrrolyl)-3-phenyl-1-propanone (Table 2, Entry 5)

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and hydrocinnamoyl chloride (445 μ L, 3 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (318 mg, 50% yield) after column chromatography eluting with 9:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.26-7.07 (5H, m, Ar), 6.87 (1H, dd, J = 4.1, 1.7 Hz, Ar), 6.73 (1H, t, J = 2.0 Hz, Ar), 6.04 (1H, dd, J = 4.1, 2.5 Hz, Ar), 3.88 (3H, s, CH₃), 3.08-2.99 (2H, m, CH₂), 2.94 (2H, ddd, J = 9.1, 6.3, 1.8 Hz, CH₂). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 197.9, 129.8, 128.5, 118.7, 107.1, 43.7, 38.6, 28.9. IR (film, cm⁻¹): ν _{max} = 1643 (C=O). ESI-MS of [C₁₄H₁₆NO]⁺; theoretical m/z of [M+H]⁺ = 214.1232, measured m/z of [M+H]⁺ = 214.1240.

1,1-dimethyl(N-methyl-1H-2-pyrrolyl)propanone (Table 2, Entry 6)

Following **general procedure III**, *N*-methylpyrrole (350 μ L, 3.9 mmol) and pivaloyl chloride (370 μ L, 3 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (200 mg, 40% yield) after column chromatography eluting with 19:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.03 (1H, dd, J = 4.2, 1.6 Hz, Ar), 6.78-6.71 (1H, m, Ar), 6.11 (1H, dd, J = 4.2, 2.5 Hz, Ar), 3.90 (3H, s, CH₃), 1.36 (9H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 197.9, 129.8, 128.5, 118.7, 107.1, 43.7, 38.6, 28.9. IR (film, cm⁻¹): ν_{max} = 1635 (C=O). ESI-MS of [C₁₀H₁₆NO]⁺; theoretical m/z of [M+H]⁺ = 166.1232, measured m/z of [M+H]⁺ = 166.1236.

2,6-di-tert-butyl-4-methylphenyl acetate (Table 3, Entry 1)

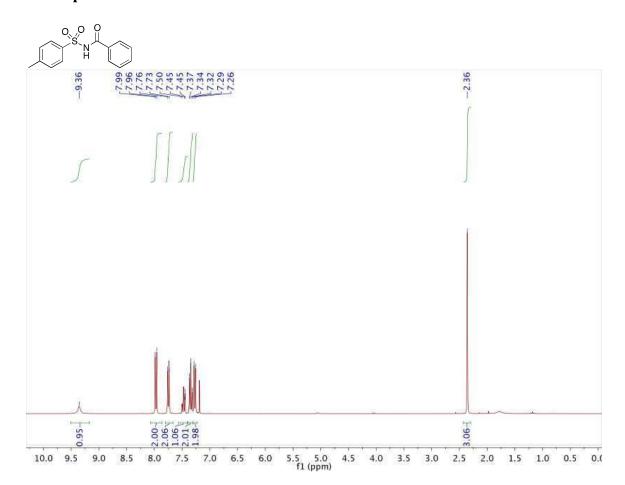
Following **general procedure IV**, 2,6-di-*tert*-butyl-4-methylphenol (661 mg, 3 mmol) as the hindered phenol and acetyl chloride (510 μ L, 7.2 mmol) as the acid chloride species. The title compound was recovered as a yellow solid (746 mg, 95% yield) after column chromatography eluting with 99:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.17-7.12 (2H, m, Ar), 2.36 (3H, s, CH₃), 2.35 (3H, s, CH₃), 1.37

(18H, s, CH₃).¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 171.4, 145.7, 142.0, 134.6, 127.1, 35.3, 31.5, 22.7, 21.6. IR (film, cm⁻¹): $v_{max} = 1759$ (C=O). ESI-MS of $[C_{17}H_{26}O_2]^{\dagger}$; theoretical m/z of $[M+H]^{\dagger} = 285.1831$, measured m/z of $[M+H]^{\dagger} = 285.1829$.

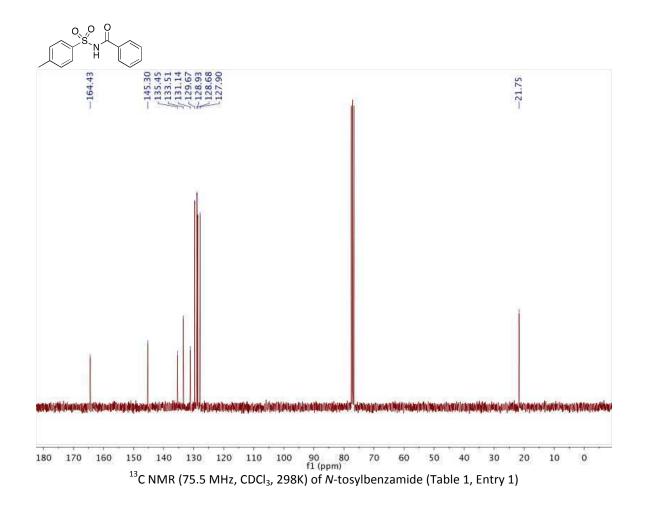
2,6-di-tert-butyl-4-methylphenyl pentanoate (Table 3, Entry 2)

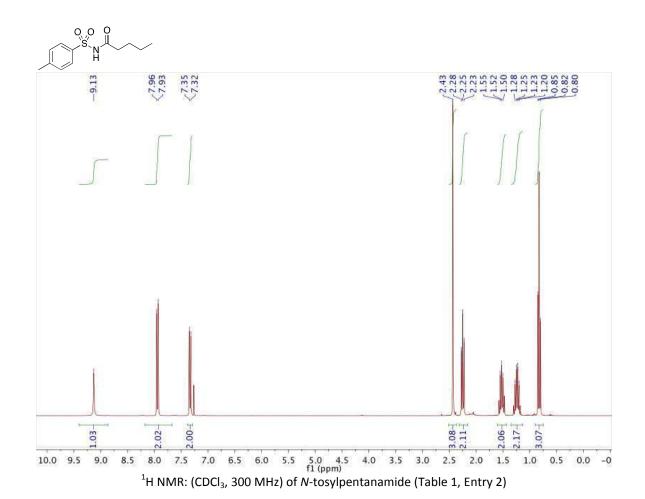
Following **general procedure IV**, 2,6-di-*tert*-butyl-4-methylphenol (661 mg, 3 mmol) as the hindered phenol and valeroyl chloride (855 μ L, 7.2 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (882 mg, 97% yield) after column chromatography eluting with 99:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.12 (2H, s, Ar), 2.68-2.53 (2H, m, CH₂), 2.32 (3H, s, CH₃), 1.76 (2H, dt, J = 15.6, 7.5 Hz, CH₂), 1.46 (2H, dq, J = 14.5, 7.3 Hz, CH₂), 1.33 (18H, s, CH₃), 0.98 (3H, t, J = 7.3 Hz, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 173.8, 145.9, 142.0, 134.4, 127.0, 35.2, 31.5, 30.2, 26.4, 22.4, 21.6, 13.8. IR (film, cm⁻¹): ν max = 1758 (C=O). ESI-MS of [C₁₇H₂₃O₂]⁺; theoretical m/z of [M+H]⁺ = 305.2481, measured m/z of [M+H]⁺ = 305.2485. C H N requires C 78.90%; H 10.59%; N 0%, found: C 78.60%; H 10.50%; N 0%

