

Supporting Information

**Palladium-Catalyzed Trifluoroethylation of Terminal
Alkynes with 1,1,1-Trifluoro-2-iodoethane**

Yi-Si Feng[†], Chuan-Qi Xie[†], Wen-Long Qiao[†], and Hua-Jian Xu^{*,‡}

[†]*School of Chemical Engineering, School of Medical Engineering, Hefei University of Technology, [‡]Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, Hefei 230009, P. R. China.*

E-mail: hjxu@hfut.edu.cn

Table of Contents

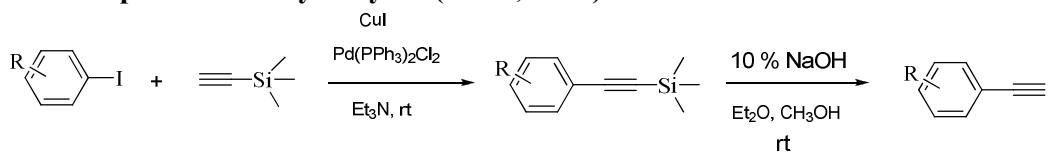
Part 1. General Information.....	S3
a. Materials	
b. Methods	
Part 2. Experimental Section.....	S4-S14
a. General procedure for preparation of various terminal alkynes (1a -1s)	
b. General procedure for the synthesis of trifluoroethylated alkynes (3a-3s)	
c. Further synthetic applications of 2,2,2-trifluoroethylated alkynes (3f', 3m', 3a')	
Part 3. Characterization of the Products	S15-S25
Part 4. Copies of $^1\text{H-NMR}$, $^{13}\text{C-NMR}$ and $^{19}\text{F-NMR}$ Spectra the	
Products	S26-S58

Part 1. General Information

a. Materials

All solvents were obtained from commercial suppliers and used without further purification. All the catalysts, ligands and bases were obtained from commercial suppliers. Aryl and alkyl alkynes were obtained from commercial suppliers or prepared according to standard procedures unless otherwise stated.¹

b. Methods


¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts of ¹⁹F NMR spectra (CFCl₃ as outside standard and low field is positive) were recorded with ¹H-coupling on a Bruker 377 MHz spectrometer. ¹³C-NMR spectra were recorded with on a Brucker 101 MHz spectrometer. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Coupling constants (J) are reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Gas chromatographic (GC) analysis was acquired on a Shimadzu GC-2014 Series GC System equipped with a flame-ionization detector. GC-MS analysis was performed on Thermo Scientific AS 3000 Series GC-MS System. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).

Reference: (1) (a) Li, H.-B.; Jeffrey, L.; Wang, K.-K. *J. Org. Chem.* **2001**, *66*, 7804. (b) Achard, T.; Lepronier, A.; Gimbert, Y.; Clavier, H.; Giordano, L.; Tenaglia, A.; Buono, G. *Angew. Chem. Int. Ed.* **2011**, *50*, 3552. (c) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. *Chem.-Eur. J.* **2010**, *16*, 956. (d) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. *J. Am. Chem. Soc.* **2005**, *127*, 14186. (e) Li, C.-H.; Liu, X.-F.; Yuan, M.-J.; Li, J.-B.; Guo, Y.-B.; Xu, J.-L.; Zhu, M.; Lv, J.; Liu, H.-B.; Li, Y.-L. *Langmuir* **2007**, *23*, 6754. (f) Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C.; Terlizzi, R. *Eur. J. Org. Chem.* **2004**, 3447.

Part 2. Experimental Section

a. General procedure for preparation of various terminal alkynes (1a-1s)

1. Preparation of aryl alkynes (1a-1b, 1e-1l)

Preparation of Aryl (Trimethylsilyl)Acetylenes: To a mixture of various aryl iodide (7 mmol) compounds, $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %), and copper(I) iodide (5 mol%) in 30 mL of triethylamine was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv) in 5 mL of triethylamine. The reaction mixture was stirred at room temperature for one hour before 50 mL of a saturated ammonium chloride solution and 50 mL of diethyl ether were introduced. The organic layer was separated, and the aqueous layer was back extracted with diethyl ether. The combined organic layers were washed with brine and water, dried over sodium sulfate, and concentrated. Purification of the residue by flash column chromatography afforded various (trimethylsilyl)acetylenes.

General Procedure for the Formation of Aryl Alkynes: To a solution of aryl(trimethylsilyl)acetylenes (5-7 mmol) in 30-50 mL of diethyl ether was added 30-50 mL of methanol and 15-20 mL of a 10% sodium hydroxide solution. After 10 min of stirring at room temperature, the reaction mixture was neutralized with a 1 M HCl solution. The organic layer was separated, and the aqueous layer was back extracted with diethyl ether. The combined organic layers were washed with brine and water, dried over sodium sulfate, and concentrated. Purification of the residue by flash column chromatography afforded various aryl alkynes. Substrates **1b-1c** were purchased from commercial sources.

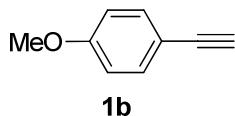
2. Preparation of alkyl alkynes

Alkyl alkynes **1m^b**, **1n^c**, **1o^d**, **1p^b**, and **1q^e** were prepared according to literature procedures. **1r-1s^f** were obtained by conventional acylation of commercially available alkynols.

4-ethynylbiphenyl (1a)

The mixture of 4-iodobiphenyl (1.96 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147 mg) and CuI (5 mol %, 67 mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 2 h (Monitored by TLC), purification of the residue by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100:1) afforded 1.4 g of (biphenyl-4-ylethynyl)trimethylsilane (5.6 mmol, 80% yield).

To a solution of (biphenyl-4-ylethynyl)triethylsilane (1.25 g 5 mmol) in 50 mL of

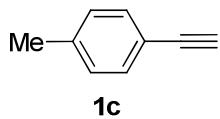

diethyl ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 30 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100:1) afforded the product **1a** as yellow solid. Yield: 0.756 g (90%).

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5 Hz, 2H), 7.56 (s, 4H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 3.13 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.58, 140.25, 132.55, 128.87, 127.73, 127.03, 120.96, 83.54, 77.74.

1-ethynyl-4-methoxybenzene (**1b**)

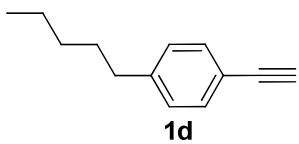

The mixture of 1-iodo-4-methoxybenzene (1.638 g, 7 mmol), Pd(PPh₃)₂C1₂ (3 mol %, 147 mg) and CuI (5 mol %, 67 mg) in Et₃N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et₃N (5 mL) at rt for 1.5 h (Monitored by TLC), purification of the residue by column chromatography on silica gel (eluent: petroleum ether) afforded 1.17 g of ((4-methoxyphenyl)ethynyl)trimethylsilane (5.7 mmol, 82% yield).

To a solution of ((4-methoxyphenyl)ethynyl)trimethylsilane (1.25 g 5 mmol) in 50 mL of diethyl ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 30 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether) afforded the product **1b** as yellow oil. Yield: 0.561 g (85%).

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.81 (s, 3H), 3.00 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.90, 132.56, 113.12, 112.90, 82.63, 74.74, 54.26.

1-ethynyl-4-methylbenzene (**1c**)

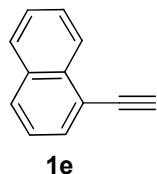


This compound were purchased from Energy Chemical Tedia Company Inc. Yellow oil.

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 3.02 (s, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.94, 132.01, 129.06, 119.01, 83.83, 76.46, 21.49.

1-ethynyl-4-pentylbenzene (1d)



This compound were purchased from Energy Chemical Tedia Company Inc. Yellow oil. Yellow oil.

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.1 Hz, 2H), 7.13 (d, J = 7.1 Hz, 2H), 3.03 (s, 1H), 2.59 (t, J = 6.9 Hz, 2H), 1.59 (s, 2H), 1.31 (s, 4H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.97, 132.02, 128.41, 119.16, 83.86, 76.45, 35.85, 31.41, 30.93, 22.52, 14.03.

1-ethynylnaphthalene (1e)

The mixture of 4-iodobiphenyl (1.78 g, 7 mmol), Pd(PPh₃)₂Cl₂ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et₃N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et₃N (5 mL) at rt for 2 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether) to give trimethyl(naphthalen-1-ylethynyl)silane (1.348 g, 6.0 mmol, 86% yield).

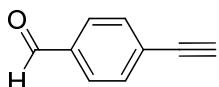
To a solution of trimethyl(naphthalen-1-ylethynyl)silane (1.348 g 6 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 25 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether) afforded the product **1e** as a yellow oil. Yield: 0.839 g (92%).

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 6.2 Hz, 1H), 7.53 (dd, J = 19.3, 7.3 Hz, 2H), 7.39 (t, J = 7.1 Hz, 1H), 3.46 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 133.43, 132.99, 131.19, 129.24, 128.25, 126.91, 126.44, 125.98, 125.05, 119.68, 81.98, 81.71.

4-ethynylbenzonitrile (1f)

1f


The mixture of 4-iodobenzonitrile (1.603 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 3 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 25:1) to give 4-((trimethylsilyl)ethynyl)benzonitrile (1.08 g, 5.43 mmol, 78% yield).

To a solution of 4-((trimethylsilyl)ethynyl)benzonitrile (0.995 g 5 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 20 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 25:1) afforded the product **1f** as yellow solid. Yield: 0.552 g (87%).

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 7.60 (dd, $J = 20.1, 8.0$ Hz, 4H), 3.31 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 132.67, 132.03, 126.97, 118.29, 112.28, 81.84, 81.56.

4-ethynylbenzaldehyde (**1g**)

1g

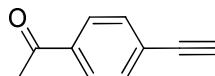
The mixture of 4-iodobenzaldehyde (1.63 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 2 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) to give 4-((trimethylsilyl)ethynyl)benzaldehyde (1.2 g, 5.94 mmol, 85% yield).

To a solution of 4-((trimethylsilyl)ethynyl)benzaldehyde (1.25 g 5 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 15 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) afforded the product **1g** as yellow solid. Yield: 0.572 g (88%).

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 10.02 (s, 1H), 7.85 (d, $J = 8.1$ Hz, 2H), 7.65 (d, $J = 8.1$ Hz, 2H), 3.30 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 191.42, 135.91, 132.71, 129.50, 128.29, 82.60, 81.07.

1-ethynyl-4-nitrobenzene (**1h**)


1h

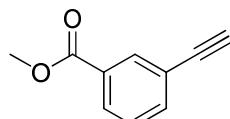
The mixture of 1-iodo-4-nitrobenzene (1.743 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 4 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) to give trimethyl((4-nitrophenyl)ethynyl)silane (1.24 g, 5.66 mmol, 81% yield).

To a solution of trimethyl((4-nitrophenyl)ethynyl)silane (1.095 g 5 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 35 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **1h** as yellow solid. Yield: 0.63 g (86%). This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 8.21 (d, $J = 8.7$ Hz, 2H), 7.65 (d, $J = 8.6$ Hz, 2H), 3.37 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 147.49, 132.97, 128.91, 123.57, 82.35, 81.59.

1-(4-ethynylphenyl)ethanone (**1i**)

1i


The mixture of 1-(4-iodophenyl)ethanone (1.722g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 1.5 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) to give 1-(4-((trimethylsilyl)ethynyl)phenyl)ethanone (1.285 g, 5.95 mmol, 85% yield).

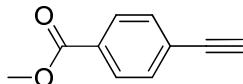
To a solution of 1-(4-((trimethylsilyl)ethynyl)phenyl)ethanone (1.23 g, 5 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 10 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) afforded the product **1i** as yellow solid. Yield: 0.64 g (89%).

This compound is known.

^1H NMR (300 MHz, CDCl_3) δ 7.91 (d, $J = 7.8$ Hz, 2H), 7.57 (d, $J = 7.8$ Hz, 2H), 3.26 (s, 1H), 2.61 (s, 3H). ^{13}C NMR (75 MHz, CDCl_3) δ 197.2, 136.7, 132.2, 128.1, 126.9, 82.7, 80.3, 26.6.

methyl 3-ethynylbenzoate (**1j**)

1j


The mixture of methyl 3-iodobenzoate (1.834 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 2 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) to give methyl 3-((trimethylsilyl)ethynyl)benzoate (1.4 g, 6.03 mmol, 86% yield).

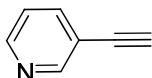
To a solution of methyl 3-((trimethylsilyl)ethynyl)benzoate (1.16 g, 5 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 15 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **1j** as yellow solid. Yield: 0.696 g (87%).

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 8.09 (s, 1H), 7.94 (d, $J = 7.9$ Hz, 1H), 7.59 (d, $J = 7.7$ Hz, 1H), 7.34 (t, $J = 7.8$ Hz, 1H), 3.85 (s, 3H), 3.05 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 165.23, 135.21, 132.23, 129.41, 128.77, 127.46, 121.53, 81.51, 77.12, 51.29.

methyl 4-ethynylbenzoate (1k)

1k


The mixture of methyl 4-iodobenzoate (1.834 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 2 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) to give methyl 4-((trimethylsilyl)ethynyl)benzoate (1.445 g, 6.23 mmol, 89% yield).

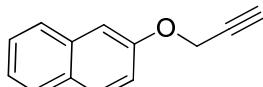
To a solution of methyl 4-((trimethylsilyl)ethynyl)benzoate (1.392 g, 6 mmol) in 50 mL of diehy1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 15 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **1j** as yellow solid. Yield: 0.806 g (84%).

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 7.99 (d, $J = 8.1$ Hz, 2H), 7.55 (d, $J = 8.1$ Hz, 2H), 3.92 (d, $J = 0.5$ Hz, 3H), 3.23 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 166.42, 132.08, 130.12, 129.46, 126.74, 82.79, 80.05, 52.30.

3-ethynylpyridine (1l)

1l


The mixture of methyl 3-iodopyridine (1.435 g, 7 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (3 mol %, 147mg) and CuI (5 mol%, 67mg) in Et_3N (30 mL) was added dropwise via cannula a solution of (trimethylsilyl)acetylene (1.1 equiv, 1.93 mg) in Et_3N (5 mL) at rt for 3 h (Monitored by TLC), and a purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) to give methyl 3-((trimethylsilyl)ethynyl)pyridine (0.98 g, 5.6 mmol, 80% yield).

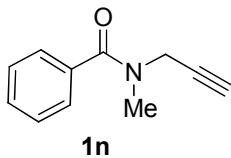
To a solution of methyl 3-((trimethylsilyl)ethynyl)pyridine (0.875 g, 5 mmol) in 50 mL of diehyd 1 ether was added 50 mL of methanol and 20 mL of a 10% sodium hydroxide solution at rt for 50 min (Monitored by TLC). The reaction mixture was neutralized with a 1 M HCl solution. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) afforded the product **1l** as white solid. Yield: 0.427 g (83%).

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 8.72 (s, 1H), 8.57 (d, J = 4.8 Hz, 1H), 7.77 (dd, J = 7.9, 1.8 Hz, 1H), 7.29 – 7.23 (m, 1H), 3.22 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 152.51, 149.08, 138.87, 123.06, 81.22, 81.11.

2-(prop-2-ynyoxy)naphthalene (**1m**)

1m

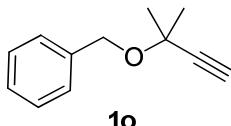

A solution of naphthalen-2-ol (2.88 g, 20 mmol), propargyl choride (2.9 mL, 40 mmol, 2 equiv) and potassium carbonate (6.9 g, 50 mmol, 2.5 equiv) in DMF (20 mL) was stirred 16 h at 50°C. The reaction was cooled to rt and poured into HCl 1N (50 mL) and extracted with Et_2O . The organic phase was washed with HCl 1 N, then brine, dried over anhydrous MgSO_4 and the volatiles removed under reduced pressure. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **1m** as yellow solid. Yield: 2.4 g (84%).

This compound is known.

Reference: Achard, T.; Lepronier, A.; Gimbert, Y.; Clavier, H.; Giordano, L.; Tenaglia, A.; Buono, G. *Angew. Chem. Int. Ed.* **2011**, *50*, 3552.

^1H NMR (400 MHz, CDCl_3) δ 7.79 – 7.71 (m, 3H), 7.45 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 2.9 Hz, 1H), 7.19 (dd, J = 8.9, 2.5 Hz, 1H), 4.80 (d, J = 2.3 Hz, 2H), 2.55 (t, J = 2.3 Hz, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 155.44, 134.26, 129.57, 129.31, 127.66, 126.92, 126.46, 124.01, 118.72, 107.42, 78.48, 75.65, 55.82.

N-methyl-N-(prop-2-ynyl)benzamide (**1n**)

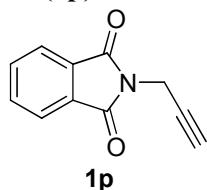

Benzoylchloride (1.69 g 12.0 mmol), N-methylprop-2-yn-1-amine (830 mg 12.0 mmol), Et₃N (1.21 g, 12.0 mmol) and DMAP (29.3 mg, 240 µmol) were employed. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) afforded the product **1n** as a brownish oil. Yield: 1.92 g (93%).

This compound is known.

Reference: Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. *Chem.- Eur. J.* **2010**, *16*, 956.

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.34 (m, 5H), 4.36 (s, 1H), 3.99 (s, 1H), 3.09 (d, J = 29.6 Hz, 3H), 2.34 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.44, 133.53, 128.13, 126.59, 125.27, 125.14, 125.10, 76.56, 70.88, 39.62, 34.7.

((2-methylbut-3-yn-2-yloxy)methyl)benzene (**1o**)

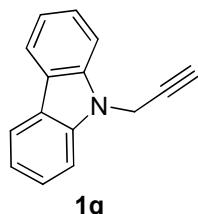

2-Methyl-3-butyn-2-ol (8 mL, 9.94g, 83 mmol) was added to a heterogeneous mixture of NaH (60% in mineral oil, 4g, 0.1 mol) in anhydrous THF (400 mL). After stirring the mixture for 1 hour under nitrogen at room temperature, tetrabutylammonium iodide (1.5g, 4 mmol) followed by benzylbromide (12 mL, 17g, 0.1 mol) were added to the above alkoxide mixture. The mixture was stirred under nitrogen for 18 hours. After which, the reaction was diluted with diethyl ether (300 mL), washed with water (3x100 mL), brine (100 mL), dried with MgSO₄, filtered and concentrated to an oil. Silica chromatography (eluent: petroleum ether/ diethyl ether 50:1) provided the product **1o** as a clear oil. Yield: 12.2 g (85%).

This compound is known.

Reference: Trost, B. M.; Fandrick, D. R.; Dinh, D. C. *J. Am. Chem. Soc.*, **2005**, *127*, 14186.

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.22 (m, 5H), 4.63 (s, 2H), 2.47 (s, 1H), 1.55 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.84, 128.29, 127.71, 127.37, 86.05, 72.29, 70.45, 66.50, 28.83.

2-(prop-2-ynyl)isoindoline-1,3-dione (**1p**)

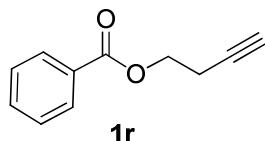

A solution of isoindoline-1,3-dione (2.94 g, 20 mmol), propargyl chloride (2.9 mL, 40 mmol, 2 equiv) and potassium carbonate (6.9 g, 50 mmol, 2.5 equiv) in DMF (20 mL) was stirred 16 h at 50°C. The reaction was cooled to rt and poured into HCl 1N (50 mL) and extracted with Et₂O. The organic phase was washed with HCl 1 N, then brine, dried over anhydrous MgSO₄ and the volatiles removed under reduced pressure. Flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate 15:1) afforded the product **1p** as White solid. Yield: 2.96 g (80%).

This compound is known.

Reference: Achard, T.; Lepronier, A.; Gimbert, Y.; Clavier, H.; Giordano, L.; Tenaglia, A.; Buono, G. *Angew. Chem. Int. Ed.* **2011**, *50*, 3552.

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.77 – 7.72 (m, 2H), 4.46 (s, 2H), 2.23 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.02, 134.26, 131.98, 123.62, 77.17, 71.51, 27.01.

9-(prop-2-ynyl)-9H-carbazole (**1q**)


To a solution of carbazole 1 (1.67 g, 10 mmol) in 30 mL of acetone, K₂CO₃ (2.76 g, 20 mmol) was added. After the mixture was stirred for 15 min, 3-bromopropyne (2.25 mL of an 80 wt % solution in toluene, 15 mmol) was added dropwise for 30 min. After it was stirred for 3 h at room temperature, the mixture was filtered, the filtrate was rotovapitated, and the crude product was separated by silica gel column chromatography (eluent: petroleum ether) to give the product **1q** as a white solid. Yield: 1.55 g (75%).

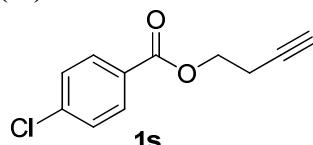
This compound is known.

Reference: Li, C.-H.; Liu, X.-F.; Yuan, M.-J.; Li, J.-B.; Guo, Y.-B.; Xu, J.-L.; Zhu, M.; Lv, J.; Liu, H.-B.; Li, Y.-L. *Langmuir* **2007**, *23*, 6754.

¹H NMR (CDCl₃): δ 8.09 (2H, d); 7.48 (4H, t); 7.27 (2H, t); 5.04 (2H, d); 2.24 (1H, s). ¹³C NMR (CDCl₃) δ 138.79, 124.87, 122.19, 119.38, 118.54, 107.65, 77.68, 71.53, 31.31.

but-3-ynyl benzoate (**1r**)

Benzoyl chloride (5.8 mL, 50 mmol), but-3-yn-1-ol (4.5 mL, 60 mmol, 1.2 equiv), Et₃N (14 mL, 2 equiv) in DCM (100 mL) from 0 °C to rt for 16 h. Flash chromatography on silica gel (eluent: petroleum ether) afforded the product **1r** as colourless oil. Yield: 6.173 g (71.9%).


This compound is known.

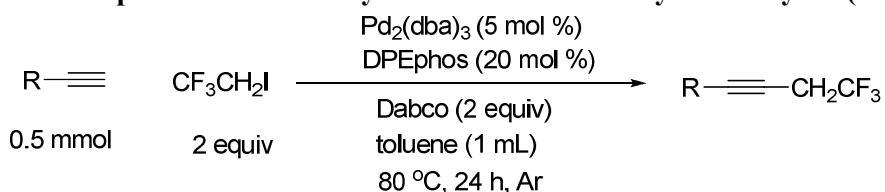
Reference: Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C.; Terlizzi, R. *Eur. J. Org. Chem.* **2004**, 3447.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 2H), 2.57 (t, *J* = 6.6 Hz, 2H), 1.96 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.21, 132.03, 128.86, 128.60, 127.33, 79.00, 69.04, 61.53, 18.03.

but-3-ynyl 4-chlorobenzoate (1s)

4-chlorobenzoyl chloride (6.34 mL, 50 mmol), but-3-yn-1-ol (4.5 mL, 60 mmol, 1.2 equiv), Et₃N (14 mL, 2 equiv) in DCM (100 mL) from 0 °C to rt for 16 h. Flash chromatography on silica gel (eluent: petroleum ether) afforded the product **1s** as colourless oil. Yield: 6.76 g (65%).

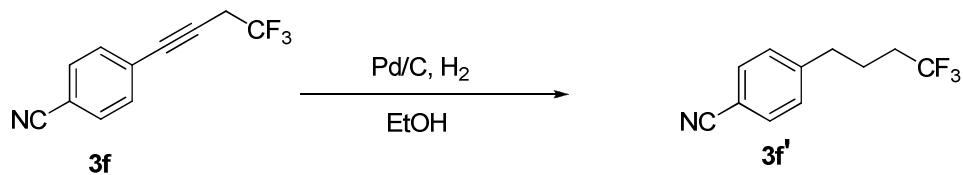

This compound is **new**.

Reference: Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C.; Terlizzi, R. *Eur. J. Org. Chem.* **2004**, 3447.

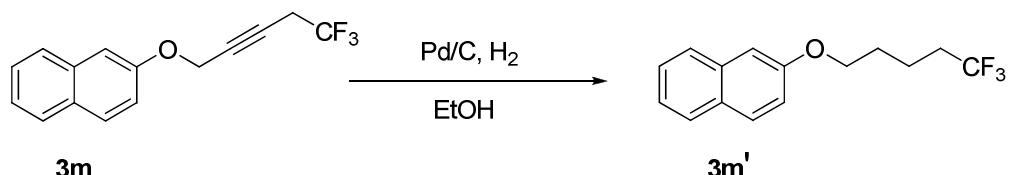
¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 4.42 (t, *J* = 6.8 Hz, 2H), 2.67 (td, *J* = 6.8, 2.7 Hz, 2H), 2.04 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.42, 139.54, 131.06, 128.74, 128.34, 79.90, 70.12, 62.78, 19.06.