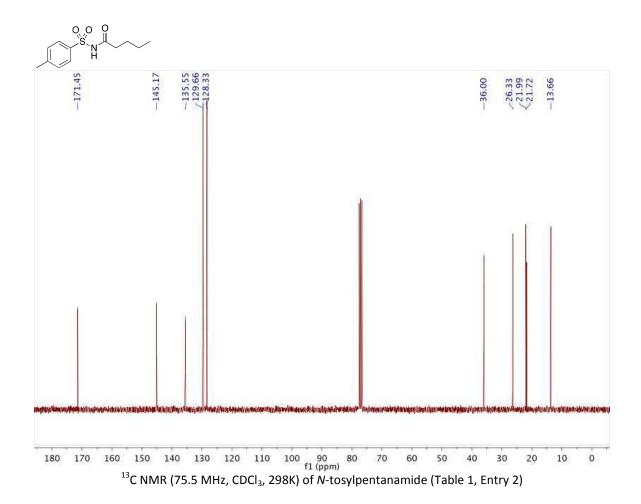
1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-dimethylpropan-1-one (Table 3, entry 3)

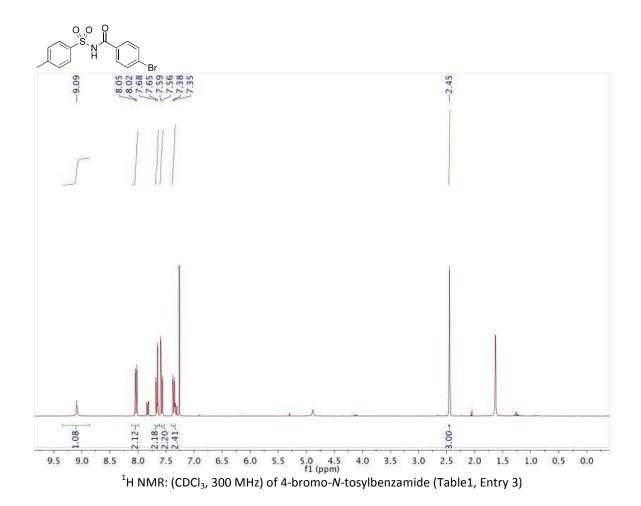

Following **general procedure IV**, 2,6-di-*tert*-butyl-phenol (617 mg, 3 mmol) as the hindered phenol and pivaloyl chloride (890 μ L, 7.2 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (502 mg, 58% yield) after column chromatography eluting with 99:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.72 (2H, s, Ar), 5.54 (1H, s, OH), 1.39 (18H, s, CH₃), 1.31 (9H, s, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 206.8, 157.0, 128.5, 126.7, 43.7, 34.4, 30.2, 28.7. IR (film, cm⁻¹): v_{max} = 1748 (C=O). ESI-MS of [C₁₉H₂₉O₂]; theoretical m/z of [M-H]⁻ = 289.2200, measured m/z of [M-H]⁻ = 289.2194.

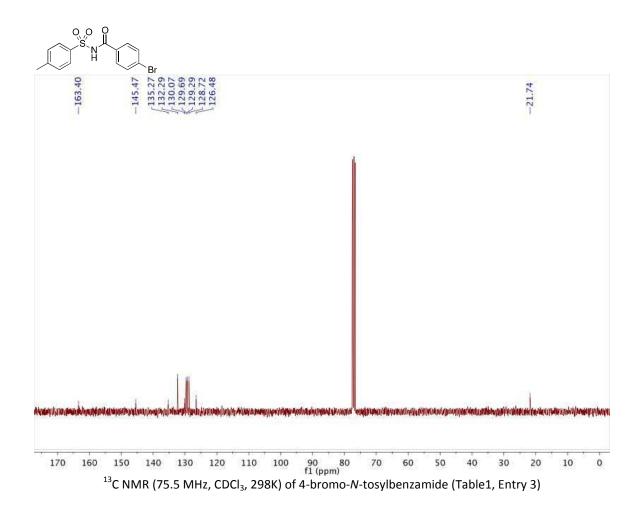
1-(3,5-di-tert-butyl-4-hydroxyphenyl)pentan-1-one (Table 3, entry 4)

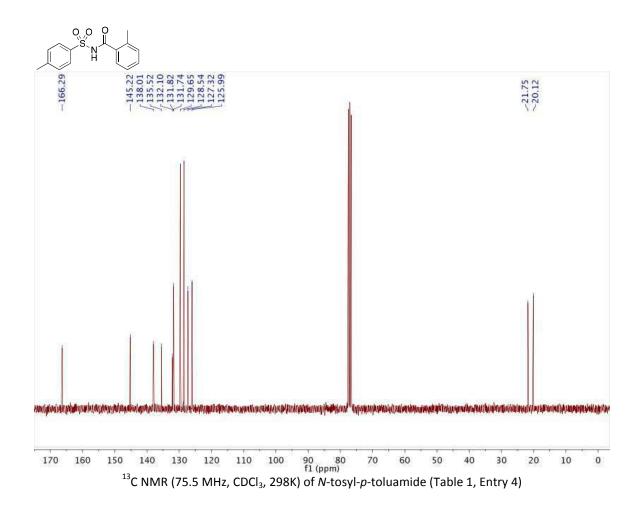


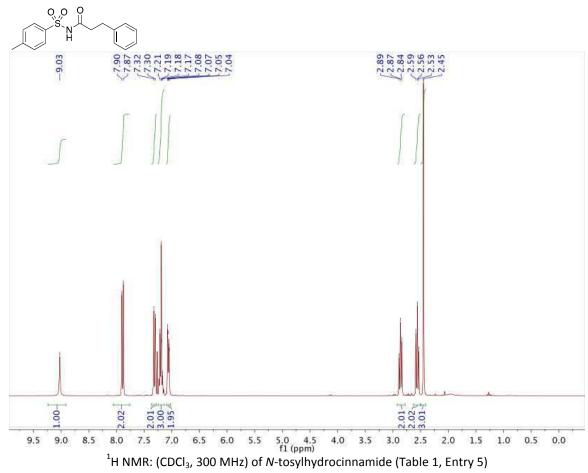

Following **general procedure IV**, 2,6-di-*tert*-butyl-phenol (617 mg, 3 mmol) as the hindered phenol and valeroyl chloride (855 μ L, 7.2 mmol) as the acid chloride species. The title compound was recovered as a yellow oil (847mg, 97% yield) after column chromatography eluting with 99:1 Hexane:EtOAc. ¹H NMR: (CDCl₃, 300 MHz) δ 7.87 (2H, s, Ar), 5.62 (1H, s, OH), 2.94 – 2.76, (2H, m, CH₂), 2.68 - 2.49 (2H, m, CH₂), 1.29 (20H, m, (18H)CH₃, (2H)CH₂), 0.94 – 0.90 (3H, m, CH₃). ¹³C NMR (75.5 MHz, CDCl₃, 298K), (δ ppm): 200.2, 173.1, 143.1, 134.0, 126.4, 38.2, 35.6, 31.3, 26.2, 22.5, 14.0. IR (film, cm⁻¹): ν max = 1761 (C=O). ESI-MS of [C₁₉H₂₉O₂]; theoretical m/z of [M-H]⁻ = 289.2168, measured m/z of [M-H]⁻ = 289.2181.

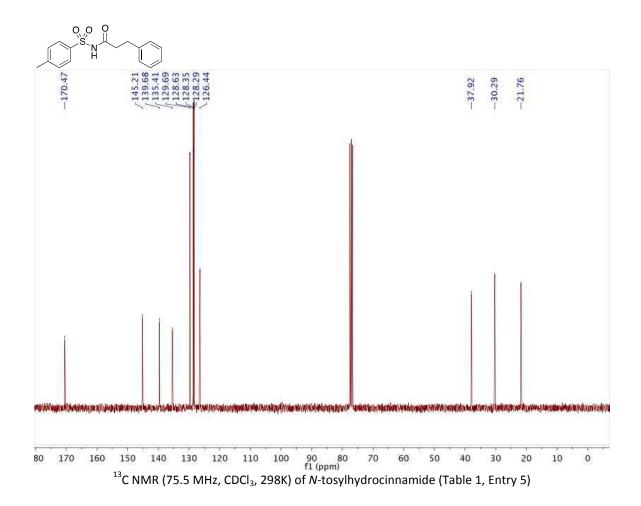

NMR Spectra:

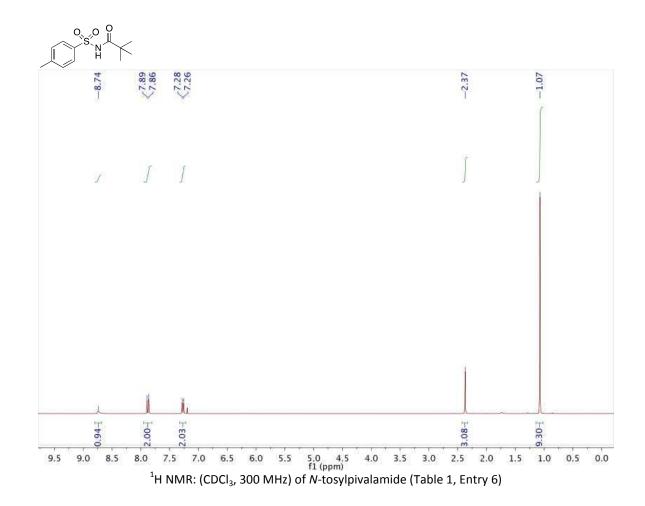


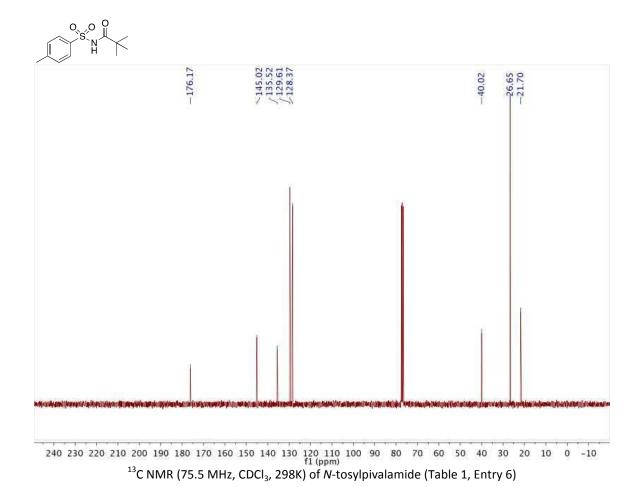

¹H NMR: (CDCl₃, 300 MHz) of *N*-tosylbenzamide (Table 1, Entry 1)