HRMS calcd for C₁₁H₉ClO₂: 208.0291; found: 208.0293.

3. General procedure for the synthesis of trifluoroethylated alkynes (3a-3s)

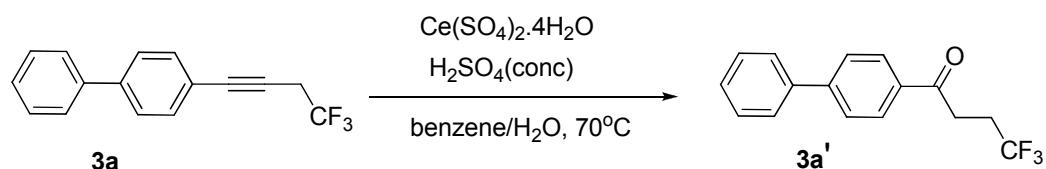


After standard cycles of evacuation and back-filling with dry and pure argon, an oven-dried Schlenk tube equipped with a magnetic stirring bar was combined Pd₂(dba)₃ (5 mol %), DPEphos (20 mol %), Dabco (2 equiv). The tube was evacuated and backfilled with argon (this procedure was repeated three times). Under a counter flow of argon, CF₃CH₂I (100 uL, 2 equiv), aryl or alkyl alkynes (55 uL, 0.5 mmol) and solvent toluene (1 mL) were added by syringe. The tube was sealed and the mixture was allowed to stir at 80 °C for 24 h. At the conclusion of the reaction, ethyl acetate was added to the mixture at room temperature. The organic layer was separated, and washed with water. The combined organic extracts were washed with brine, and dried over MgSO₄. After evaporation of the solvent, the crude product was purified by chromatography on silica gel to give the product.


Products **3b**, **3c**, **3e**, **3h**, **3k** are known compounds.

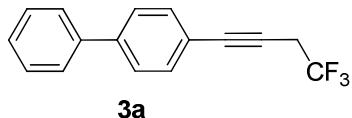
c. **Further synthetic applications of trifluoroethylated alkynes**

1. **General procedure for the reduction of aryl or alkyl 2,2,2,-trifluoroethylation product:**



To a solution of **3f** (105 mg, 0.5 mmol) in ethanol (15 mL) was added Pd/C 10% (50 mg). The reaction mixture was stirred under H_2 balloon overnight at room temperature. The reaction mixture was filtered through a silica gel pad, washed with CH_2Cl_2 , and filtrate was concentrated. The residue was purified using chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) to give the hydrogenated product **3f'** (97 mg, 91% yield). Yellow oil;

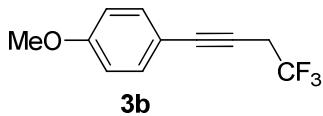
To a solution of **3m** (132 mg, 0.5 mmol) in ethanol (15 mL) was added Pd/C 10% (50 mg). The reaction mixture was stirred under H_2 balloon overnight at room temperature. The reaction mixture was filtered through a silica gel pad, washed with CH_2Cl_2 , and filtrate was concentrated. The residue was purified using chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100:1) to give the hydrogenated product **3m'** (126 mg, 94% yield). Yellow solid;


2. **General procedure for the oxidation of aryl 2,2,2,-trifluoroethylation product:**

A mixture of **3a** (0.5 mmol, 130 mg) and $\text{Ce}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$ (98%, 0.05 mmol, 20 mg) was added into a 25-mL one-necked round bottom flask. Then H_2O (10 μL), 98% H_2SO_4 (30 μL) and benzene (1.0 mL) were added into the mixture in turn. The reaction flask was immersed in a 70 °C oil bath with stirring under Ar atmosphere for 24 hours. The reaction mixture was extracted with ethyl acetate, dried with anhydrous magnesium sulfate and then concentrated in vacuo. The residue was purified on silica gel (eluent: petroleum ether/ethyl acetate 100:1) to afford the product **3a'** (68 mg, 49% yield). White solid;

Part 3. Characterization of the Products

1. 4-(4,4,4-trifluorobut-1-ynyl)biphenyl (3a)

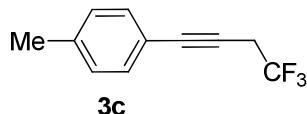


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 4-ethynylbiphenyl (89 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether) afforded the product **3a** as a white solid. Yield: 74.1 mg, 57%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 7.57 (d, $J = 7.0$ Hz, 2H), 7.53 (q, $J = 8.6$ Hz, 4H), 7.44 (t, $J = 7.5$ Hz, 2H), 7.35 (t, $J = 7.3$ Hz, 1H), 3.29 (q, $J = 9.6$ Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 141.50, 140.26, 132.28, 128.88, 127.74, 127.04 (d, $J = 3.8$ Hz), 124.24 (q, $J = 276.9$ Hz), 121.07, 84.25, 78.12 (q, $J = 5.1$ Hz), 26.88 (q, $J = 34.8$ Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.40 (t, $J = 9.5$ Hz). HRMS calcd for $\text{C}_{16}\text{H}_{11}\text{F}_3$: 260.0813; found: 260.0815.

2. 1-methoxy-4-(4,4,4-trifluorobut-1-ynyl)benzene (3b)

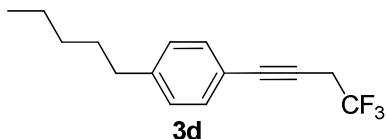


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-ethynyl-4-methoxybenzene (66 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 100:1) afforded the product **3b** as a yellow oil. Yield: 90 mg, 84%.

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 7.38 (d, $J = 8.9$ Hz, 2H), 6.83 (d, $J = 8.9$ Hz, 2H), 3.80 (s, 3H), 3.25 (q, $J = 9.6$ Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 159.90, 133.30, 124.31 (q, $J = 276.8$ Hz), 114.29, 113.95, 84.24, 76.04 (q, $J = 5.1$ Hz), 55.26, 26.78 (q, $J = 34.7$ Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.58 (t, $J = 9.7$ Hz). HRMS calcd for $\text{C}_{11}\text{H}_9\text{F}_3\text{O}$: 214.0605; found: 214.0603.

3. 1-methyl-4-(4,4,4-trifluorobut-1-ynyl)benzene (3c)

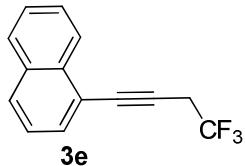


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-ethynyl-4-methylbenzene (58 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether) afforded the product **3c** as a yellow oil. Yield: 80.2 mg, 81%.

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 7.34 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 3.25 (q, J = 9.6 Hz, 2H), 2.34 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 138.86, 131.74, 129.08, 124.27 (q, J = 275.0 Hz), 119.13, 84.47, 76.81 (q, J = 5.1 Hz), 26.82 (q, J = 34.8 Hz), 21.48. ^{19}F NMR (377 MHz, CDCl_3) δ -66.51 (t, J = 9.6 Hz). HRMS calcd for $\text{C}_{11}\text{H}_9\text{F}_3$: 198.0656; found: 198.0657.

4. 1-pentyl-4-(4,4,4-trifluorobut-1-ynyl)benzene (**3d**)

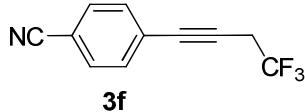


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-ethynyl-4-pentylbenzene (86 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether) afforded the product **3d** as yellow oil. Yield: 92.7 mg, 73%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 7.35 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 3.26 (q, J = 9.6 Hz, 2H), 2.59 (t, J = 10.2 Hz, 2H), 1.64 – 1.57 (m, 2H), 1.34 – 1.28 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 143.90, 131.75, 128.44, 125.38 (q, J = 275.0 Hz), 119.31, 84.51, 69.42 (q, J = 5.1 Hz), 35.85, 31.41, 30.90, 26.81 (q, J = 34.8 Hz), 22.51, 14.00. ^{19}F NMR (377 MHz, CDCl_3) δ -66.52 (t, J = 9.5 Hz). HRMS calcd for $\text{C}_{15}\text{H}_{17}\text{F}_3$: 254.1282; found: 254.1285.

5. 2-(4,4,4-trifluorobut-1-ynyl)naphthalene (**3e**)

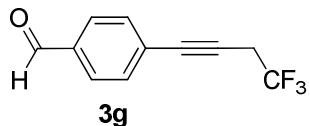


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-ethynylnaphthalene (76.1 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether) afforded the product **3e** as yellow oil. Yield: 52.6 mg, 45%.

This compound is known

^1H NMR (400 MHz, CDCl_3) δ 8.28 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 7.1 Hz, 1H), 7.57 (dd, J = 8.3, 1.4 Hz, 1H), 7.51 (t, J = 6.8 Hz, 1H), 7.44 – 7.38 (m, 1H), 3.43 (q, J = 9.5 Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 132.37, 132.09, 129.77, 128.17, 127.28, 125.96, 125.47, 124.86, 124.07, 123.13 (q, J = 275.0 Hz), 118.76, 81.59, 81.26 (q, J = 5.2 Hz), 26.08 (q, J = 34.8 Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.31 (t, J = 9.5 Hz). HRMS calcd for $\text{C}_{14}\text{H}_9\text{F}_3$: 234.0656; found: 234.0658.

6. 4-(4,4,4-trifluorobut-1-ynyl)benzonitrile (3f)

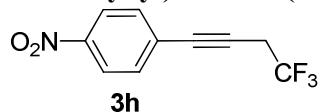


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 4-ethynylbenzonitrile (63.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **3f** as yellow oil; Yield: 62.7 mg, 60%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 7.62 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 3.31 (q, J = 9.4 Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 132.43, 132.06, 127.01, 123.91 (q, J = 274.8 Hz), 118.26, 112.28, 82.84, 82.10 (q, J = 5.2 Hz), 26.89 (q, J = 35.1 Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.15 (t, J = 9.5 Hz). HRMS calcd for $\text{C}_{11}\text{H}_6\text{F}_3\text{N}$: 209.0452; found: 209.045.

7. 4-(4,4,4-trifluorobut-1-ynyl)benzaldehyde (3g)

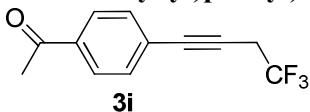


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 4-ethynylbenzaldehyde (65 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 40:1) afforded the product **3g** as yellow oil; Yield: 60.4 mg, 57%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 10.01 (s, 1H), 7.84 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 3.32 (q, J = 9.5 Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 191.34, 135.87, 132.42, 129.49, 128.31, 123.98 (q, J = 276.7 Hz), 83.52, 81.57 (q, J = 5.0 Hz), 26.88 (q, J = 35.0 Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.21 (t, J = 9.5 Hz). HRMS calcd for $\text{C}_{11}\text{H}_7\text{F}_3\text{O}$: 212.0449; found: 212.04.

8. 1-nitro-4-(4,4,4-trifluorobut-1-ynyl)benzene (3h)

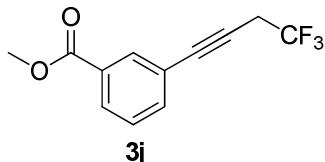


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-ethynyl-4-nitrobenzene (73.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **3h** as yellow solid. Yield: 49.2 mg, 43%.

This compound is known.

^1H NMR (400 MHz, CDCl_3) δ 8.19 (d, J = 8.9 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 3.33 (q, J = 9.4 Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 147.50, 132.71, 128.93, 123.90 (q, J = 276.9 Hz), 123.61, 82.94 (q, J = 5.0 Hz), 82.63, 26.93 (q, J = 35.1 Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.09 (t, J = 9.4 Hz). HRMS calcd for $\text{C}_{10}\text{H}_6\text{F}_3\text{NO}_2$: 229.0351; found: 229.0352.

9. 1-(4-(4,4,4-trifluorobut-1-ynyl)phenyl)ethanone (3i)

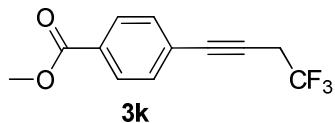

According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPEphos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this

procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), 1-(4-ethynylphenyl)ethanone (72 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) afforded the product **3i** as yellow oil. Yield: 92.7 mg, 82%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 7.91 (d, $J = 8.5$ Hz, 2H), 7.53 (d, $J = 8.5$ Hz, 2H), 3.31 (q, $J = 9.5$ Hz, 2H), 2.60 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) δ 197.27, 136.74, 132.03, 128.23, 126.97, 123.92 (q, $J = 274.0$ Hz), 83.64, 80.86 (q, $J = 5.0$ Hz), 26.90 (q, $J = 35.0$ Hz), 26.63. ^{19}F NMR (377 MHz, CDCl_3) δ -66.24 (t, $J = 9.5$ Hz). HRMS calcd for $\text{C}_{12}\text{H}_9\text{F}_3\text{O}$: 226.0605; found: 226.0604.

10. methyl 3-(4,4,4-trifluorobut-1-ynyl)benzoate (3j)

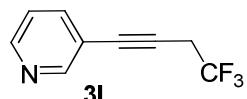


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), methyl 3-ethynylbenzoate (80 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 $^{\circ}\text{C}$ for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 30:1) afforded the product **3j** as yellow oil. Yield: 99 mg, 82%.

This compound is **new**.

^1H NMR (400 MHz, CDCl_3) δ 8.05 (s, 1H), 7.93 (d, $J = 7.9$ Hz, 1H), 7.55 (d, $J = 7.7$ Hz, 1H), 7.33 (t, $J = 7.8$ Hz, 1H), 3.85 (s, 3H), 3.21 (q, $J = 9.5$ Hz, 2H). ^{13}C NMR (101 MHz, CDCl_3) δ 166.29, 135.98, 133.01, 130.49, 129.73, 128.52, 124.13 (q, $J = 276.9$ Hz), 122.63, 83.39, 78.55 (q, $J = 5.1$ Hz), 52.32, 26.79 (q, $J = 34.9$ Hz). ^{19}F NMR (377 MHz, CDCl_3) δ -66.34 (t, $J = 9.4$ Hz). HRMS calcd for $\text{C}_{12}\text{H}_9\text{F}_3\text{O}_2$: 242.0555; found: 242.0552.

11. methyl 4-(4,4,4-trifluorobut-1-ynyl)benzoate (3k)


According to the general procedure **b**, the mixture of $\text{Pd}_2(\text{dba})_3$ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, $\text{CF}_3\text{CH}_2\text{I}$ (100 μL , 2 equiv), methyl 4-ethynylbenzoate (73.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe

under argon , the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 30:1) afforded the product **3k** as yellow oil. Yield: 96.8 mg, 80%.

This compound is known.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 3.84 (s, 3H), 3.22 (q, *J* = 9.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.39, 130.78, 129.05, 128.46, 125.77, 123.05 (q, *J* = 276.9 Hz), 82.64, 79.50 (q, *J* = 5.1 Hz), 51.23, 25.83 (q, *J* = 35.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.24 (t, *J* = 9.5 Hz). HRMS calcd for C₁₂H₉F₃O₂: 242.0555; found: 242.0554.

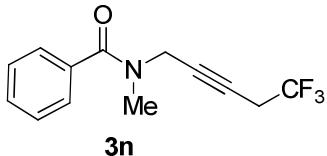
12. 3-(4,4,4-trifluorobut-1-ynyl)pyridine (3l)

According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DP Ephos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), 3-ethynylpyridine (51.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon , the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) afforded the product **3l** as yellow oil. Yield: 70 mg, 76%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 51.0 Hz, 2H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.26 (m, 1H), 3.31 (q, *J* = 9.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.51, 149.08, 138.87, 124.02 (q, *J* = 276.9 Hz), 123.06, 81.22, 81.11 (q, *J* = 5.1 Hz), 26.86 (q, *J* = 35.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.28 (t, *J* = 9.5 Hz). HRMS calcd for C₉H₆F₃N: 185.0452; found: 185.0457.

13. 2-(5,5,5-trifluoropent-2-ynyloxy)naphthalene (3m)

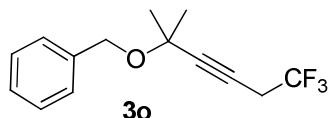


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DP Ephos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), 2-(prop-2-ynyloxy)naphthalene (91 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon , the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **3m** as yellow solid. Yield: 118.8 mg, 90%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, *J* = 14.3, 6.0 Hz, 3H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 2.3 Hz, 1H), 7.10 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.74 (s, 2H), 3.03 (q, *J* = 9.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.44, 134.29, 129.57, 129.31, 127.65, 126.93, 126.49, 124.05 (q, *J* = 274.7 Hz), 124.03, 118.68, 107.49, 79.41, 76.14 (q, *J* = 5.1 Hz), 55.97, 26.27 (q, *J* = 35.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.36 (t, *J* = 9.5 Hz). HRMS calcd for C₁₅H₁₁F₃O: 264.0762; found: 264.0763.

14. N-methyl-N-(5,5,5-trifluoropent-2-ynyl)benzamide (3n)

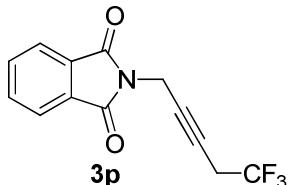


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), N-methyl-N-(prop-2-ynyl)benzamide (86.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) afforded the product **3n** as yellow oil. Yield: 114.7 mg, 90%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 5H), 4.39 (s, 1H), 4.01 (s, 1H), 3.09 (q, *J* = 9.5 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 171.36, 135.47, 130.02, 128.49, 127.09, 124.13 (q, *J* = 274.7 Hz), 79.36, 73.01 (q, *J* = 5.1 Hz), 41.66, 36.78, 26.18 (q, *J* = 35.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.59 (t, *J* = 9.5 Hz). HRMS calcd for C₁₃H₁₂F₃NO: 255.0871; found: 255.0874.

15. ((6,6,6-trifluoro-2-methylhex-3-yn-2-yloxy)methyl)benzene (3o)

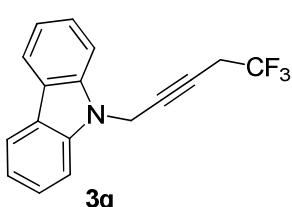


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), ((2-methylbut-3-yn-2-yloxy)methyl)benzene (87 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether) afforded the product **3o** as yellow oil. Yield: 114 mg, 89%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 4H), 7.18 (d, *J* = 6.8 Hz, 1H), 4.52 (s, 2H), 2.99 (q, *J* = 9.6 Hz, 2H), 1.45 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.87, 127.30, 126.74, 126.40, 123.01 (q, *J* = 274.7 Hz), 85.89, 71.75 (q, *J* = 5.0 Hz), 69.57, 65.58, 27.71, 25.07 (q, *J* = 34.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.72 (t, *J* = 9.7 Hz). HRMS calcd for C₁₄H₁₅F₃O: 256.1075; found: 256.1074.

16. 2-(5,5,5-trifluoropent-2-ynyl)isoindoline-1,3-dione (3p)

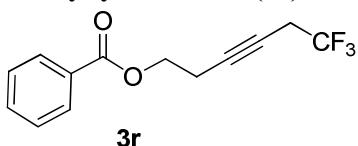


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), 2-(prop-2-ynyl)isoindoline-1,3-dione (92.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 10:1) afforded the product **3p** as white crystal. Yield: 108 mg, 81%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.1 Hz, 2H), 4.47 (t, *J* = 2.2 Hz, 2H), 3.03 (q, *J* = 9.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.00, 134.27, 132.01, 123.99 (q, *J* = 276.8 Hz), 123.62, 78.09, 71.78 (q, *J* = 5.1 Hz), 27.13, 26.11 (q, *J* = 34.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.39 (t, *J* = 9.4 Hz). HRMS calcd for C₁₃H₈F₃NO₂: 267.0507; found: 267.0509.

17. 9-(5,5,5-trifluoropent-2-ynyl)-9,9a-dihydro-4aH-carbazole (3q)

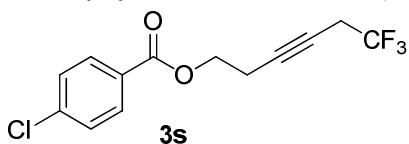


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DPPhos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), 9-(prop-2-ynyl)-9H-carbazole (102.5 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) afforded the product **3q** as yellow oil. Yield: 136 mg, 95%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 2H), 7.41 – 7.27 (m, 4H), 7.15 (t, *J* = 7.3 Hz, 2H), 4.87 (t, *J* = 2.1 Hz, 2H), 2.82 (q, *J* = 9.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.79, 124.87, 122.97 (q, *J* = 276.8 Hz), 122.19, 119.38, 118.54, 107.65, 77.68, 71.53 (q, *J* = 5.1 Hz), 31.31, 24.96 (q, *J* = 34.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.35 (t, *J* = 9.6 Hz). HRMS calcd for C₁₇H₁₂F₃N: 287.0922; found: 287.0925.

18. 6,6,6-trifluorohex-3-ynyl benzoate (3r)

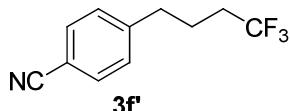


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DP Ephos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), but-3-ynyl benzoate (87 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 50:1) afforded the product **3r** as yellow oil. Yield: 71.7 mg, 56%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 2H), 4.34 (t, *J* = 6.8 Hz, 2H), 2.94 (q, *J* = 9.6 Hz, 2H), 2.60 (t, *J* = 6.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.32, 133.10, 129.98, 129.68, 128.40, 124.25 (q, *J* = 274.7 Hz), 80.57, 70.18 (q, *J* = 5.1 Hz), 62.49, 26.15 (q, *J* = 34.7 Hz), 19.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.36 (t, *J* = 9.5 Hz). HRMS calcd for C₁₃H₁₁F₃O₂: 256.0711; found: 256.0716.

19. 6,6,6-trifluorohex-3-ynyl 4-chlorobenzoate (3s)

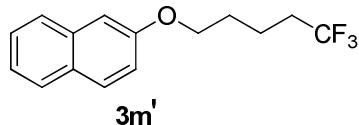


According to the general procedure **b**, the mixture of Pd₂(dba)₃ (22.9 mg, 5 mol %), DP Ephos (53.9 mg, 20 mol %), Dabco (112.2 mg, 2 equiv) were added into oven-dried Schlenk tube. The tube was evacuated and backfilled with argon (this procedure was repeated three times). Then, CF₃CH₂I (100 uL, 2 equiv), but-3-ynyl 4-chlorobenzoate (104 mg, 0.5 mmol) and toluene (1 mL) were added by syringe under argon, the tube was sealed and allowed to stir at 80 °C for 24 h. After column chromatography on silica gel (eluent: petroleum ether/ethyl acetate 20:1) afforded the product **3s** as yellow oil. Yield: 136.3 mg, 94%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 8.7 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 2H), 2.94 (q, *J* = 9.6 Hz, 2H), 2.59 (t, *J* = 6.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.41, 138.57, 130.04, 127.73, 127.39, 123.33 (q, *J* = 274.7 Hz), 79.42, 69.26 (q, *J* = 5.1 Hz), 61.65, 25.09 (q, *J* = 34.7 Hz), 18.22. ¹⁹F NMR (377 MHz, CDCl₃) δ -66.87 (t, *J* = 9.5 Hz). HRMS calcd for C₁₃H₁₀ClF₃O₂: 290.0321; found: 290.0321.

20. 4-(4,4,4-trifluorobutyl)benzonitrile (3f')

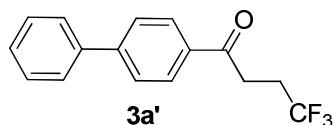


Yellow oil; Yield: 97 mg, 91%.

This compound is **new**.

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.4 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 2.68 (t, *J* = 7.7 Hz, 2H), 2.07 – 1.95 (m, 2H), 1.87 – 1.79 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.30, 131.39, 128.17, 125.93 (q, *J* = 276.4 Hz), 117.84, 109.33, 33.67, 32.00 (q, *J* = 28.8 Hz), 28.69, 22.08 (q, *J* = 2.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.15 (t, *J* = 10.7 Hz). HRMS calcd for C₁₁H₁₀F₃N: 213.0765; found: 213.0766.

21. 2-(5,5,5-trifluoropentyloxy)naphthalene (3m')

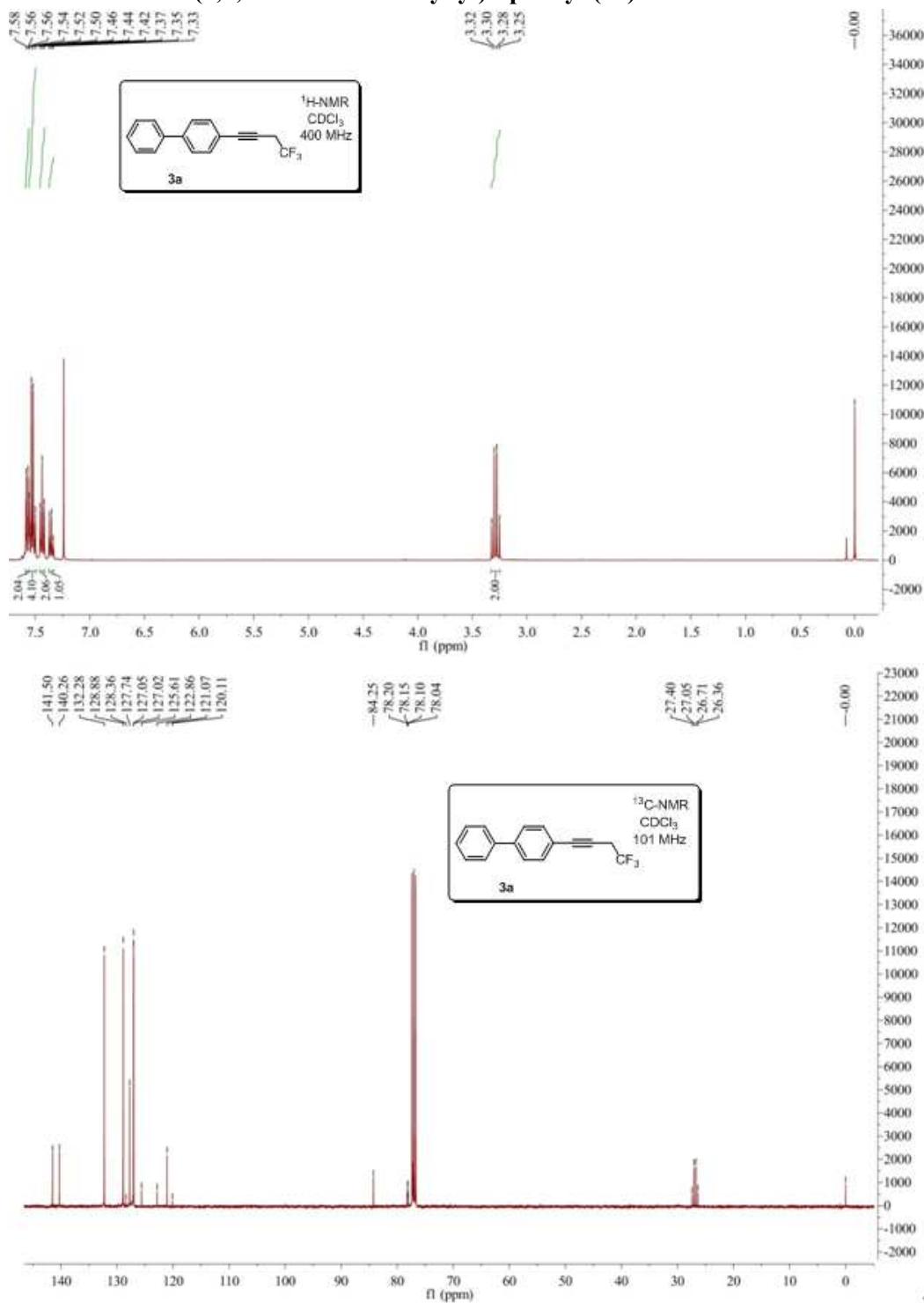


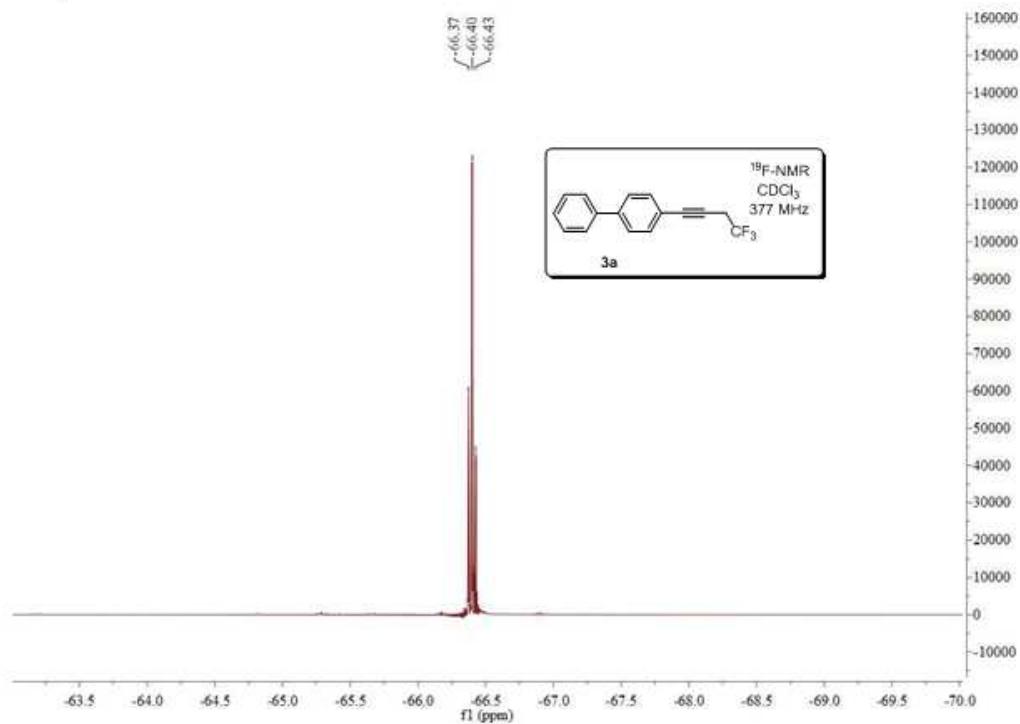
Yellow solid; Yield: 126 mg, 94%.

This compound is **new**.

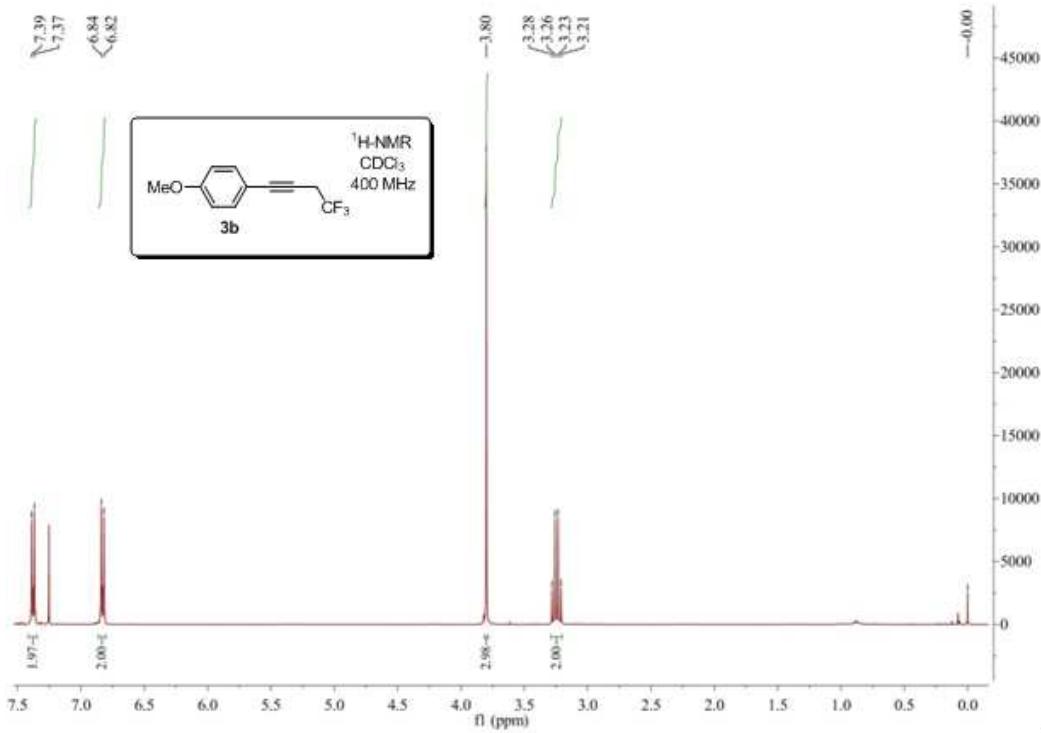
¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 17.1, 8.2 Hz, 3H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 9.1 Hz, 1H), 7.02 (s, 1H), 3.99 (t, *J* = 6.0 Hz, 2H), 2.16 – 2.02 (m, 2H), 1.87 – 1.77 (m, 2H), 1.76 – 1.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.78, 133.54, 128.41, 128.00, 126.63, 126.12 (q, *J* = 276.3 Hz), 125.68, 125.36, 122.62, 117.82, 105.57, 66.11, 32.50 (q, *J* = 28.6 Hz), 28.69, 27.27, 17.95 (q, *J* = 3.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.30 (t, *J* = 10.8 Hz). HRMS calcd for C₁₅H₁₅F₃O: 268.1075; found: 268.1078.

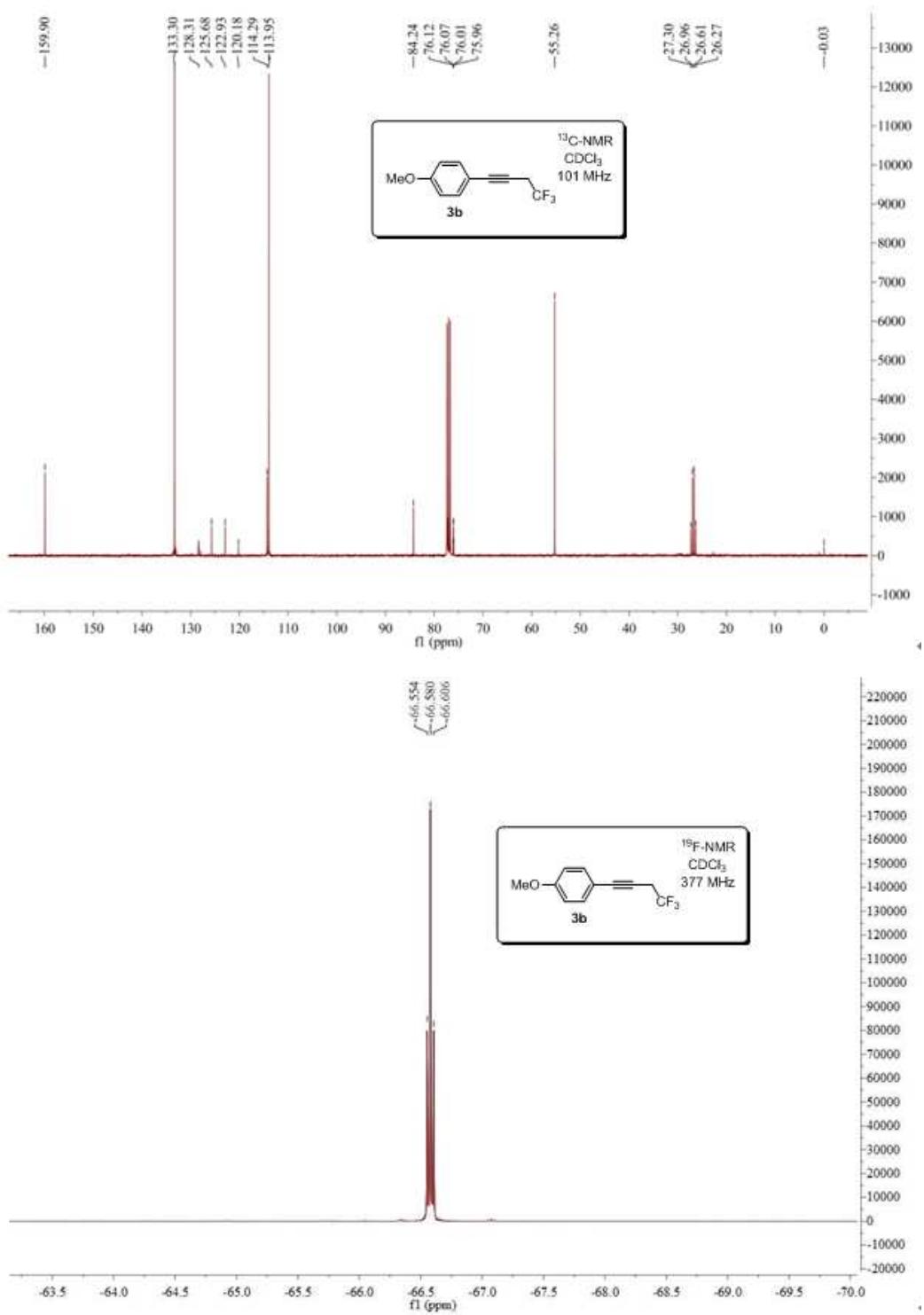
22. 1-(biphenyl-4-yl)-4,4,4-trifluorobutan-1-one (3a')

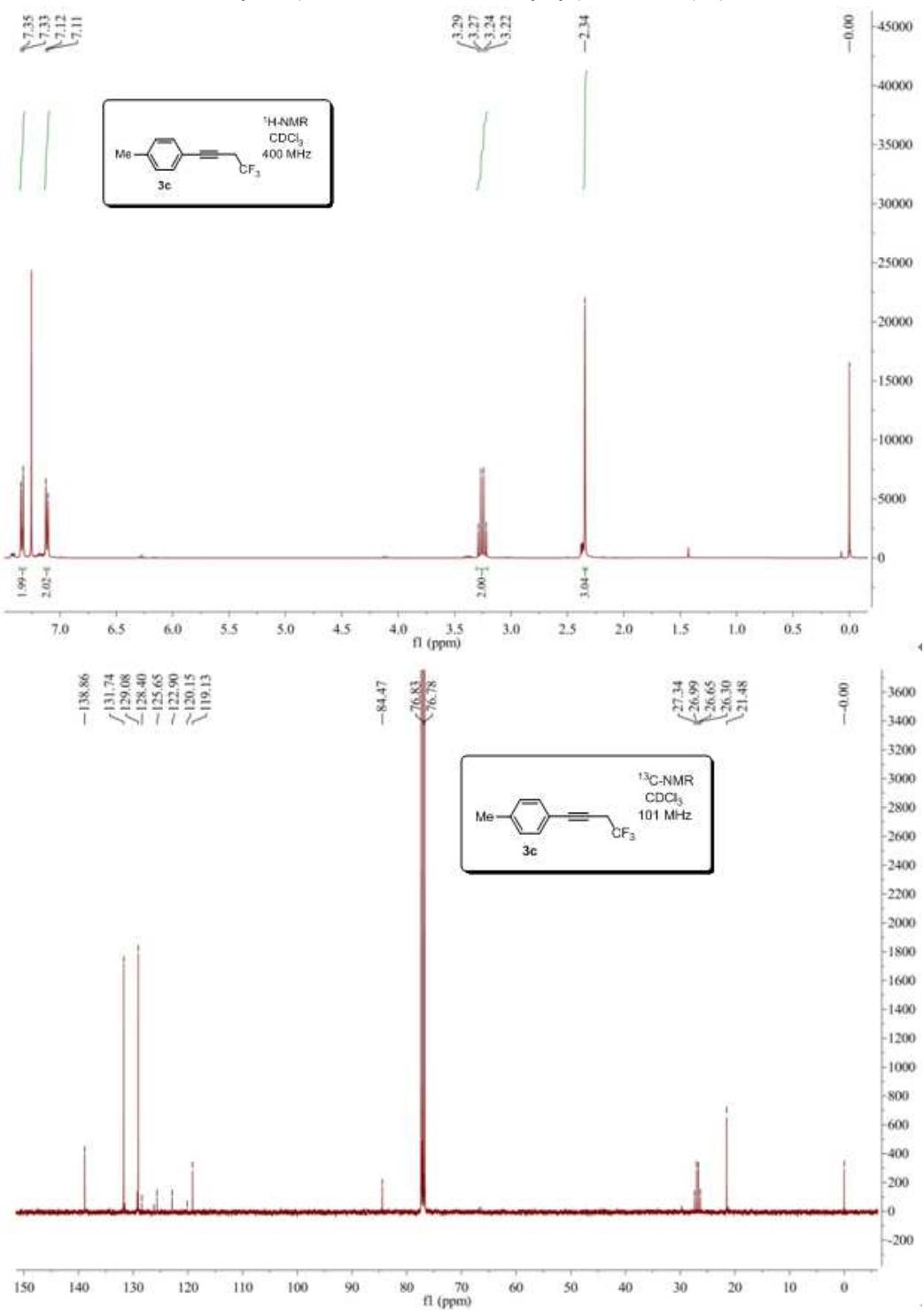

White solid; Yield: 68 mg, 49%.

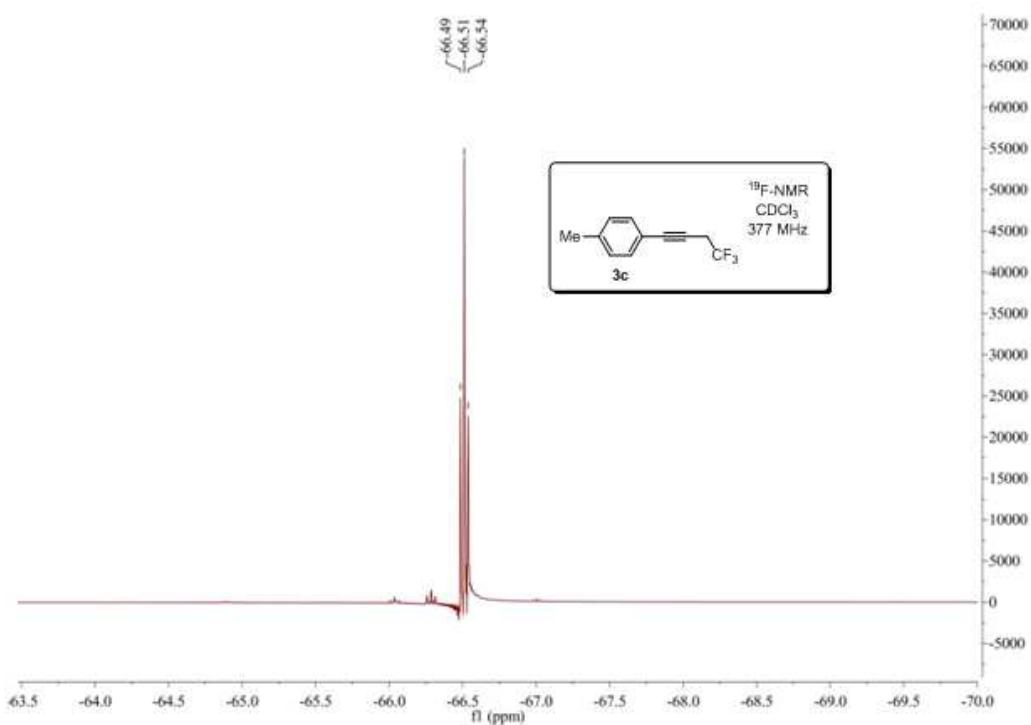

This compound is **new**.

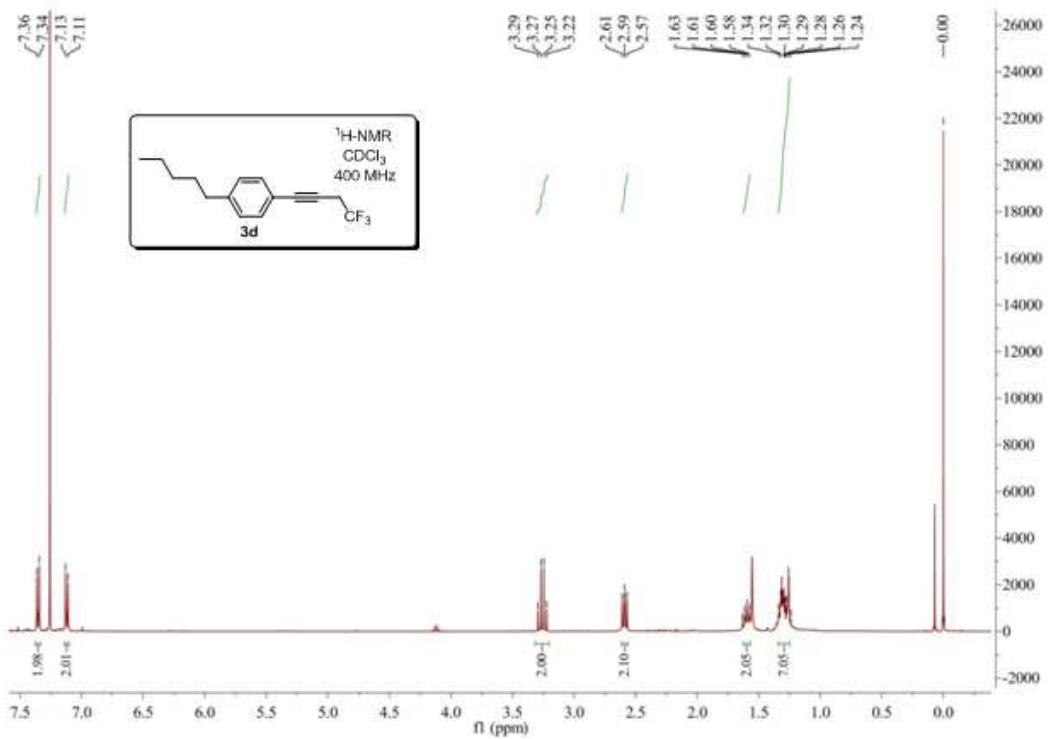
¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.6 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 3.32 – 3.25 (m, 2H), 2.68 – 2.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 194.89, 145.29, 138.65, 133.79, 127.98, 127.60, 127.37, 126.36, 126.25, 126.17 (q, *J* = 275.7 Hz), 30.22 (q, *J* = 2.6 Hz), 28.69, 27.38 (q, *J* = 29.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -66.38 (t, *J* = 10.9 Hz). HRMS calcd for C₁₆H₁₃F₃O: 278.0918; found: 278.0916.