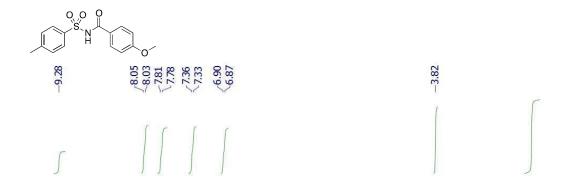


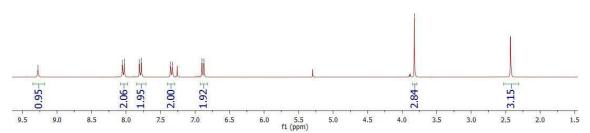


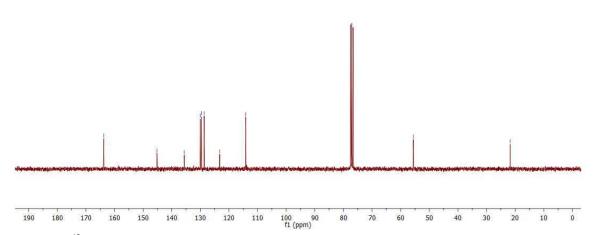


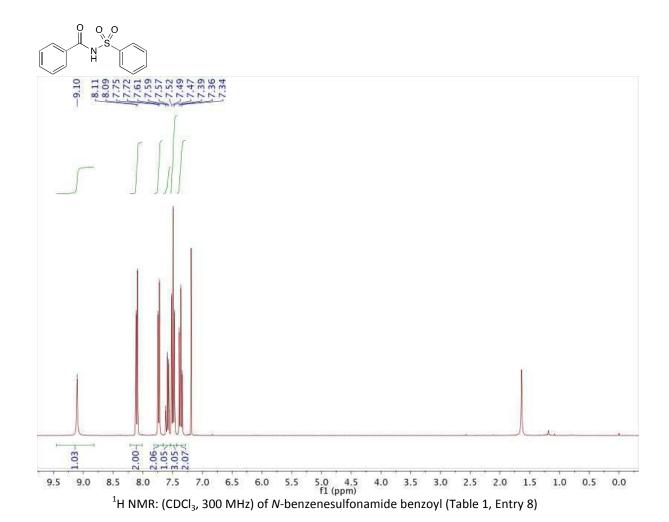




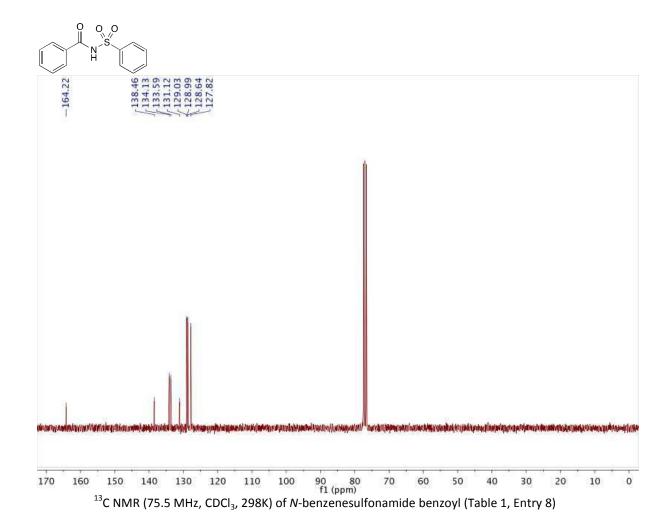


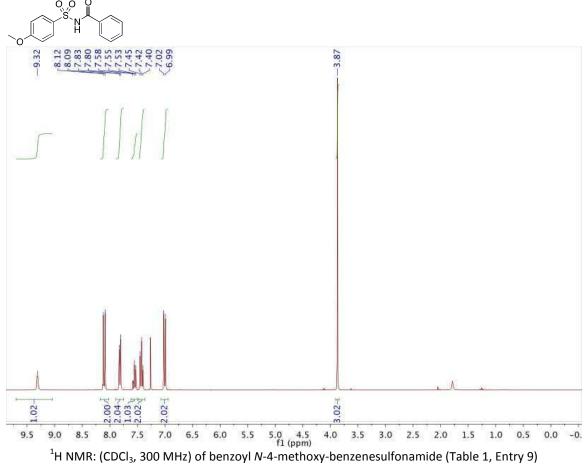


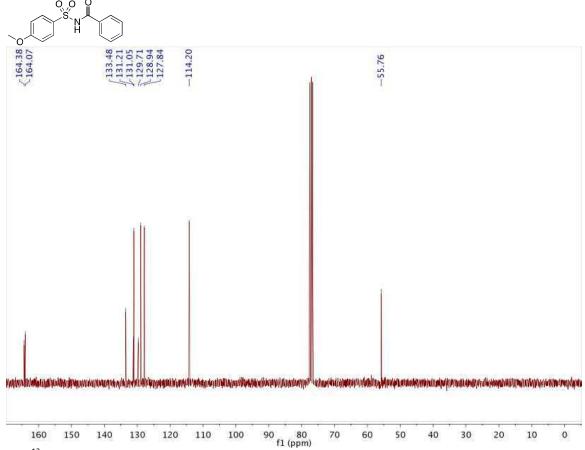


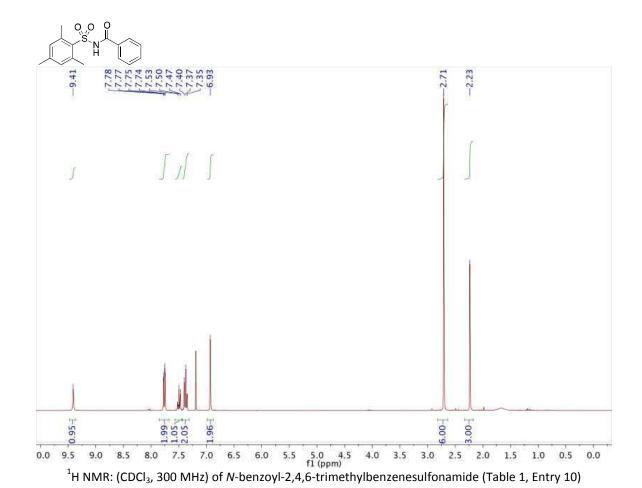


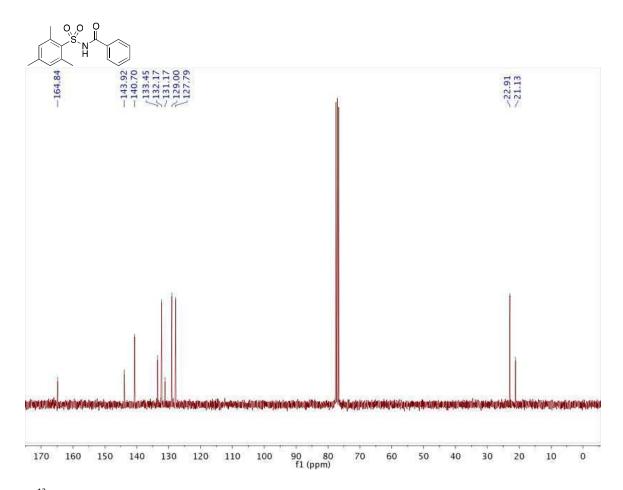
¹H NMR: (CDCl₃, 300 MHz) of 4-methoxy-*N*-tosylbenzamide (Table 1, Entry 7)

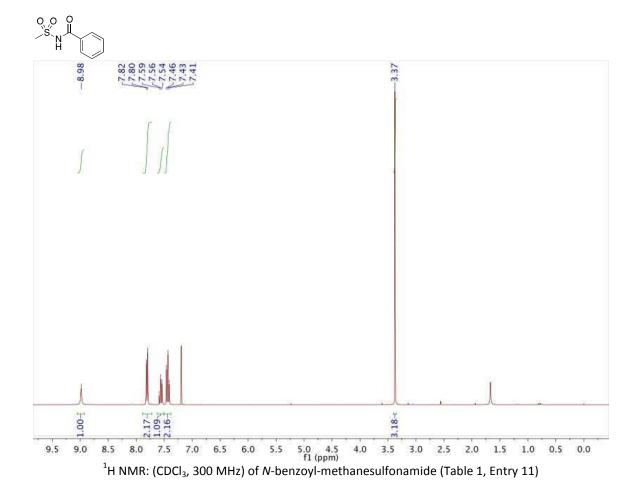


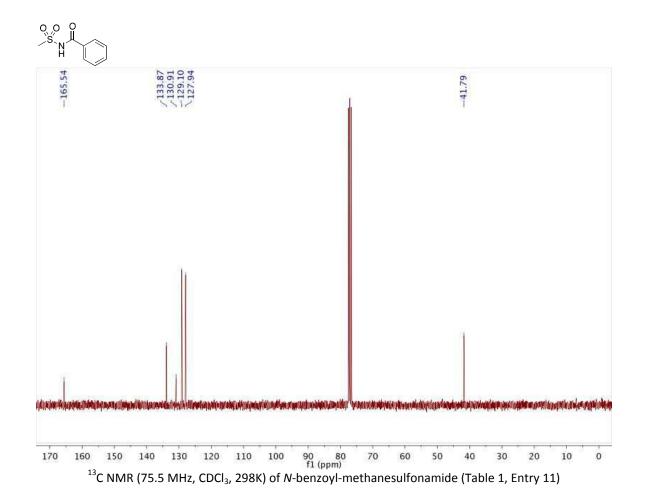


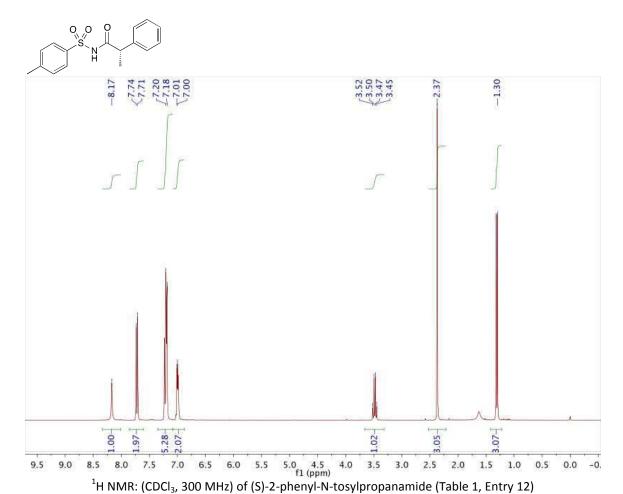

 $^{13}\mathrm{C}$ NMR (75.5 MHz, CDCl₃, 298K) of 4-methoxy-N-tosylbenzamide (Table 1, Entry 7)

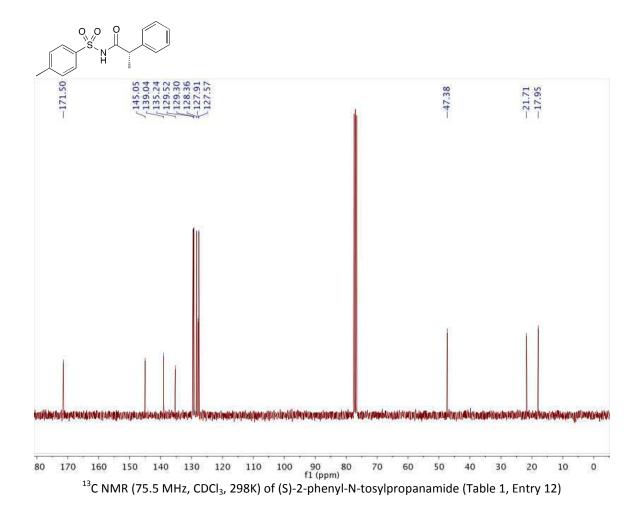

S34



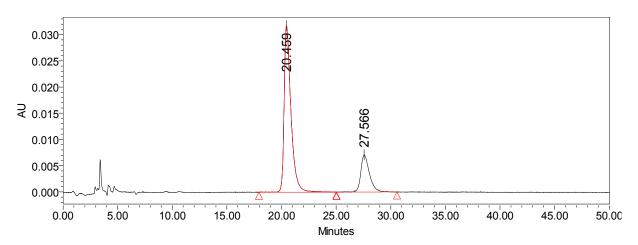

¹³C NMR (75.5 MHz, CDCl₃, 298K) of benzoyl N-4-methoxy-benzenesulfonamide (Table 1, Entry 9)




S38



 13 C NMR (75.5 MHz, CDCl $_3$, 298K) of N-benzoyl-2,4,6-trimethylbenzenesulfonamide (Table 1, Entry 10)

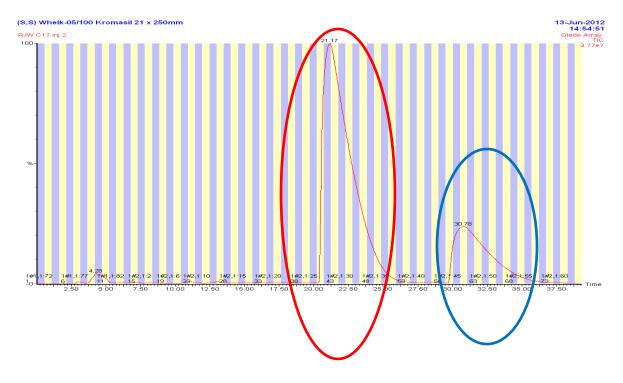


HPLC Analysis:

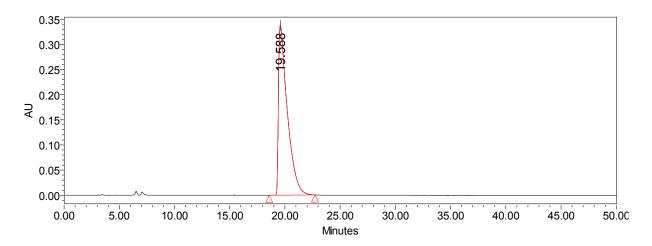
Isocratic iso-Hexane/iso-Propanol 80:20 - both containing 0.1% glacial acetic acid.