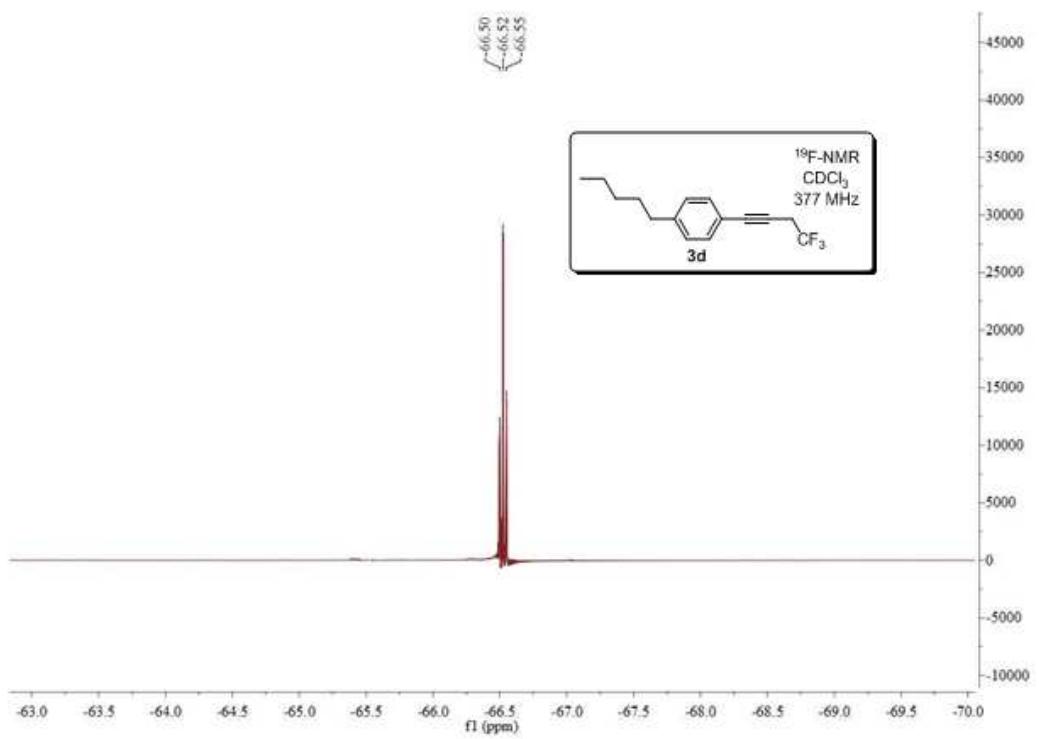
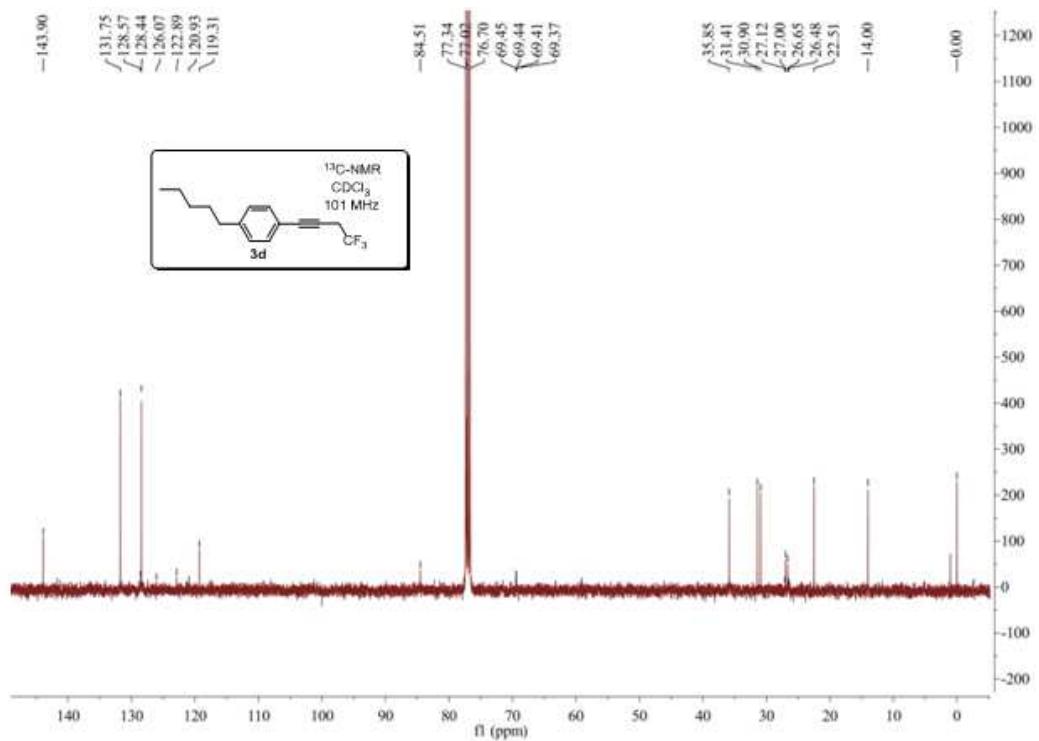

Part 4. Copies of ^1H -NMR and ^{13}C -NMR Spectra the Products

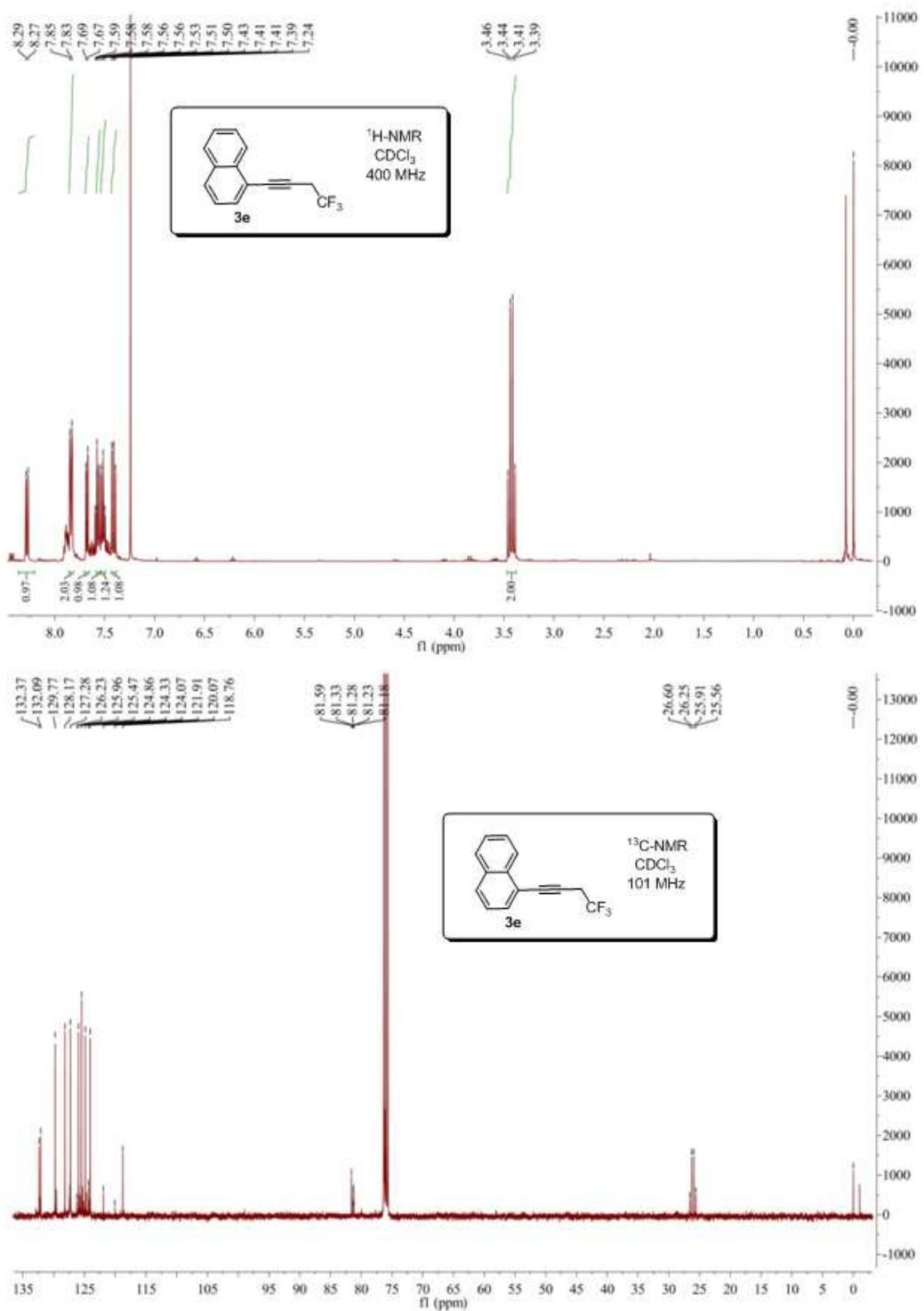

4-(4,4,4-trifluorobut-1-ynyl)biphenyl (3a)

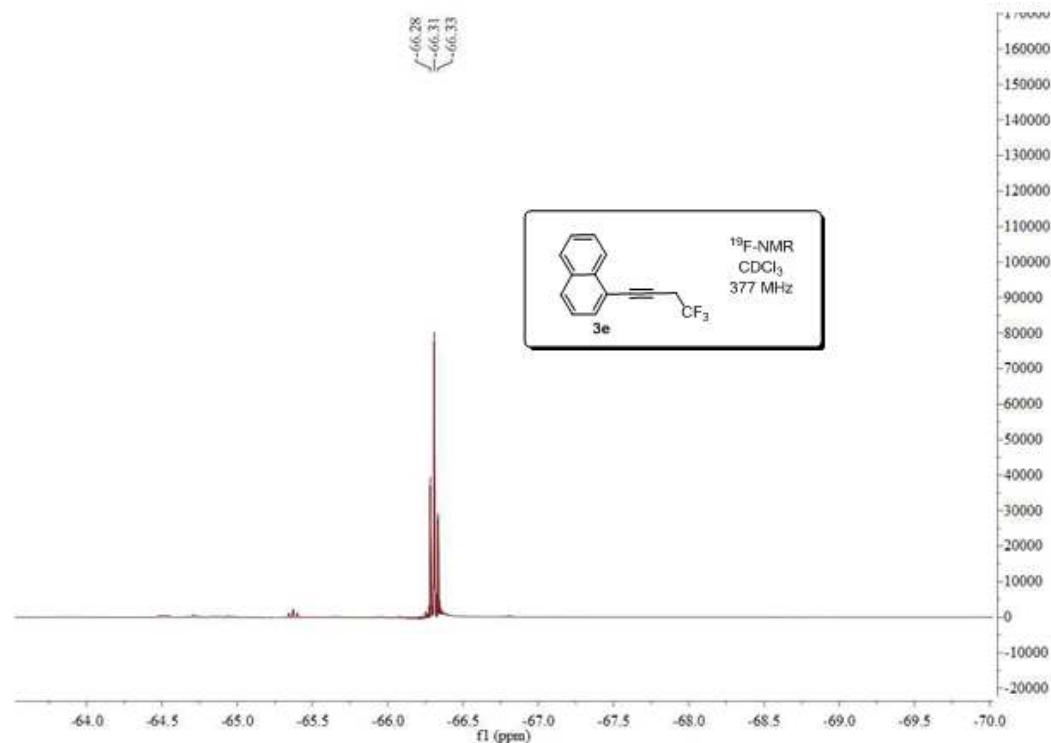


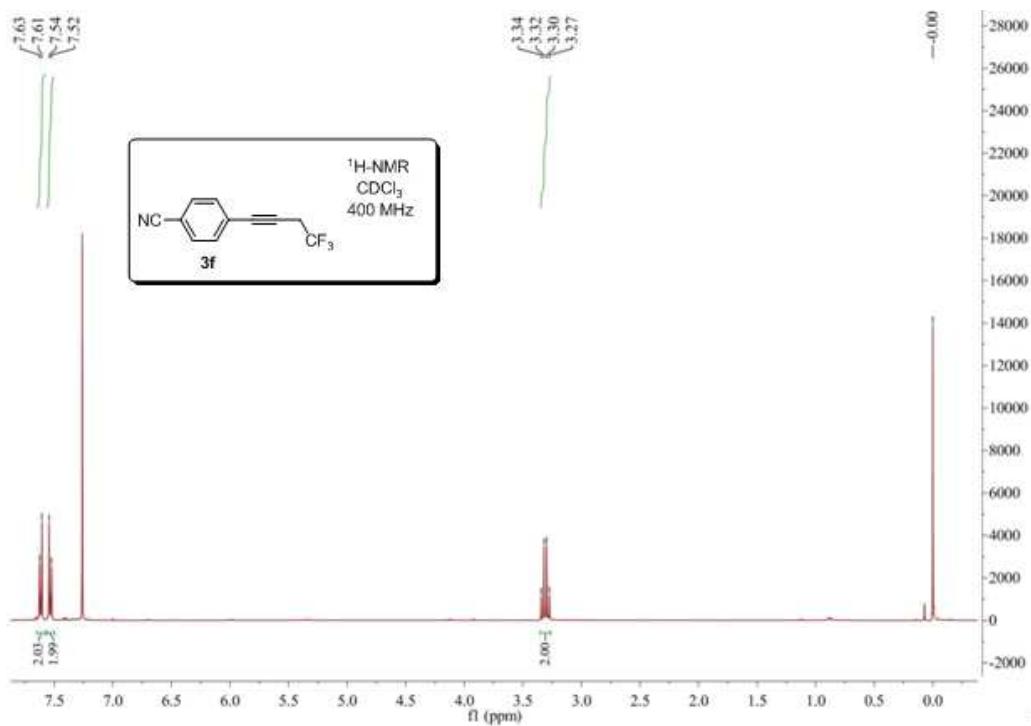

1-methoxy-4-(4,4,4-trifluorobut-1-ynyl)benzene (3b)

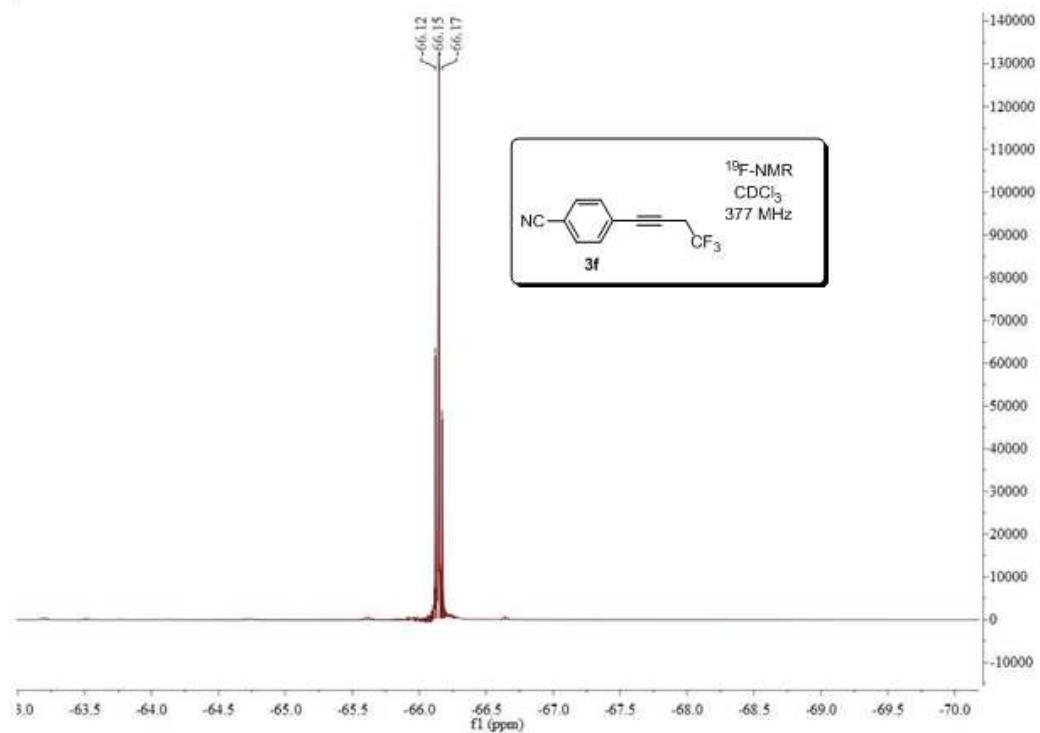
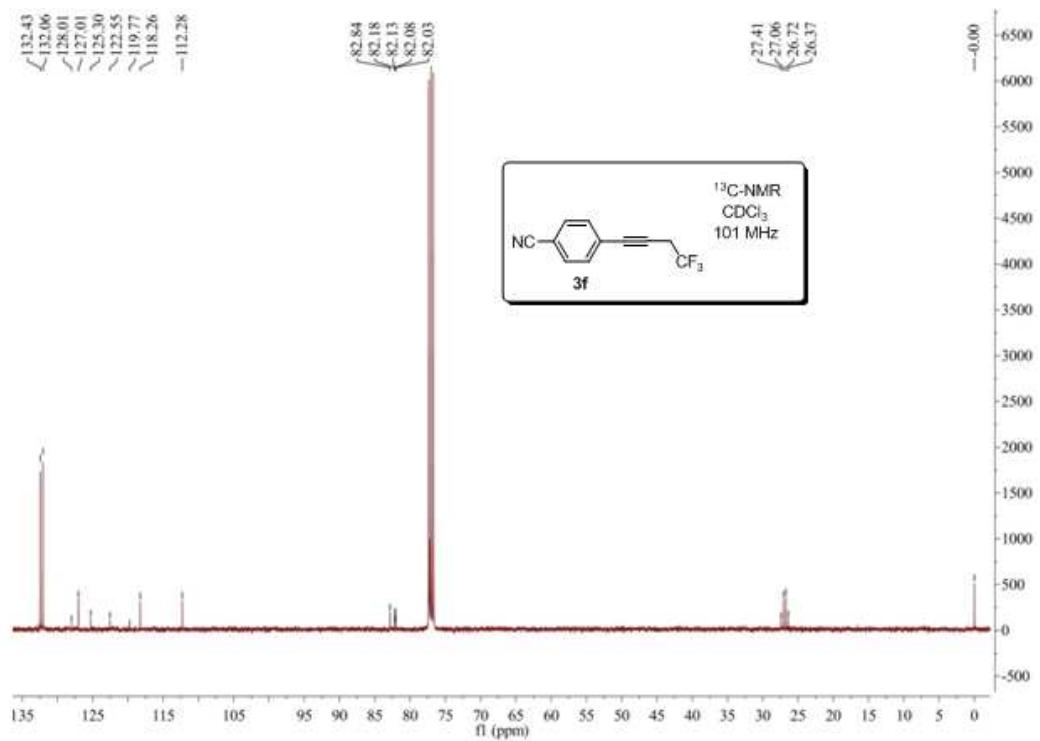


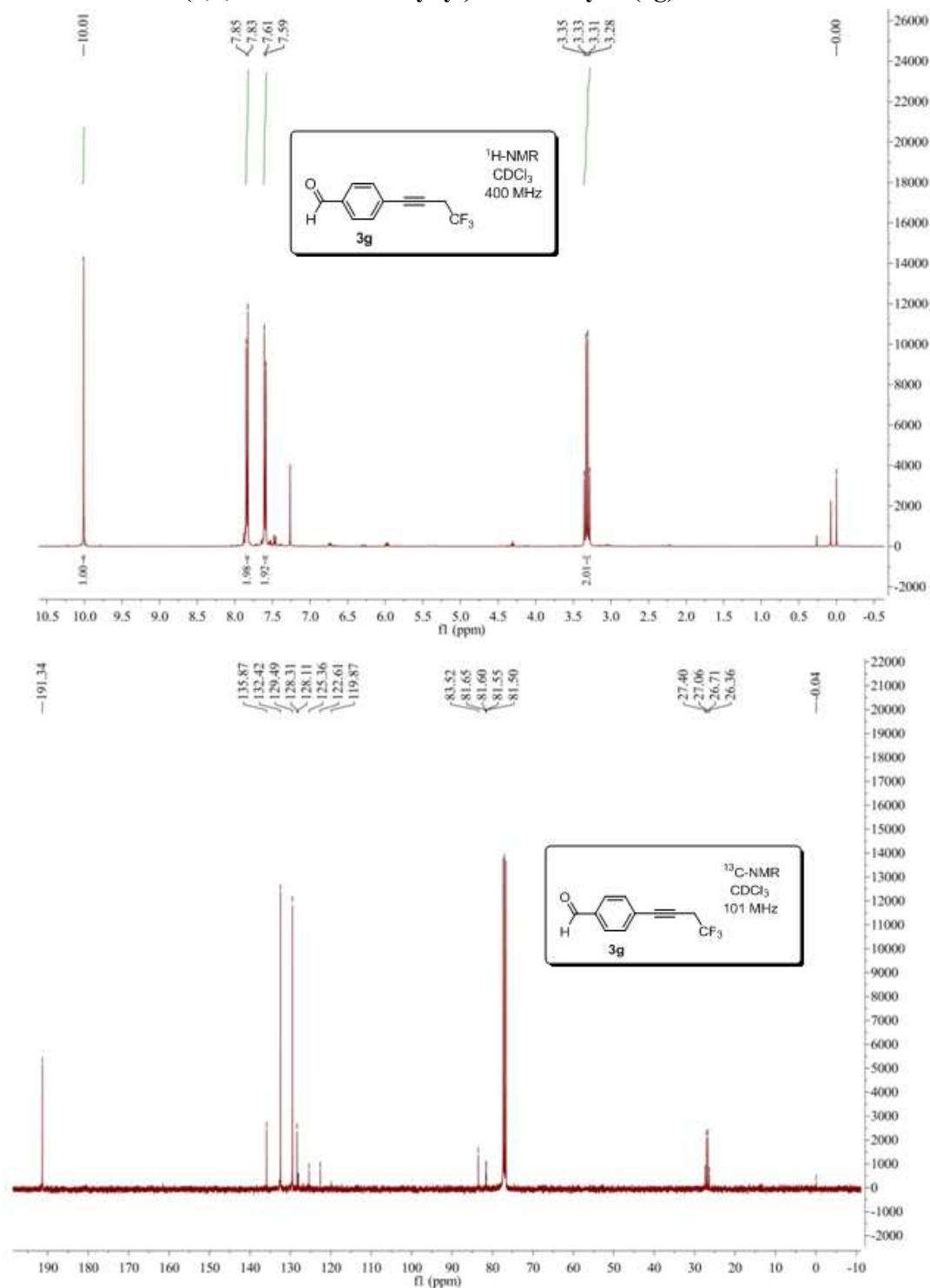


1-methyl-4-(4,4,4-trifluorobut-1-ynyl)benzene (3c)

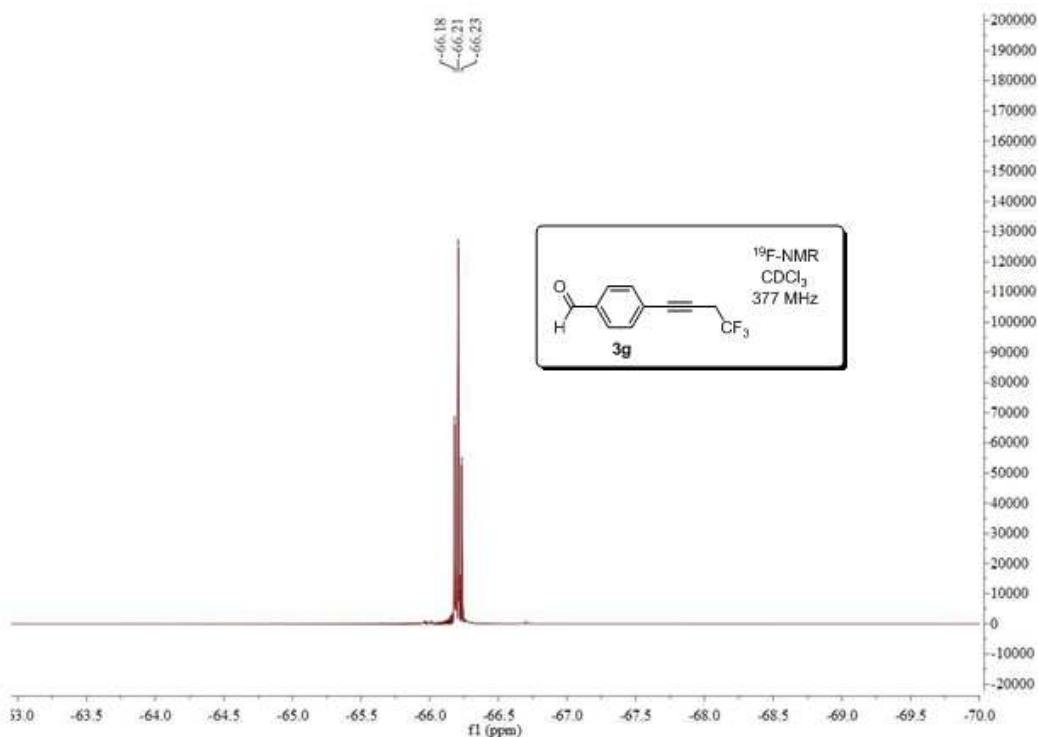


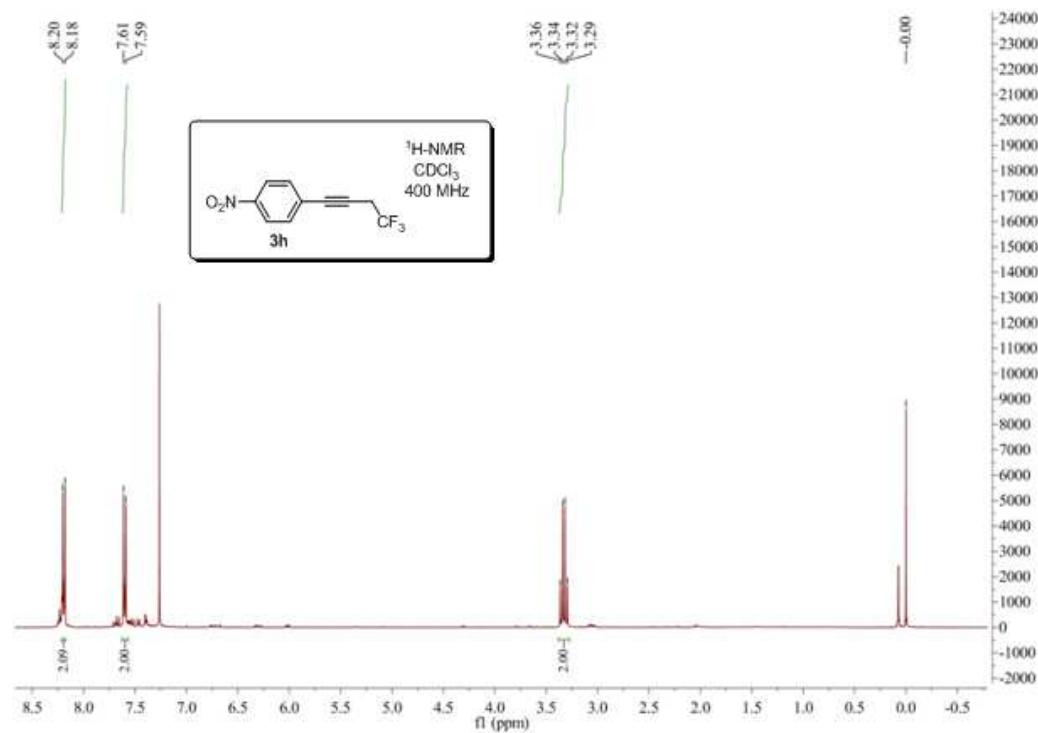

1-pentyl-4-(4,4,4-trifluorobut-1-ynyl)benzene (3d)

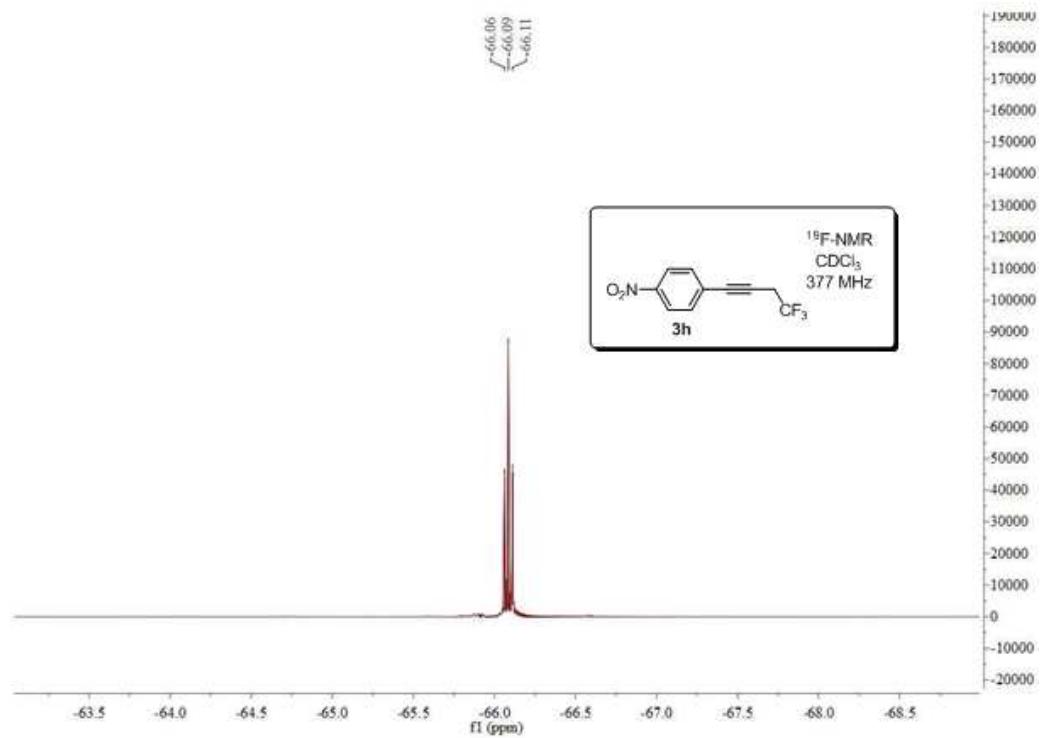
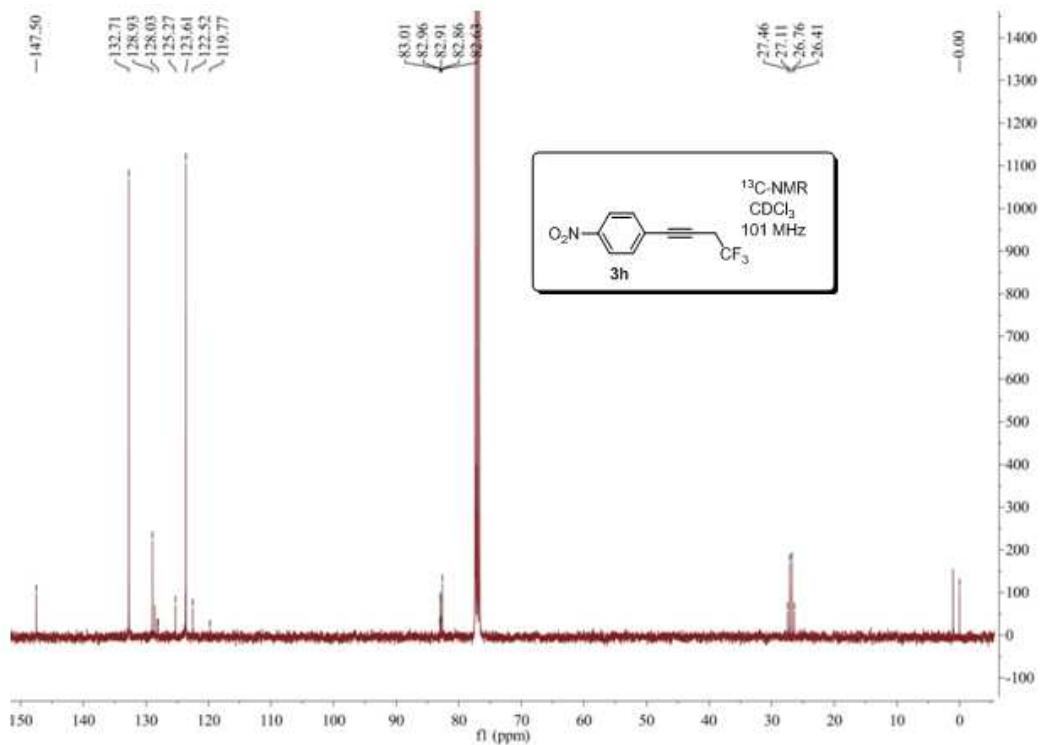


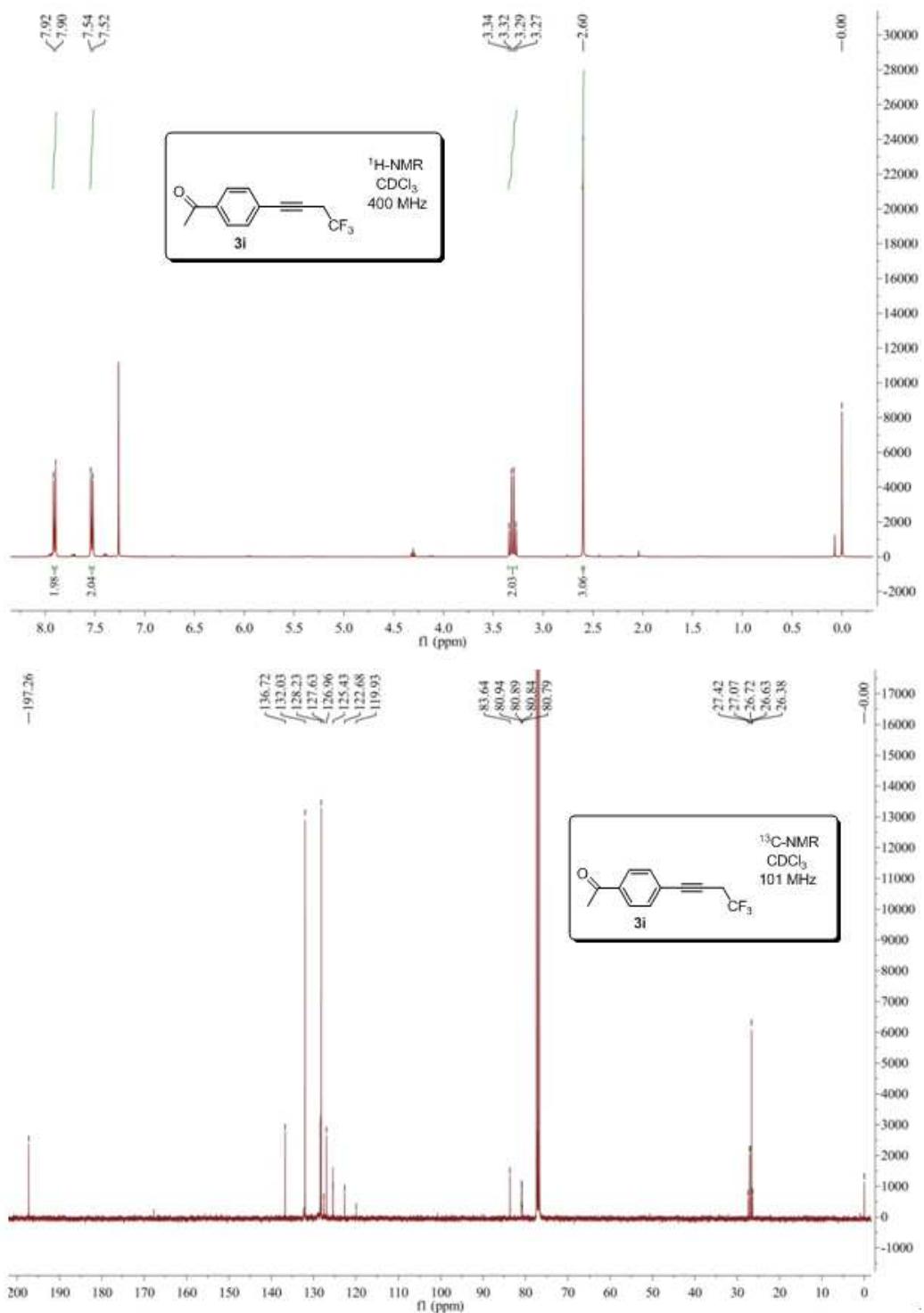


2-(4,4,4-trifluorobut-1-ynyl)naphthalene (3e)

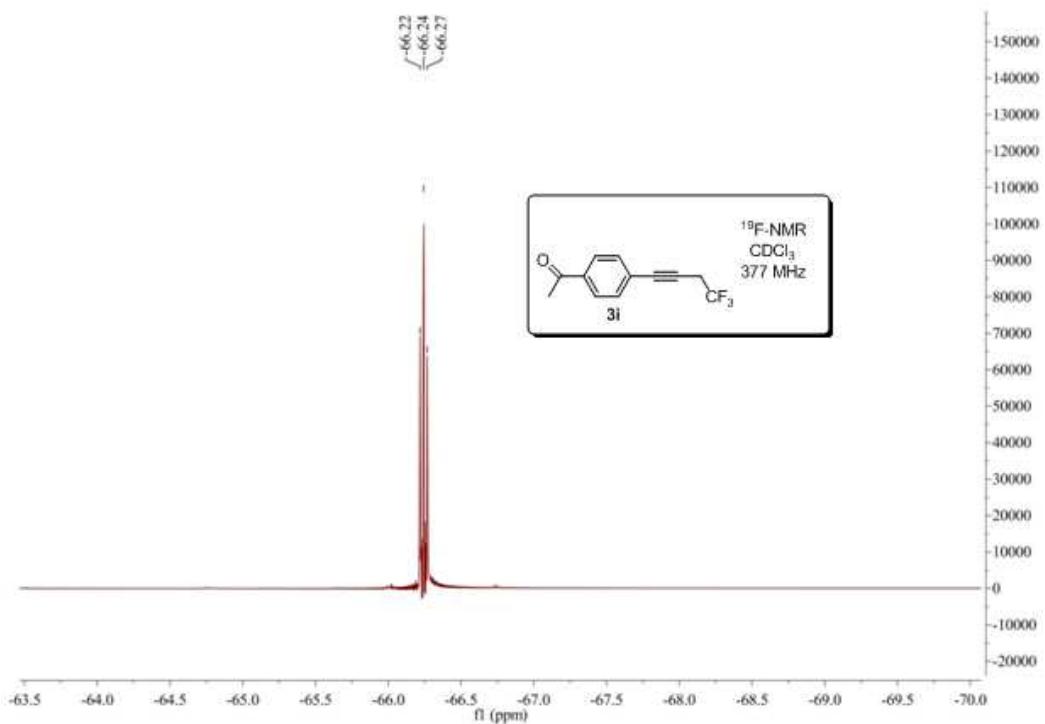


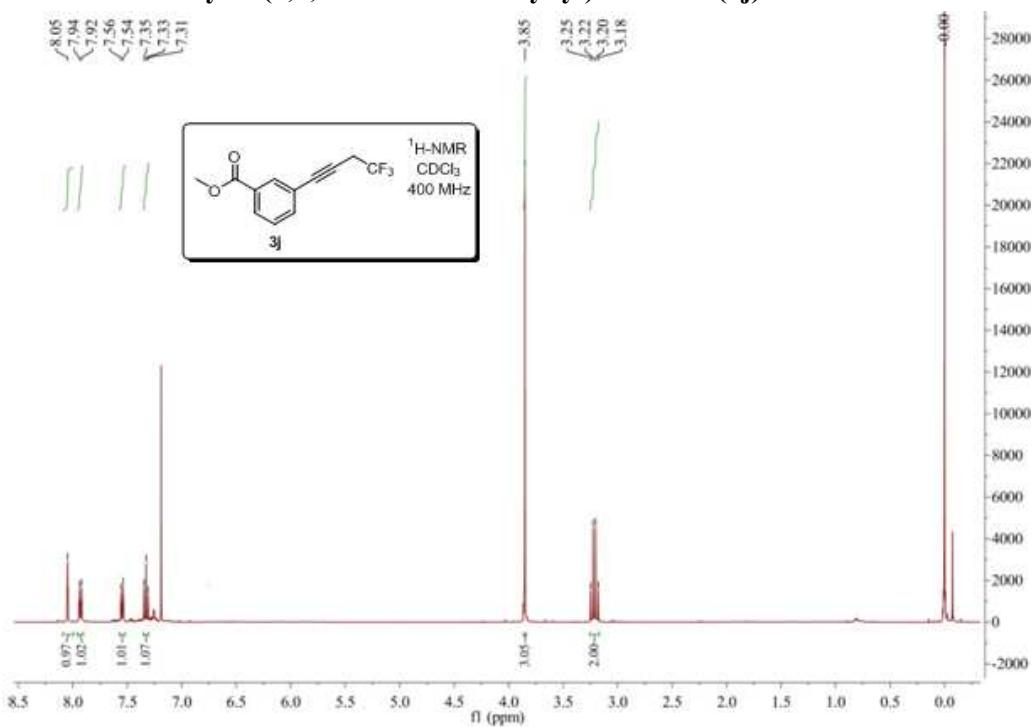

4-(4,4,4-trifluorobut-1-ynyl)benzonitrile (3f)

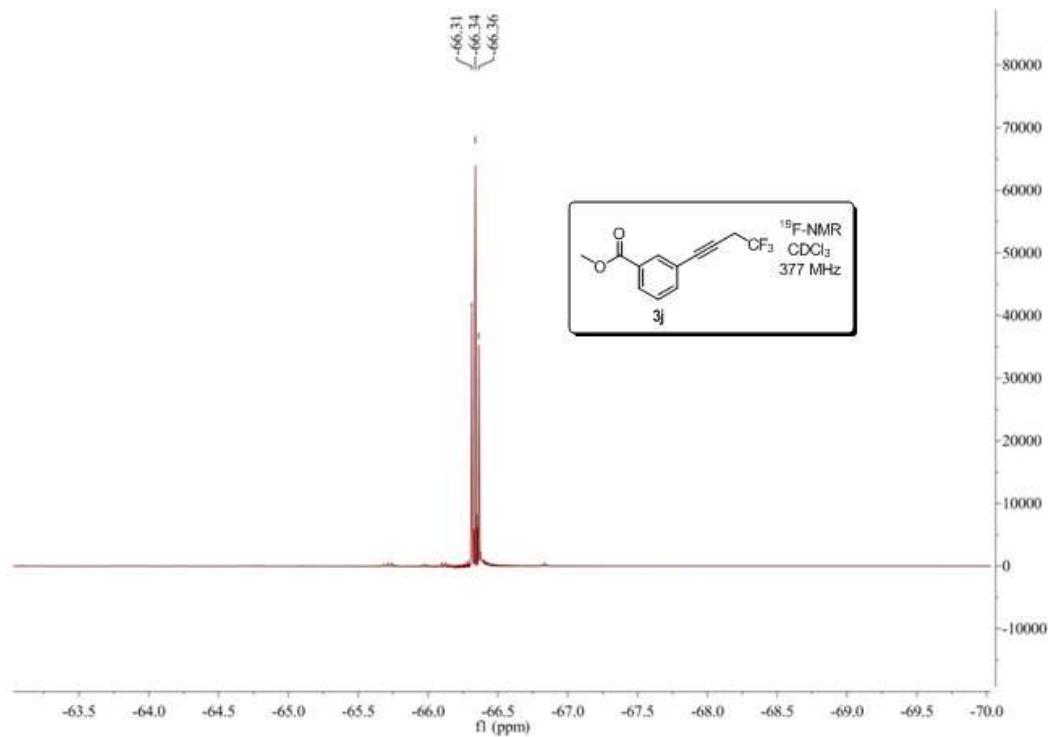
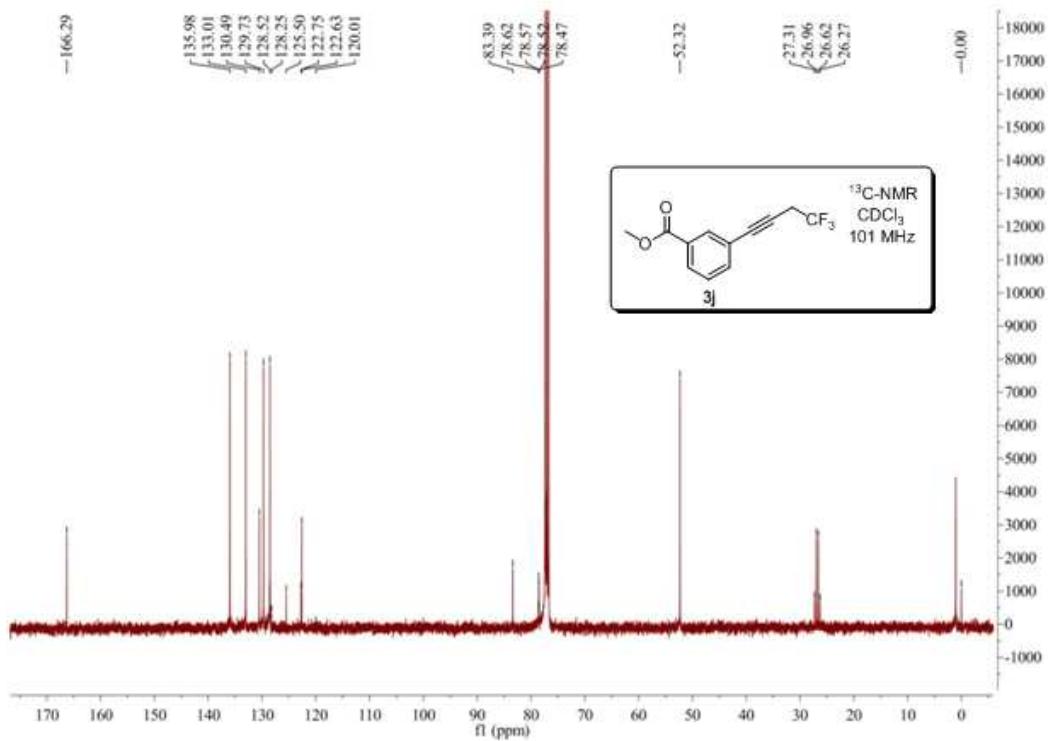


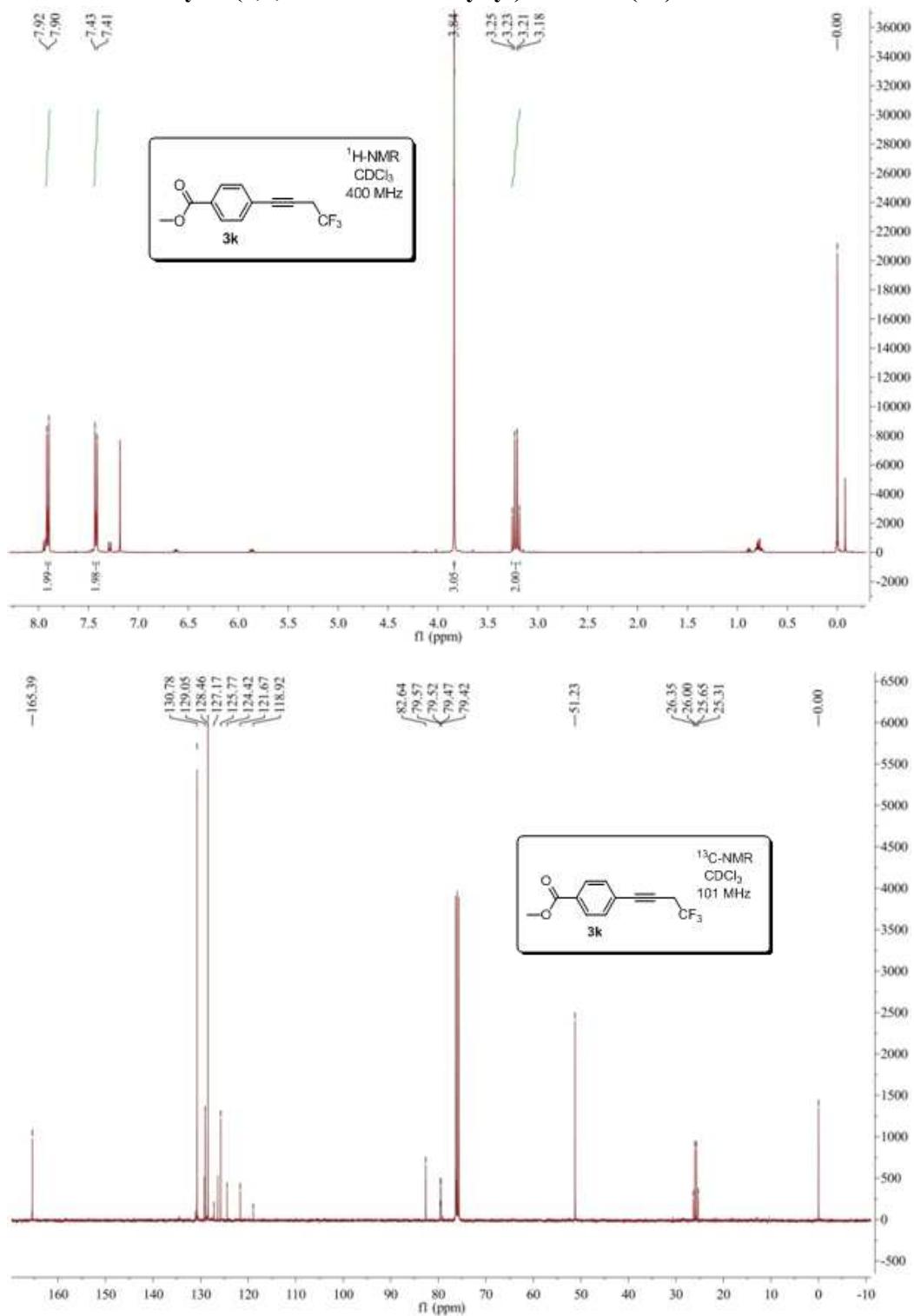


4-(4,4,4-trifluorobut-1-ynyl)benzaldehyde (3g)