Column: (S,S) - Whelk 4.6 x 250mm

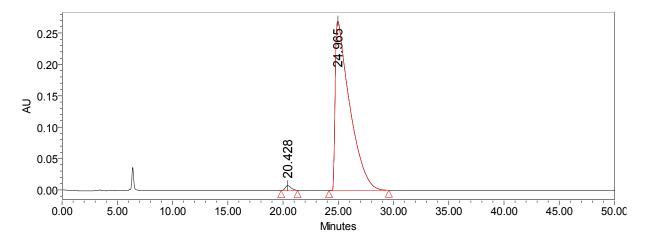
Flow rate - 1ml/min

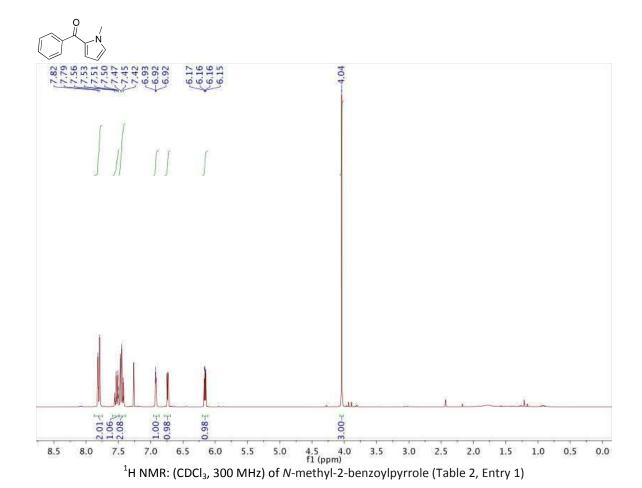


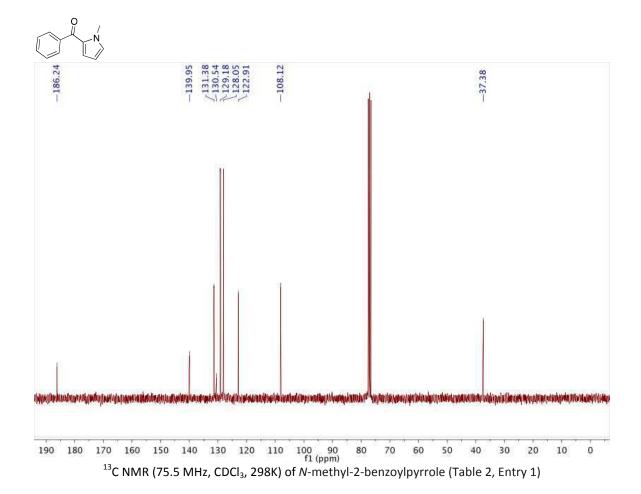
Prep:

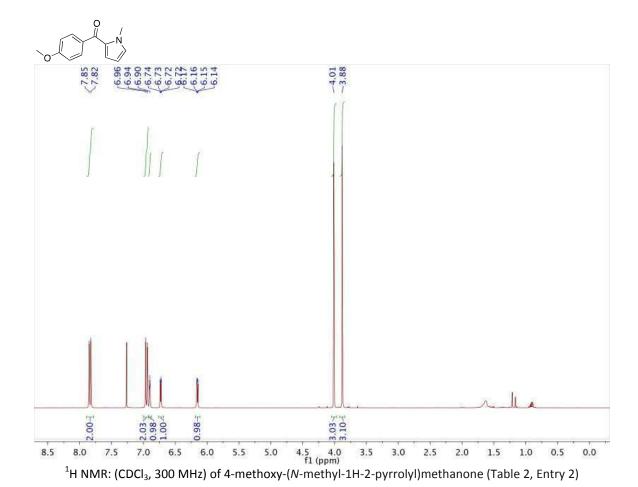

Isocratic iso-Hexane/iso-Propanol 80:20 - both containing 0.1% glacial acetic acid.