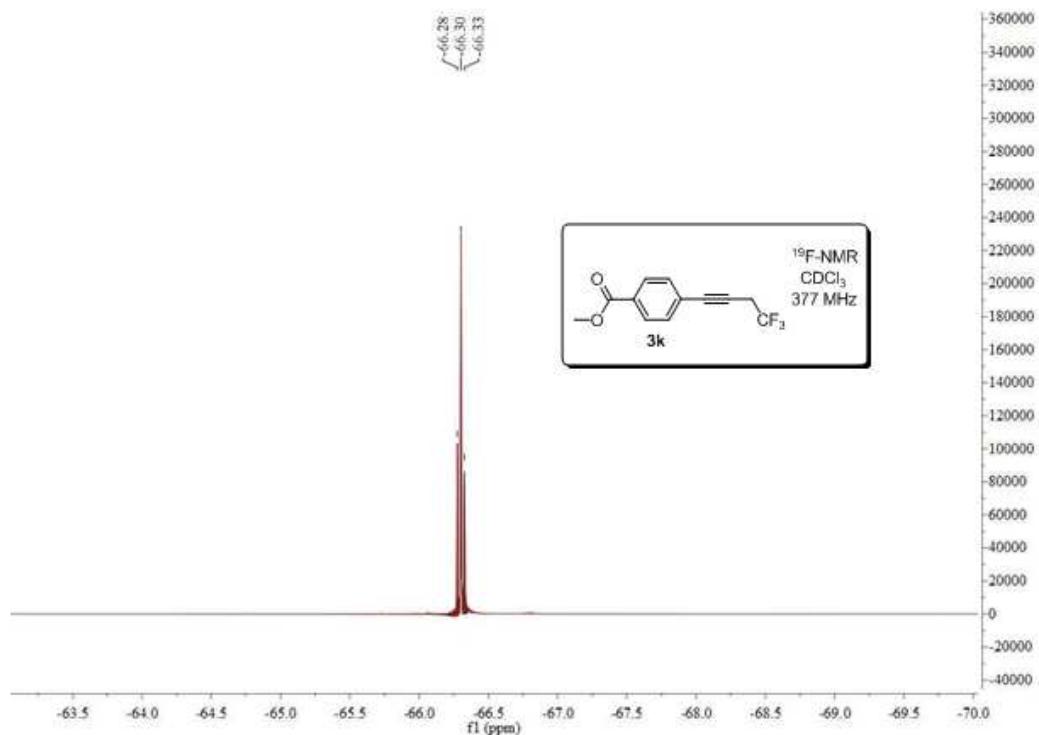


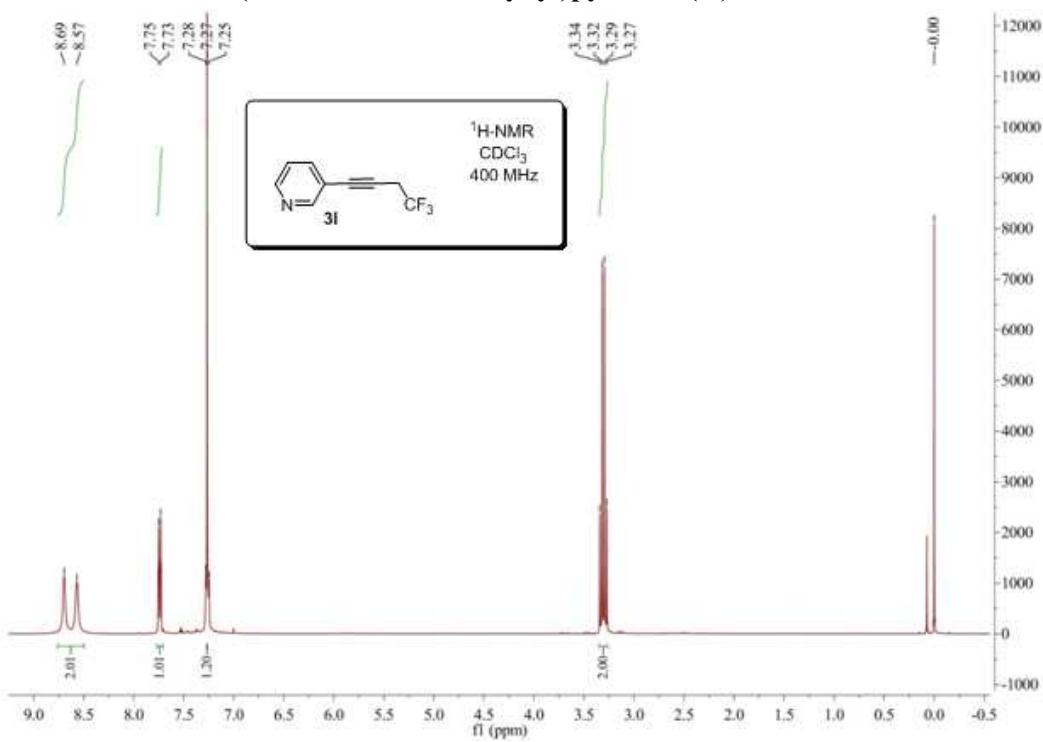

1-nitro-4-(4,4,4-trifluorobut-1-ynyl)benzene (3h)

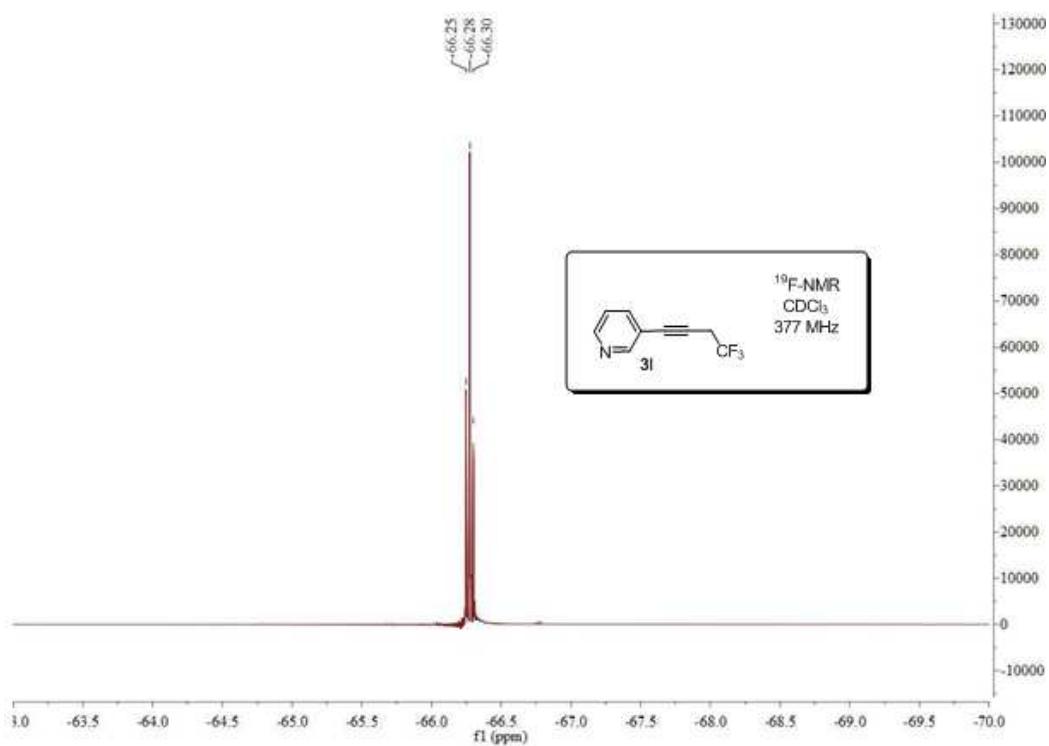
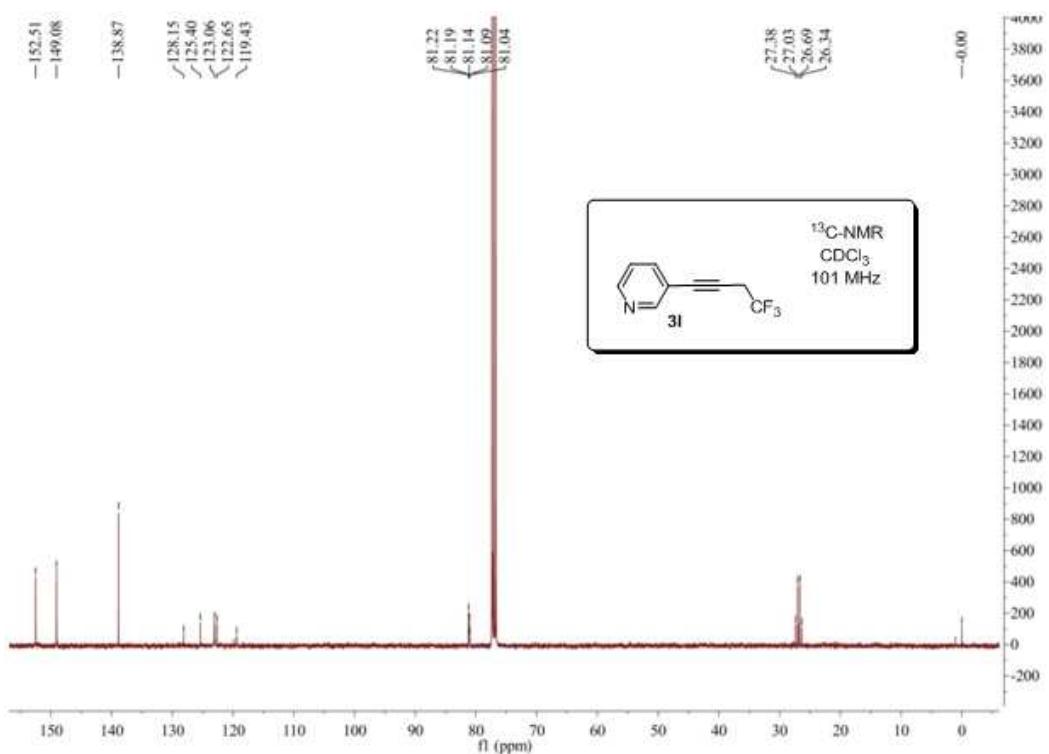


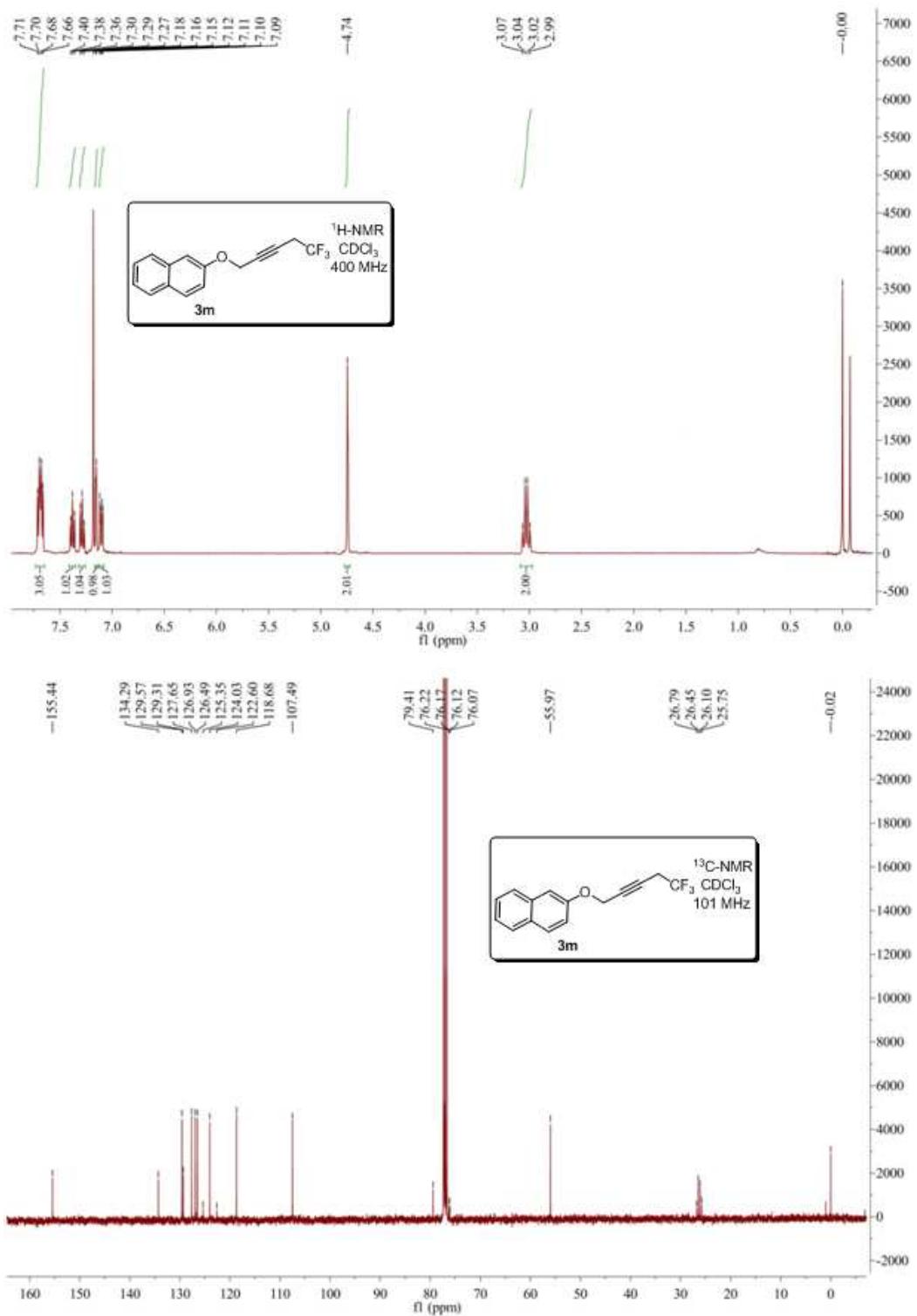


1-(4-(4,4,4-trifluorobut-1-ynyl)phenyl)ethanone (3i)

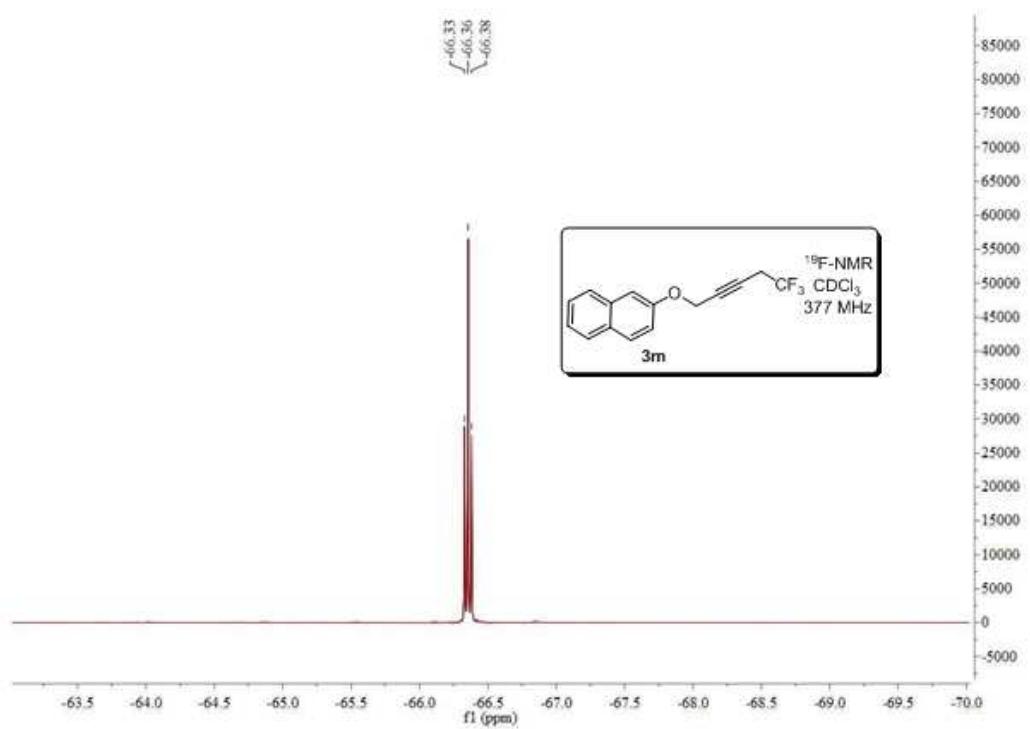


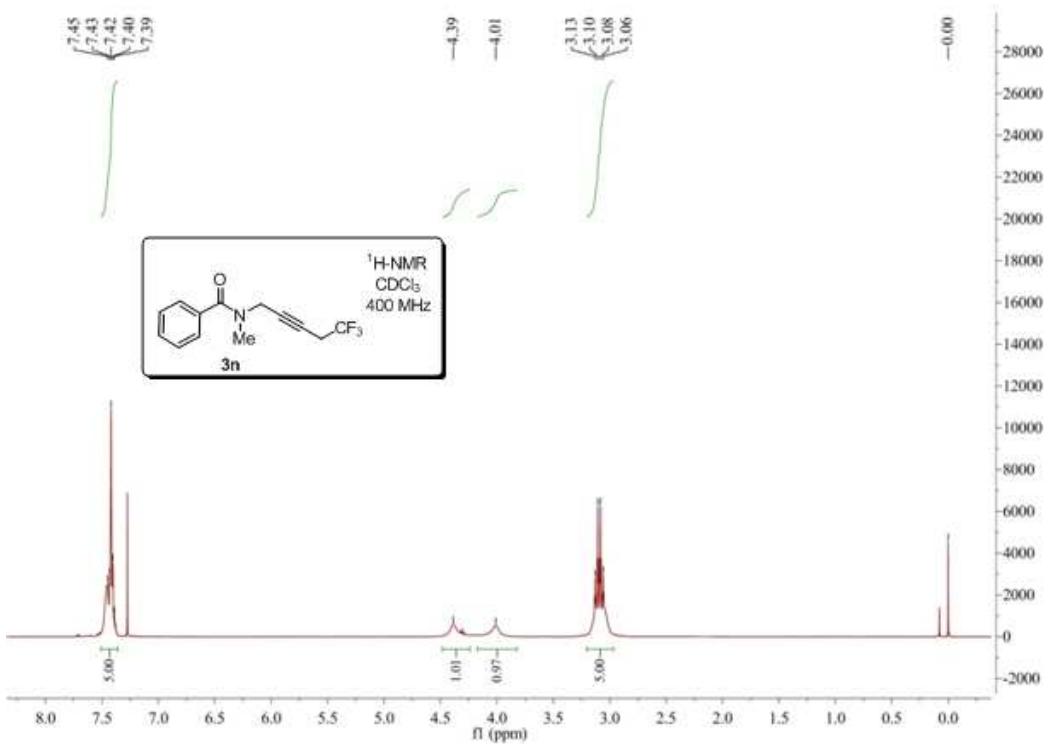

methyl 3-(4,4,4-trifluorobut-1-ynyl)benzoate (3j)

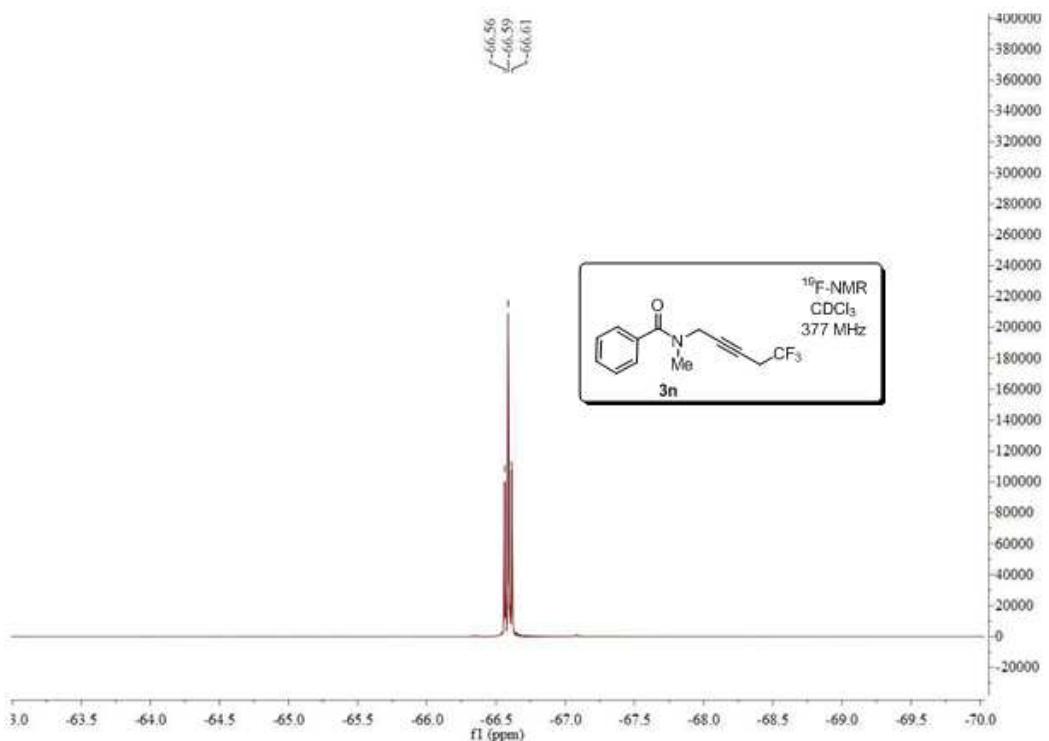
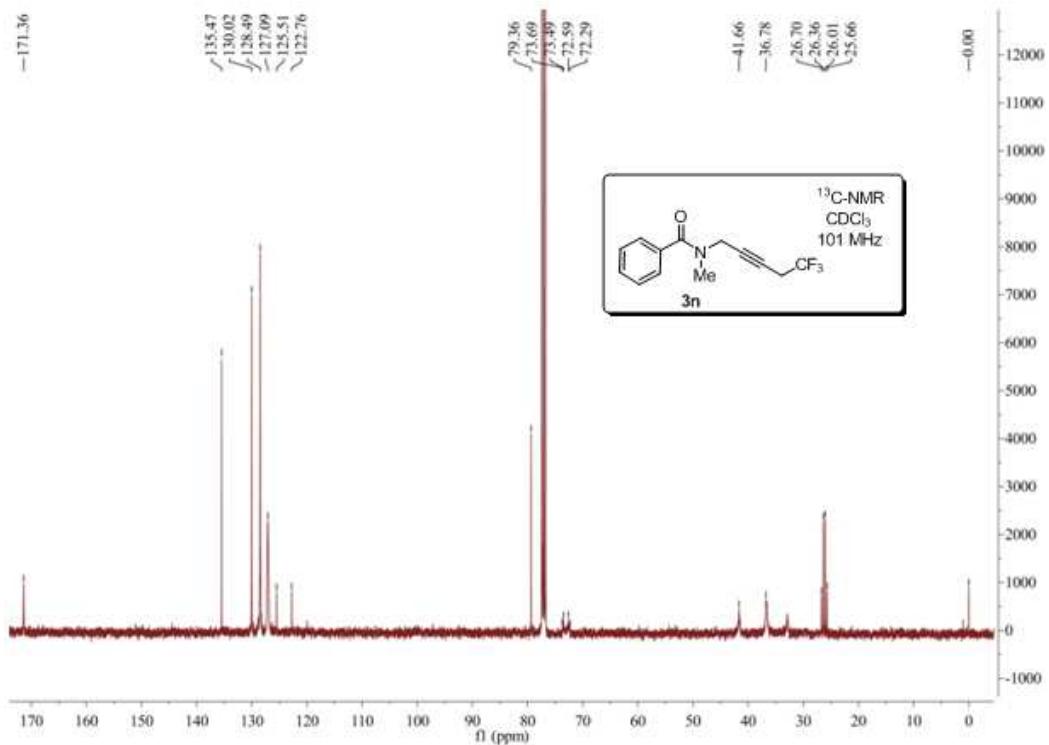


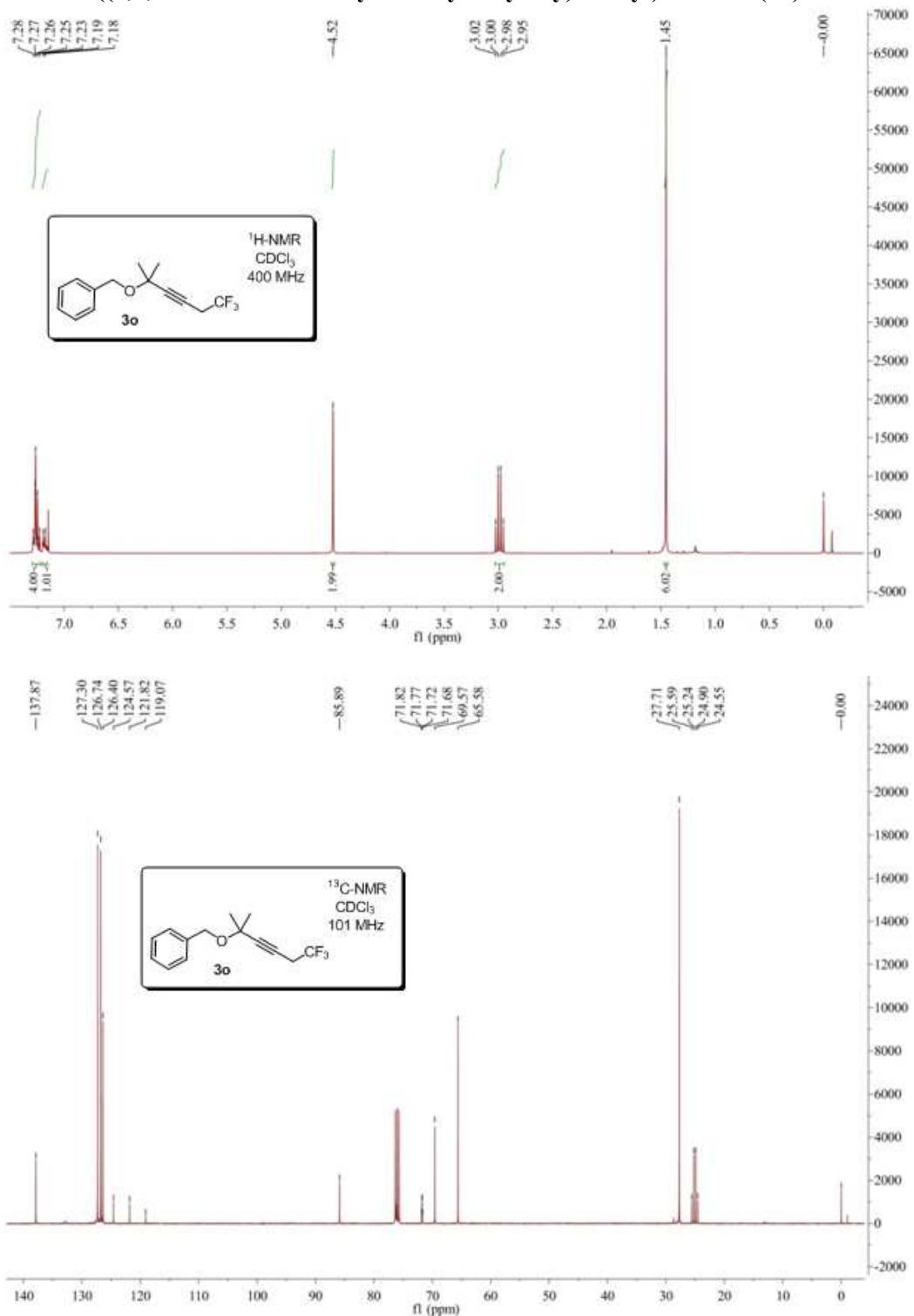


methyl 4-(4,4,4-trifluorobut-1-ynyl)benzoate (3k)

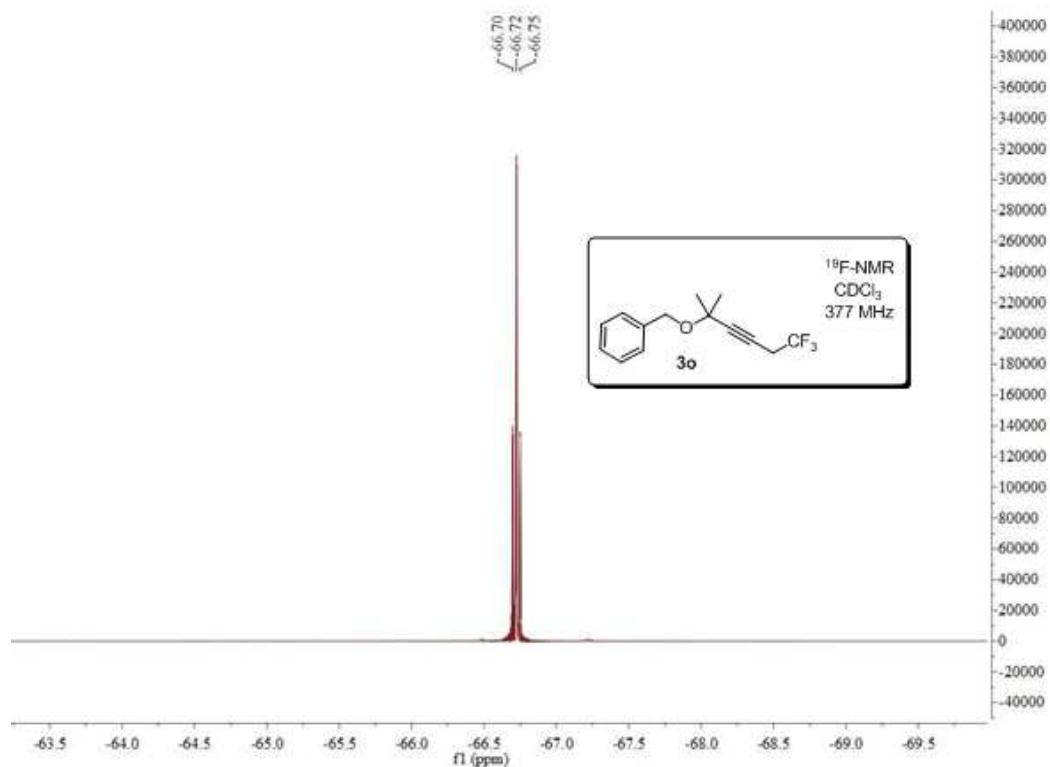


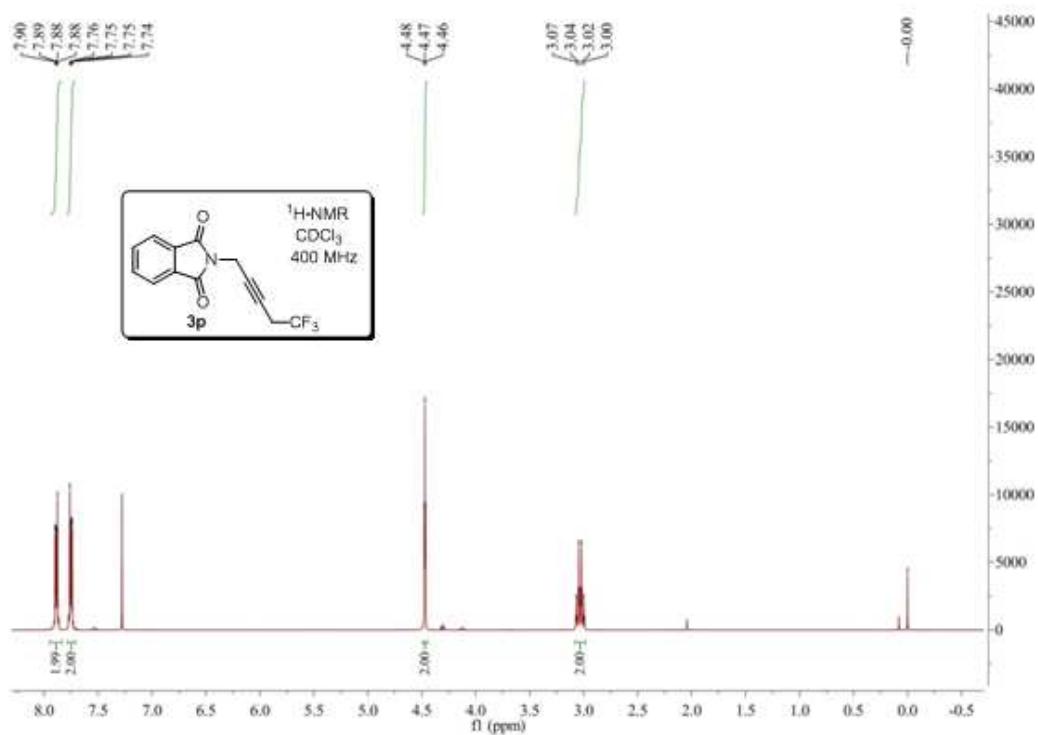

3-(4,4,4-trifluorobut-1-ynyl)pyridine (3l)

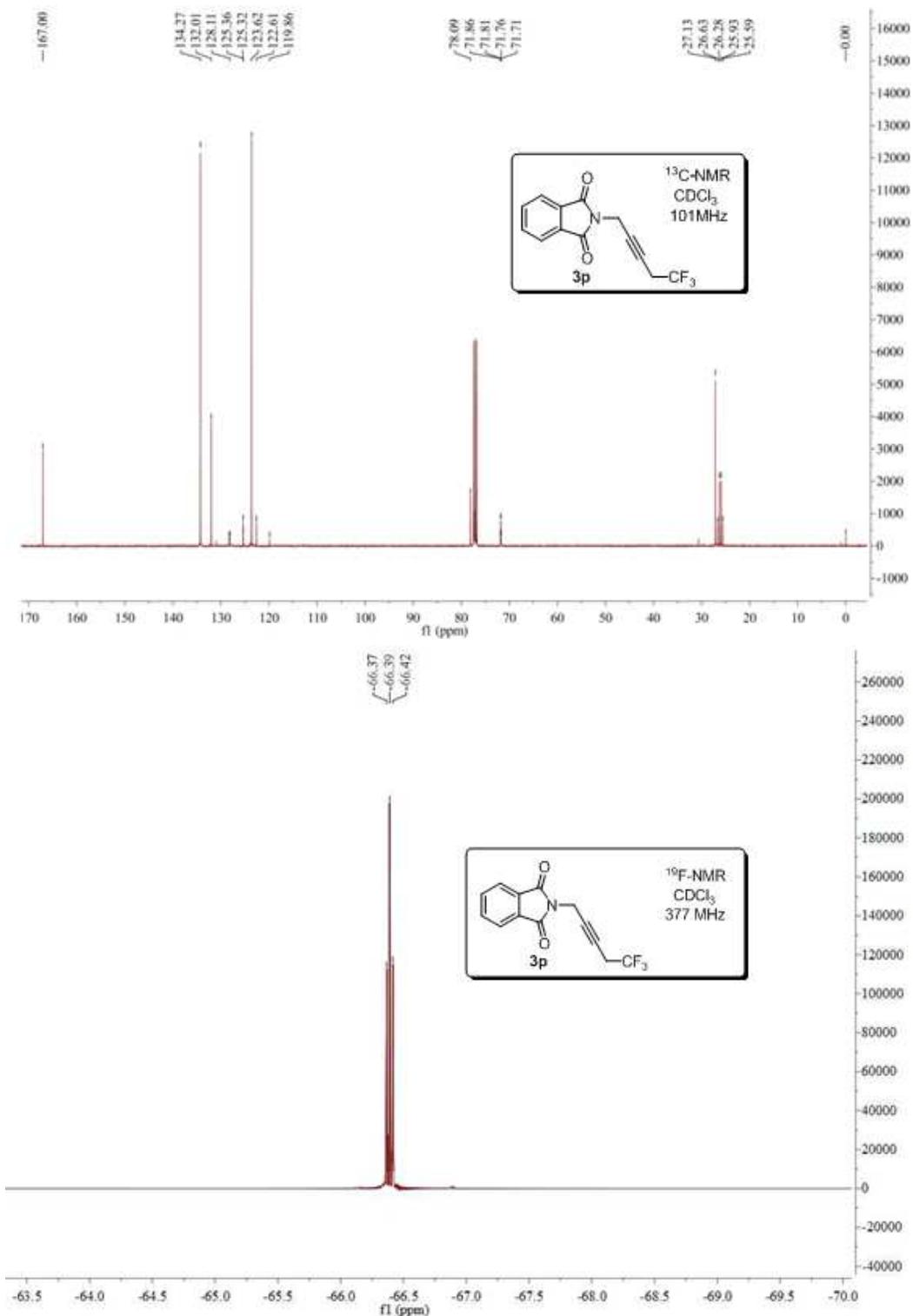


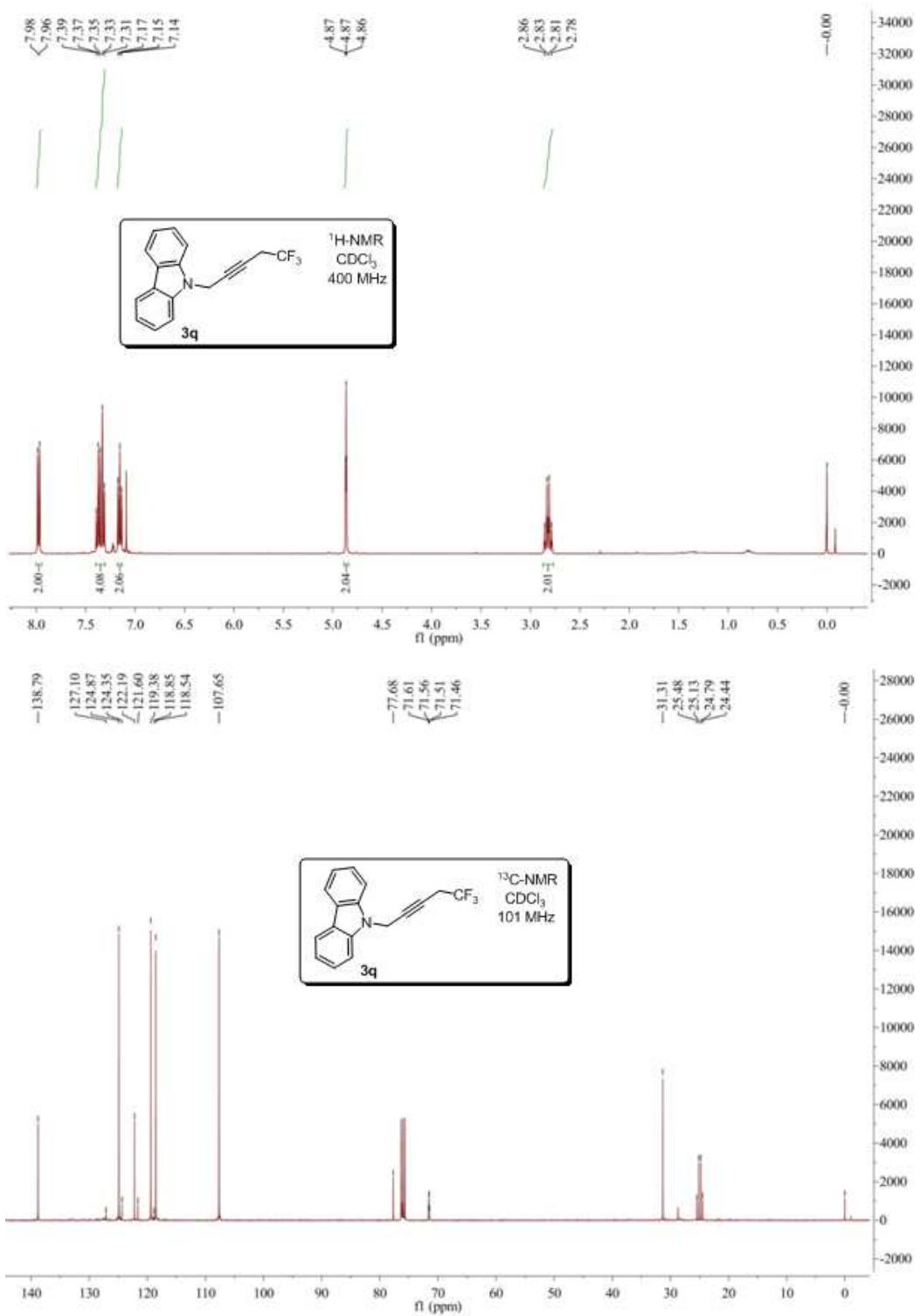


2-(5,5,5-trifluoropent-2-ynyloxy)naphthalene (3m)

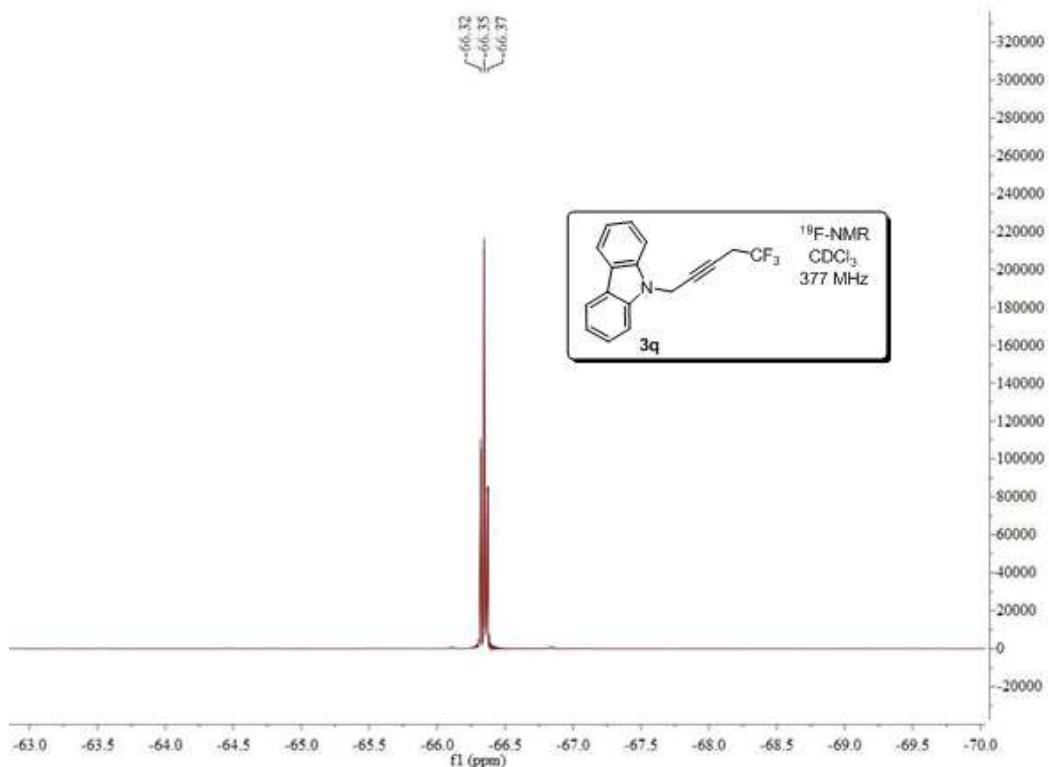


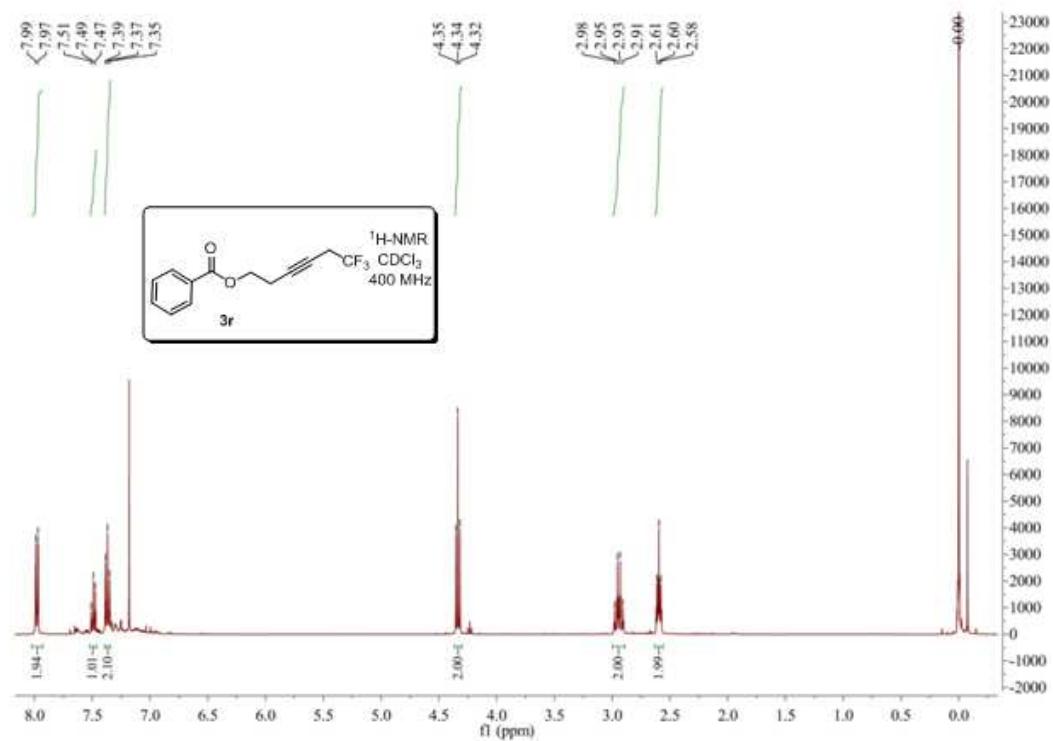

N-methyl-N-(5,5,5-trifluoropent-2-ynyl)benzamide(3n)

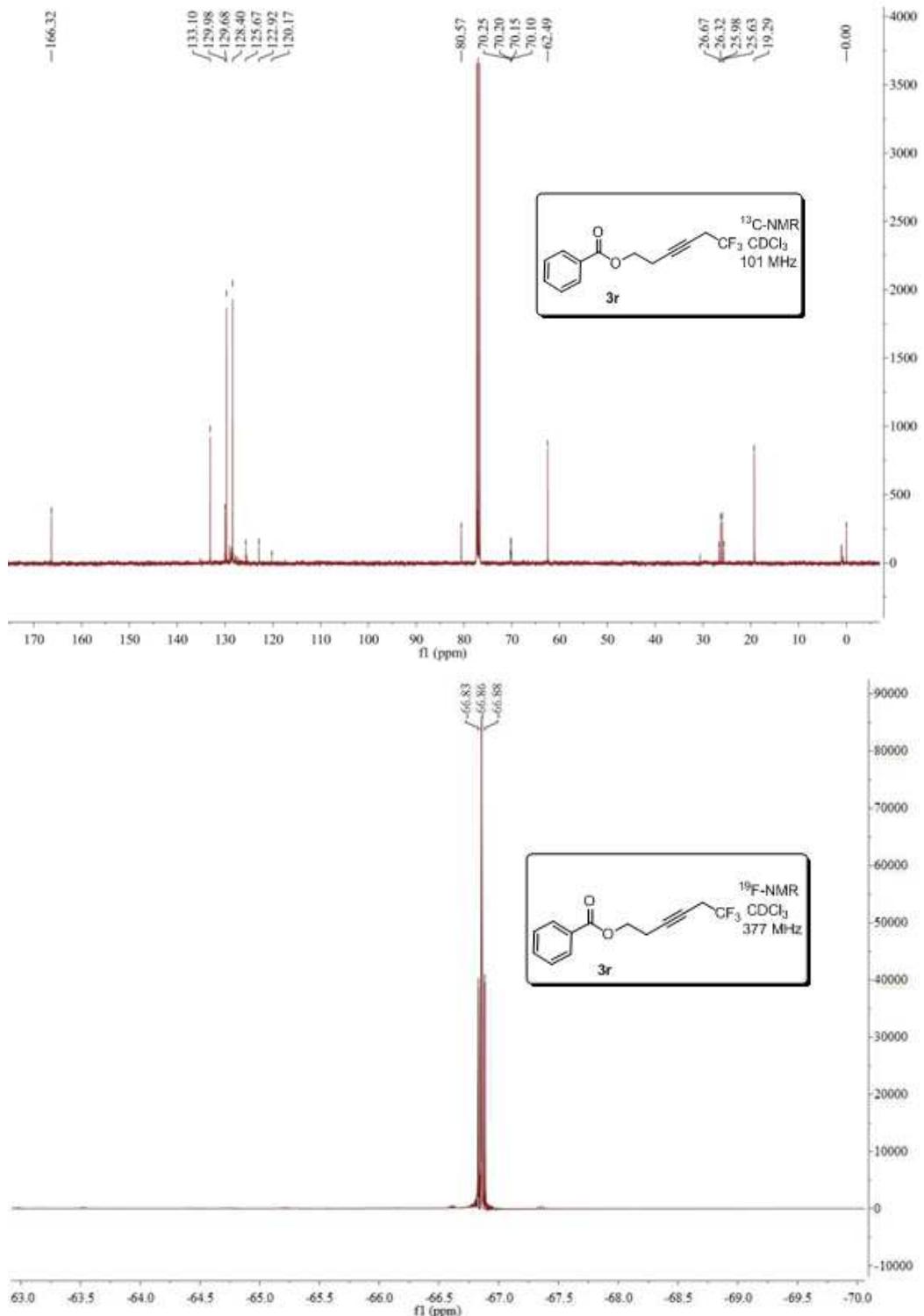


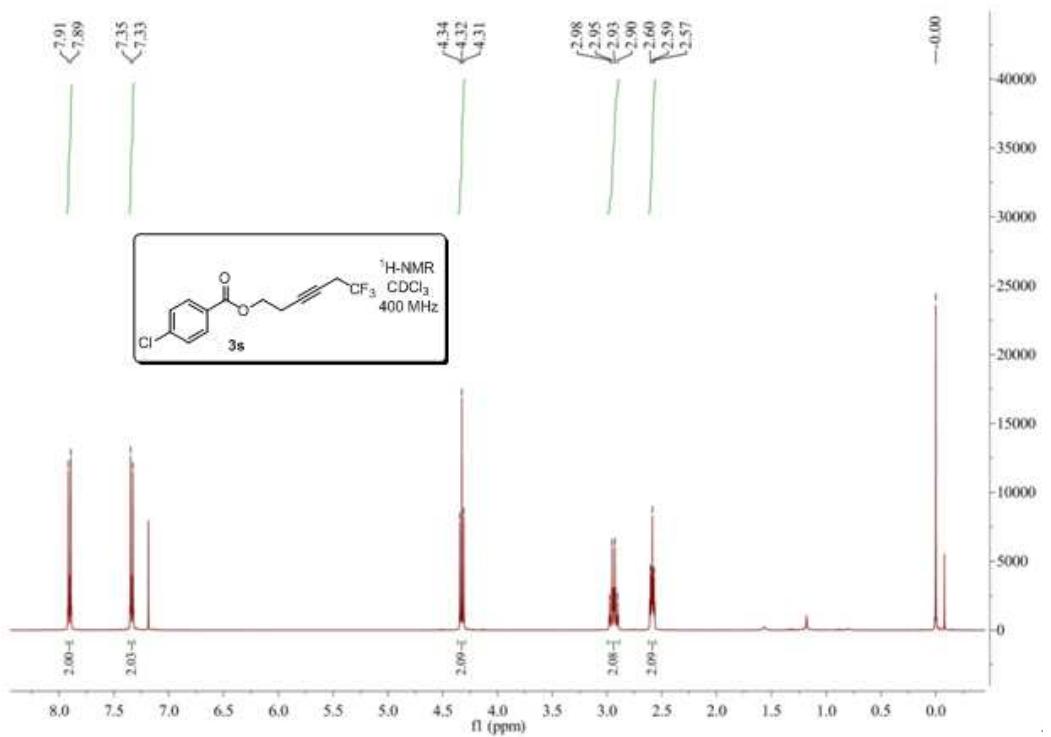

((6,6,6-trifluoro-2-methylhex-3-yn-2-yloxy)methyl)benzene (3o)