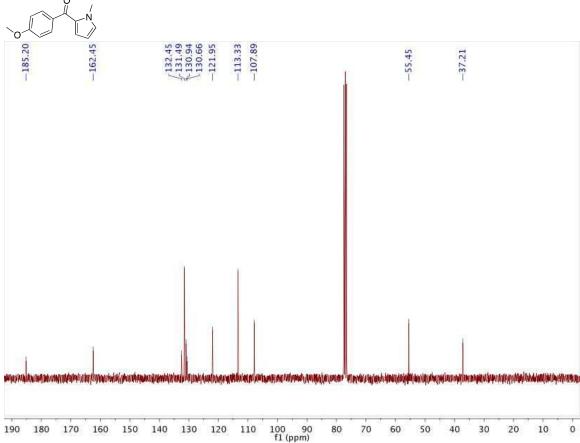
Column: (S,S) - Whelk 21 x 250mm

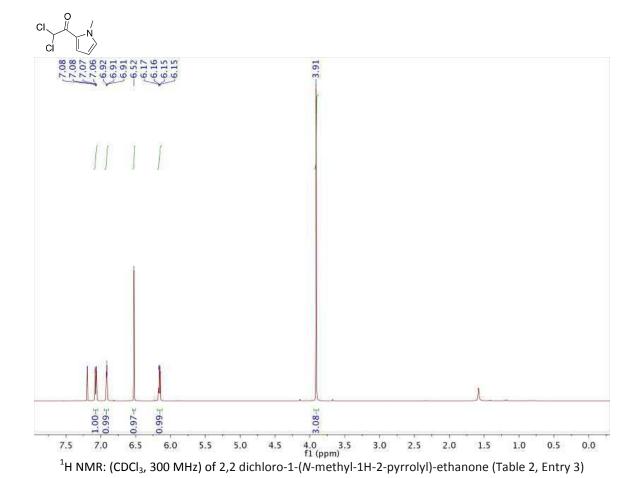

Flow rate - 20ml/min

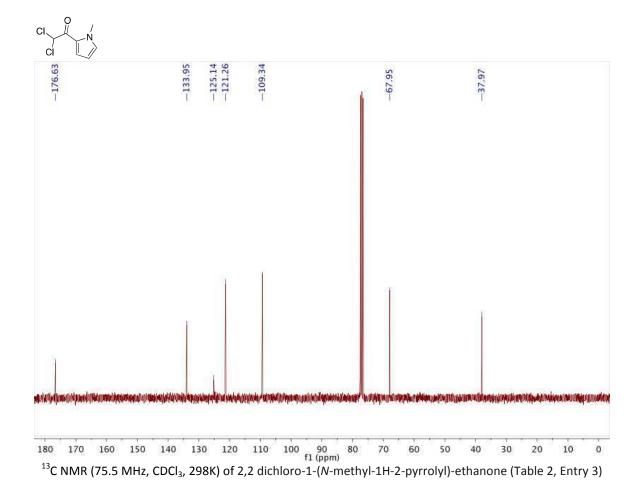


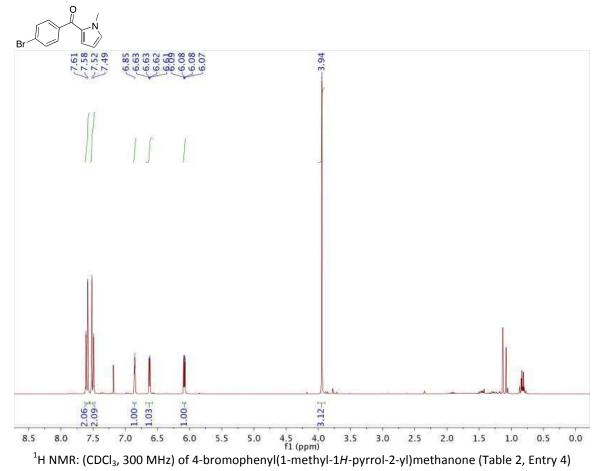

Enantiomer A: 46mg

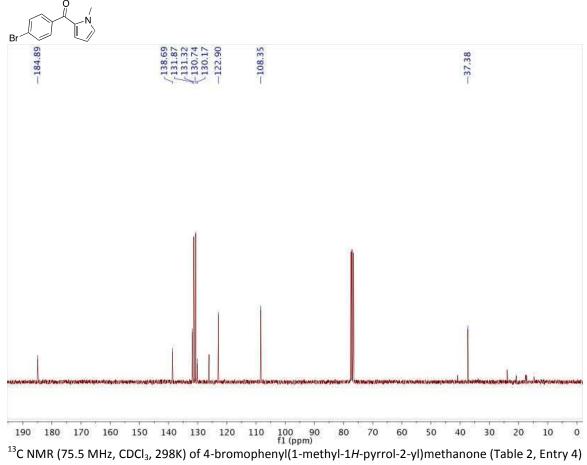


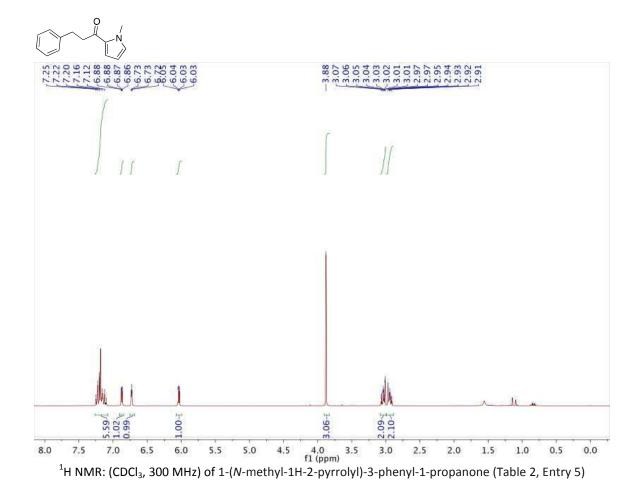

Enantiomer B: 6.5mg

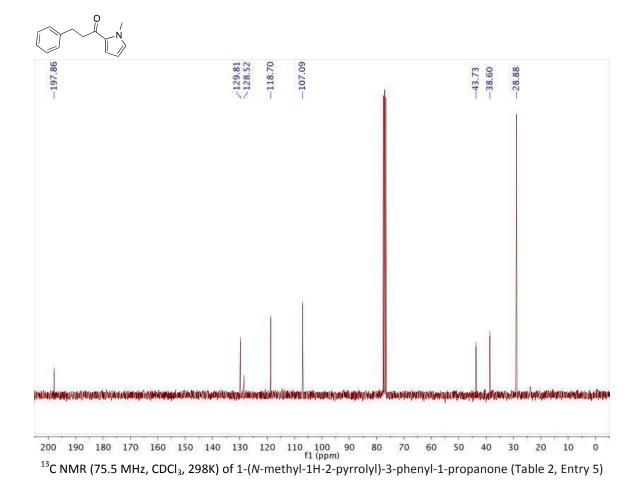


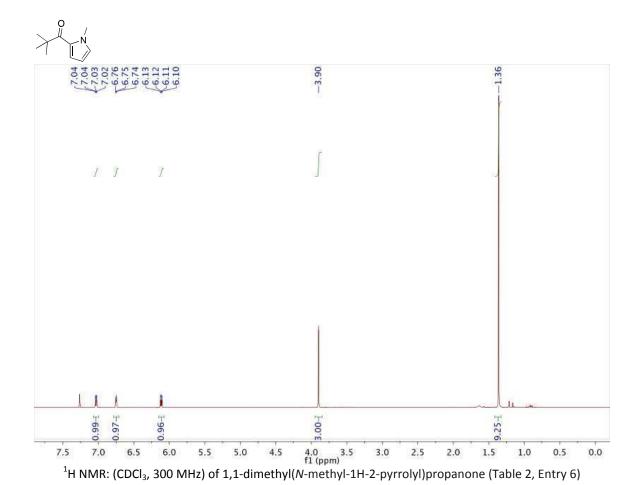


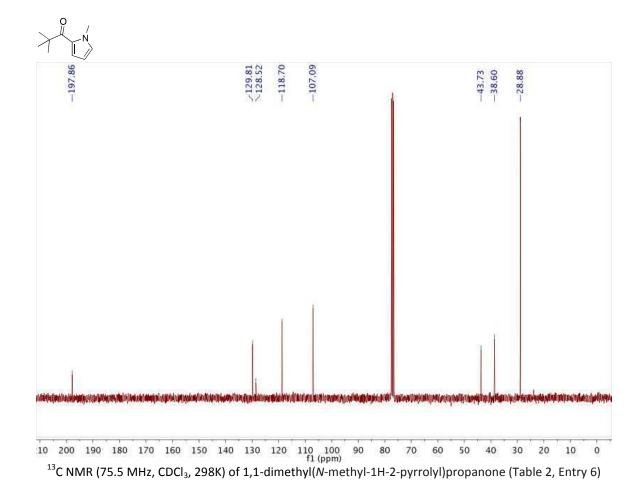


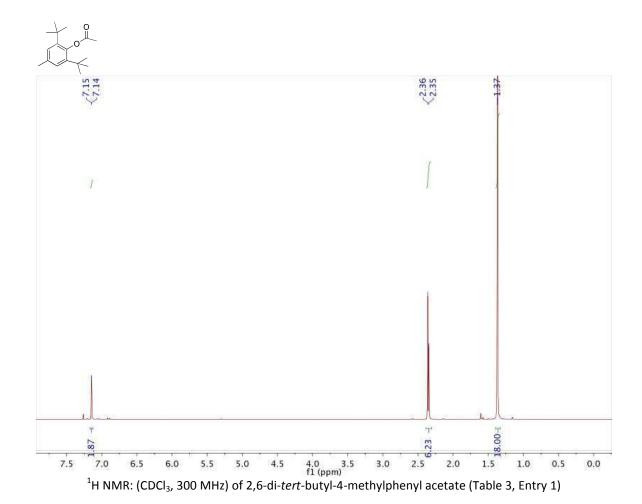


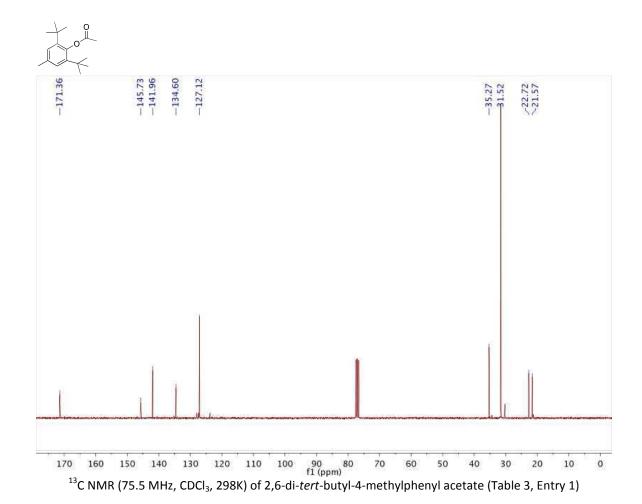


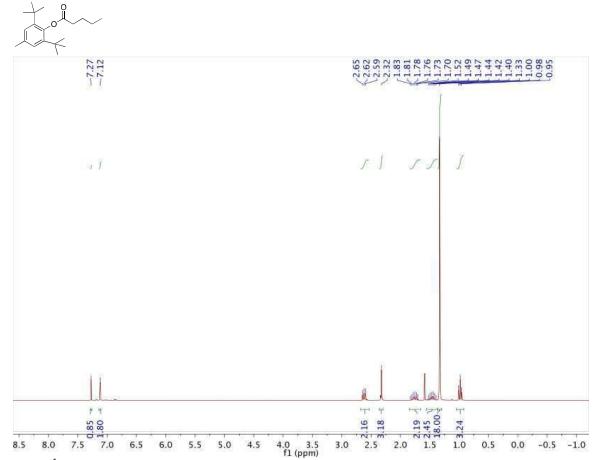




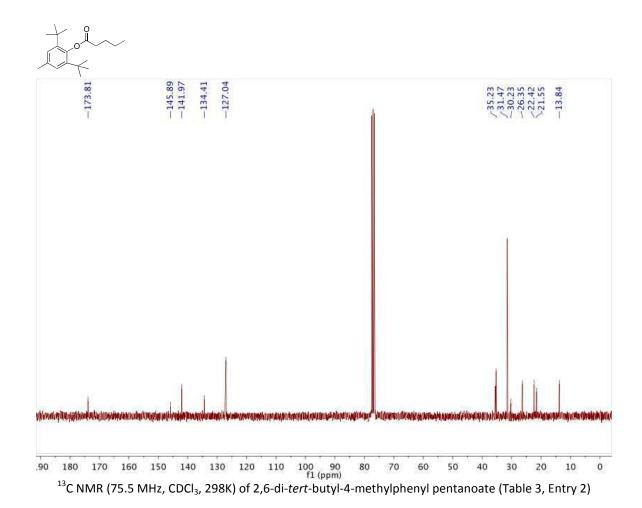


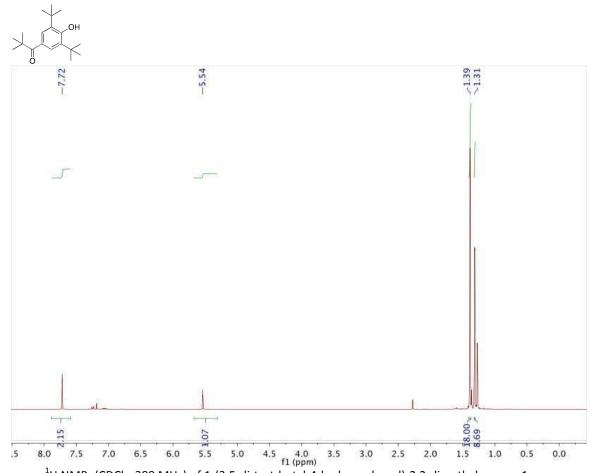


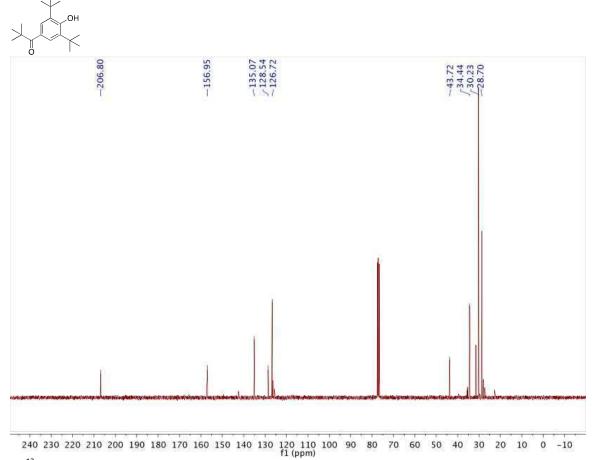


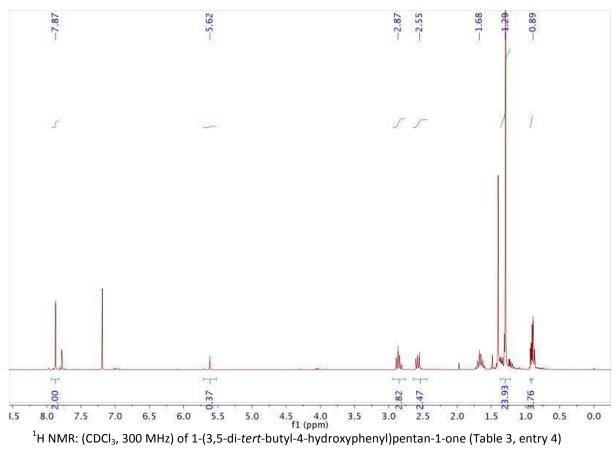


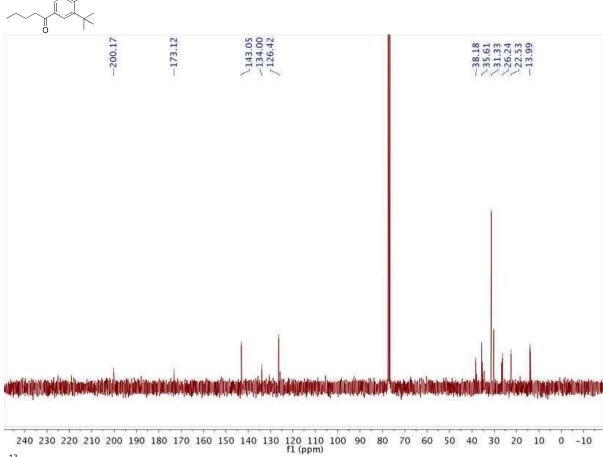
S56






¹H NMR: (CDCl₃, 300 MHz) of 2,6-di-*tert*-butyl-4-methylphenyl pentanoate (Table 3, Entry 2)


S61



¹H NMR: (CDCl₃, 300 MHz) of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-dimethylpropan-1-one (Table 3, entry 3)

¹³C NMR (75.5 MHz, CDCl₃, 298K) of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-dimethylpropan-1-one (Table 3, entry 3)

¹³C NMR (75.5 MHz, CDCl₃, 298K) of 1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)pentan-1-one (Table 3, entry 4)