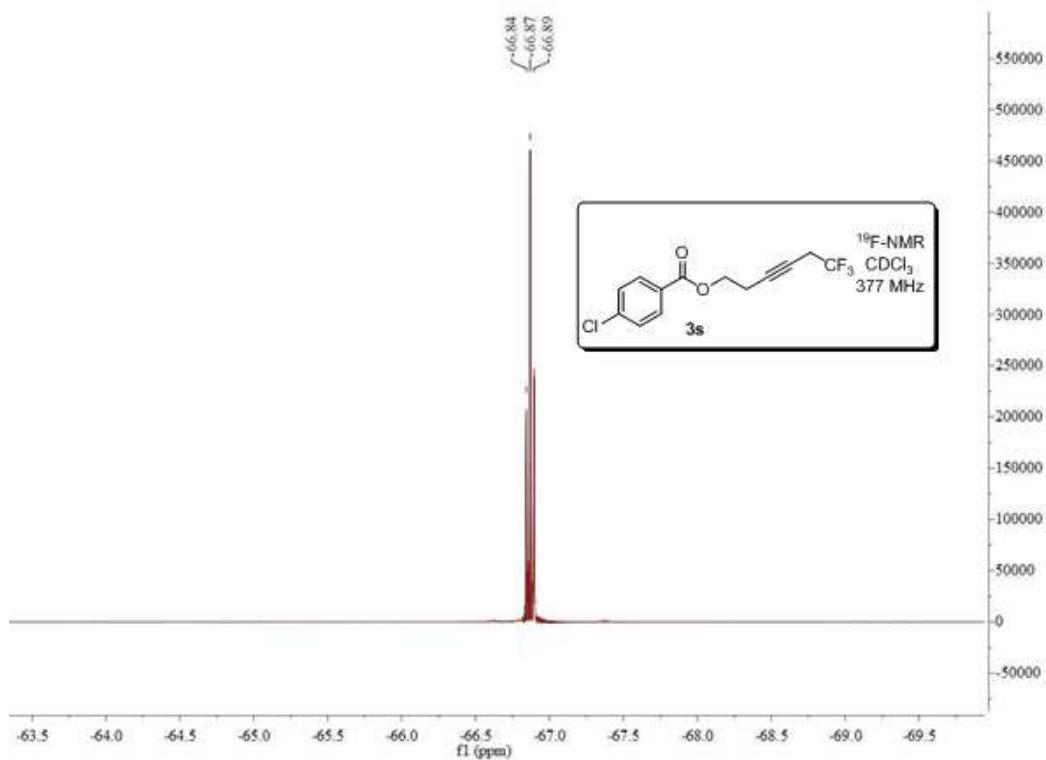


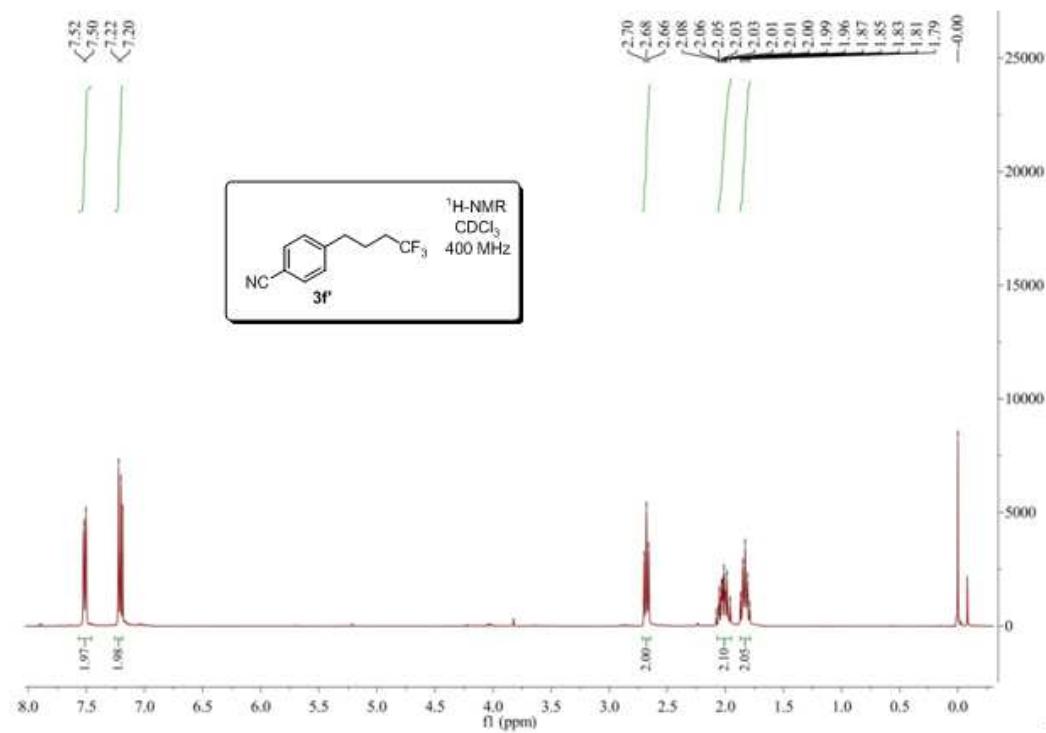

2-(5,5,5-trifluoropent-2-ynyl)isoindoline-1,3-dione(3p)

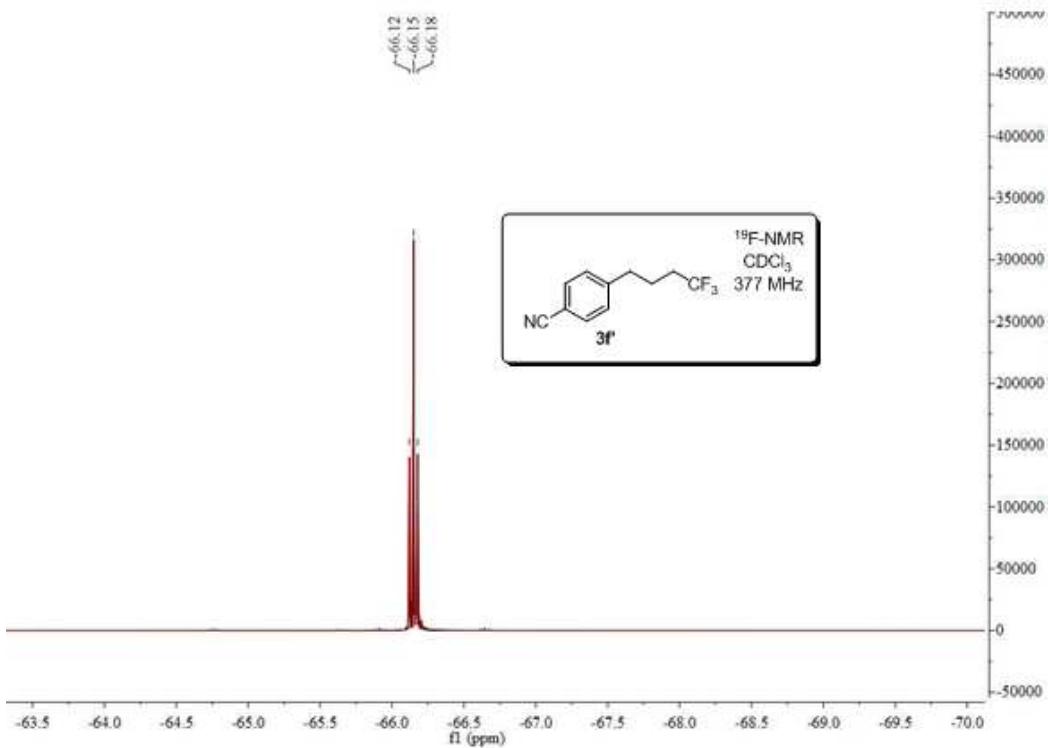
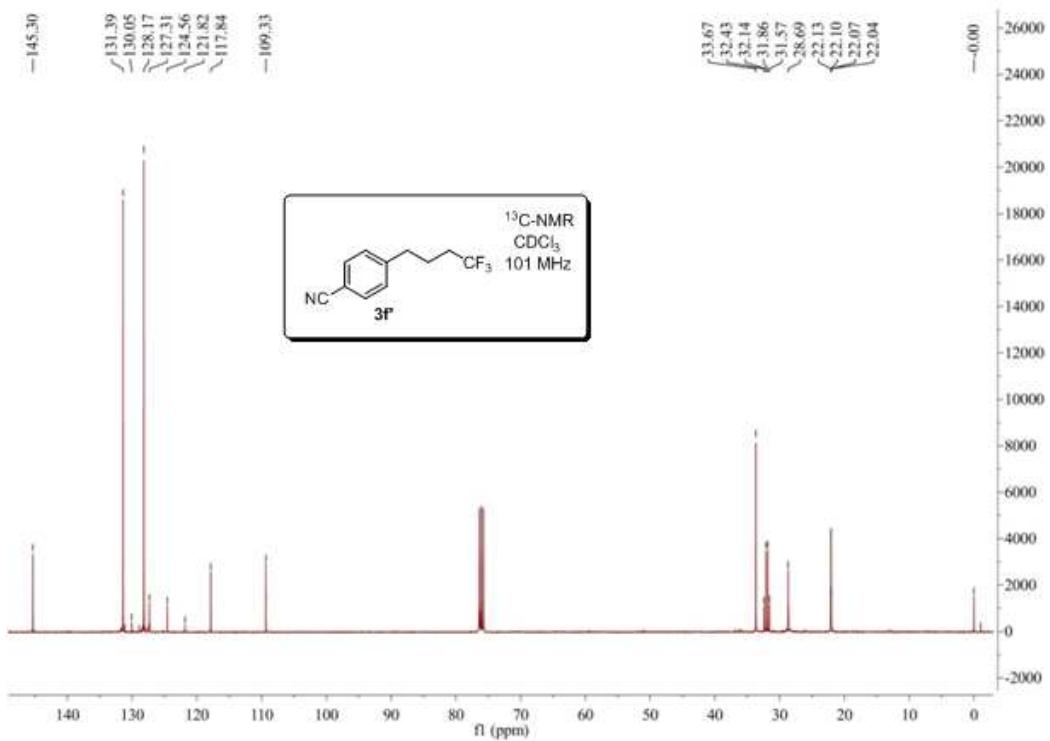


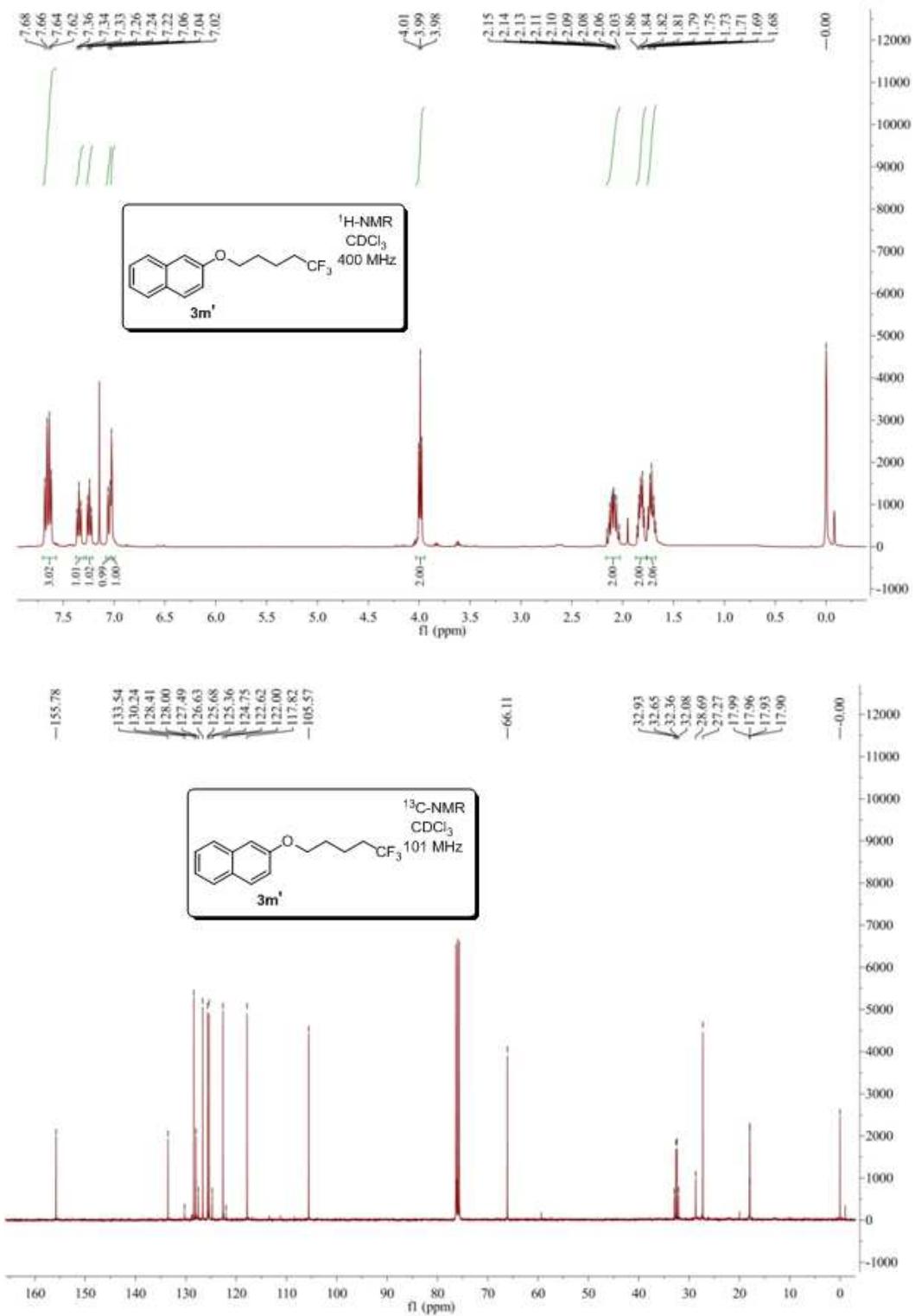

9-(5,5,5-trifluoropent-2-ynyl)-9H-carbazole(3q)

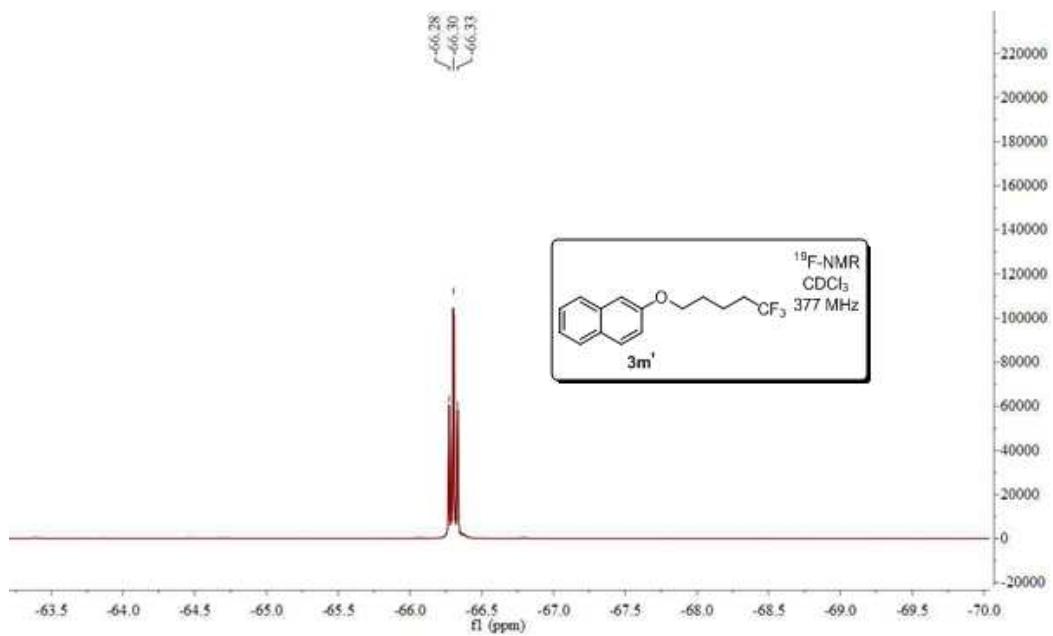


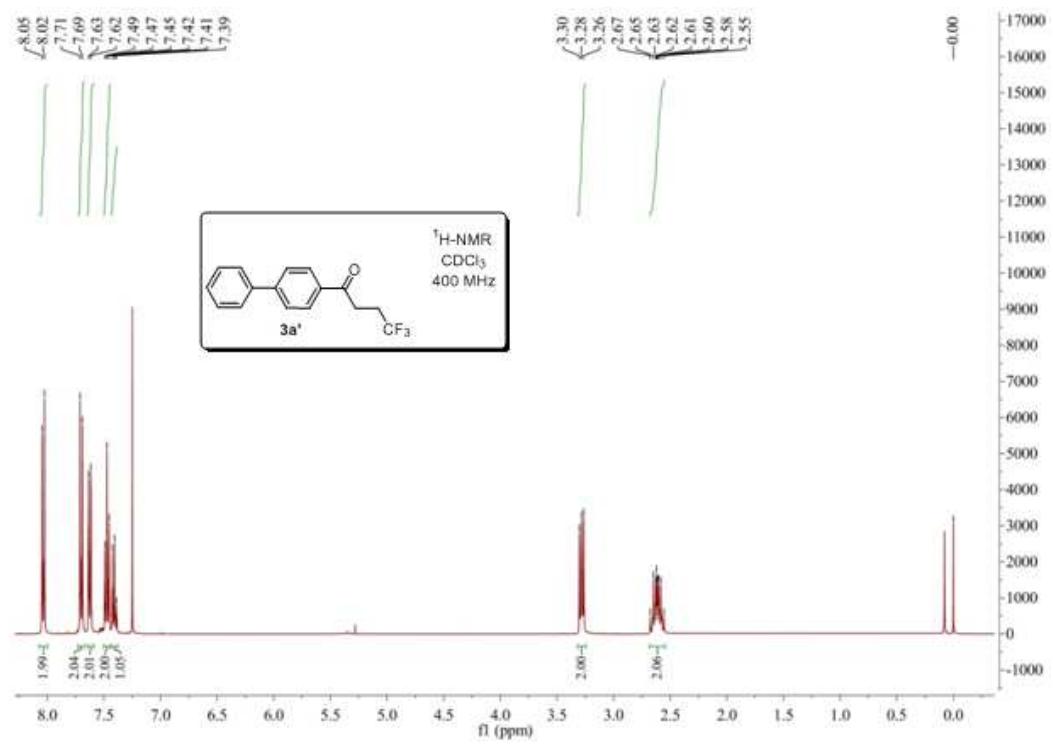

6,6,6-trifluorohex-3-yanyl benzoate (3r)

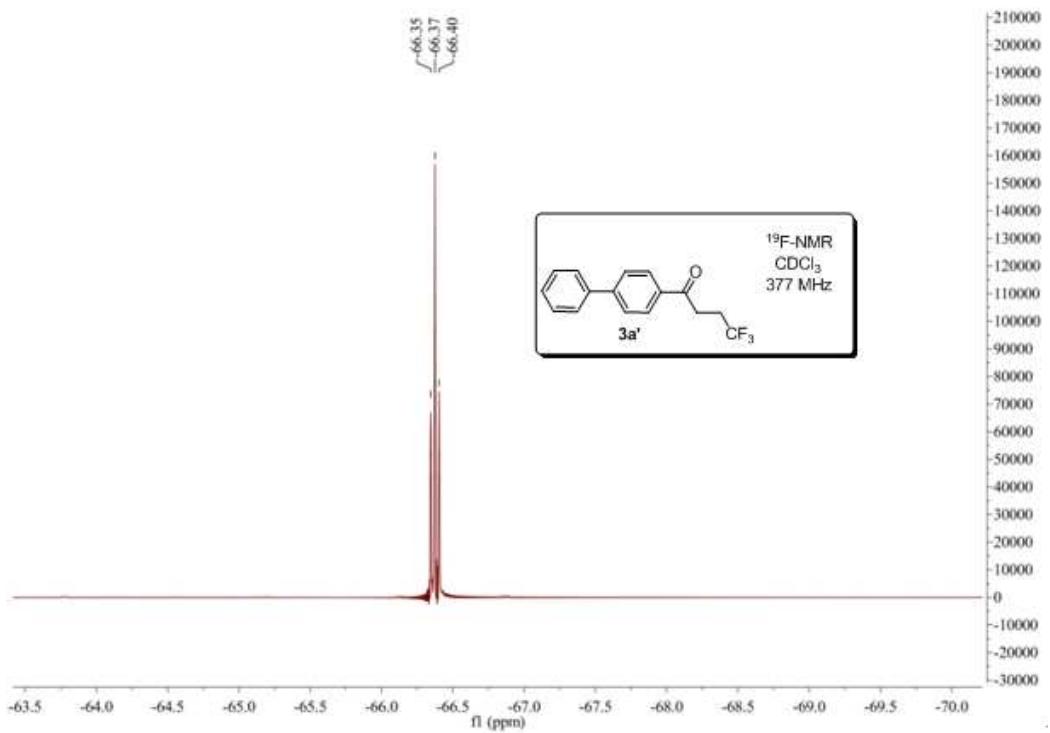
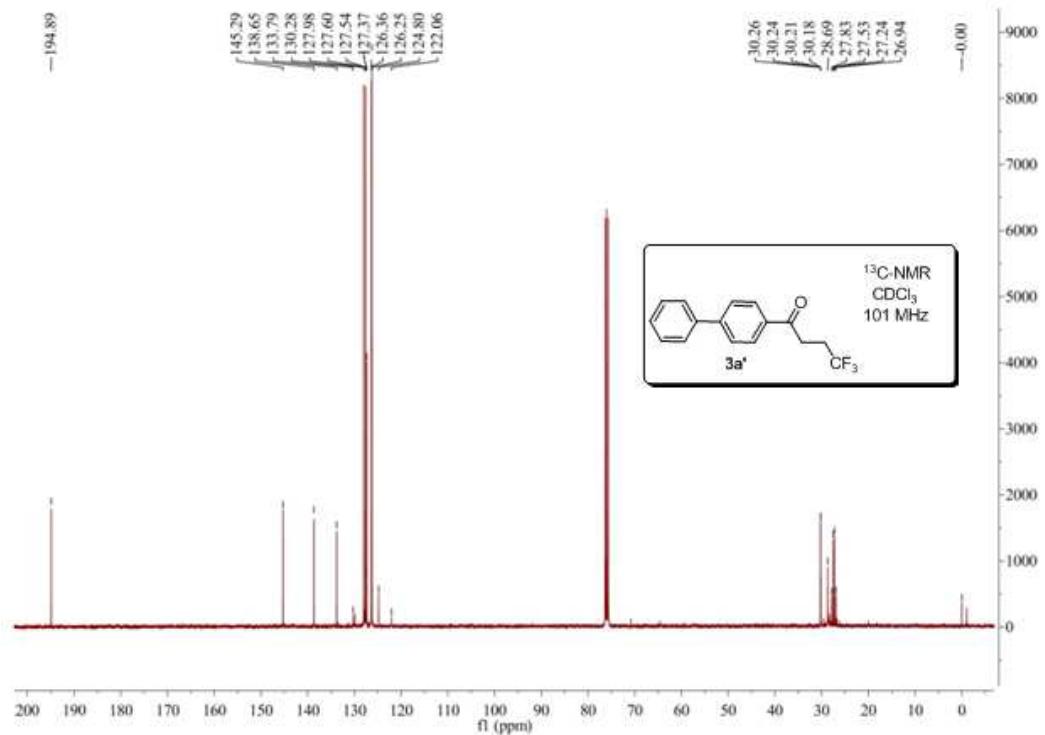




6,6,6-trifluorohex-3-ynyl 4-chlorobenzoate (3s)




4-(4,4,4-trifluorobutyl)benzonitrile (3f')





2-(5,5,5-trifluoropentyloxy)naphthalene (3m')

1-(biphenyl-4-yl)-4,4,4-trifluorobutan-1-one (3a')

