

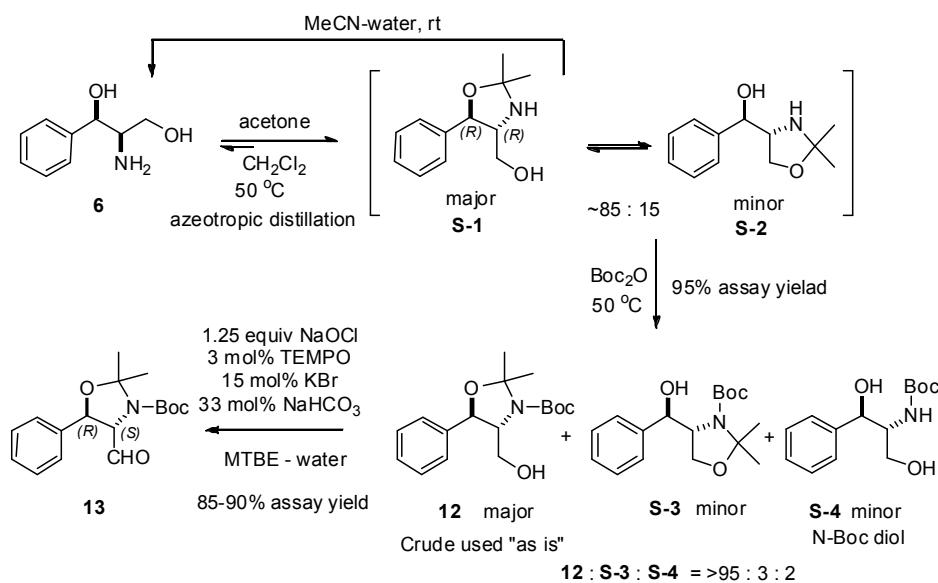
Asymmetric Synthesis of *cis*-2,5-Disubstituted Pyrrolidine, the Core Scaffold of β_3 -AR Agonists

Feng Xu,^{*,†} John Y. L. Chung,^{*,†} Jeffery C. Moore,[†] Zhuqing Liu,[†] Naoki Yoshikawa,[†] R. Scott Hoerrner,[†] Jaemoon Lee,[†] Maksim Royzen,[†] Ed Cleator,[‡] Andrew G. Gibson,[‡] Robert Dunn,[†] Kevin M. Maloney,[†] Mahbub Alam,[‡] Adrian Goodyear,[‡] Joseph Lynch,[†] Nobuyashi Yasuda,[†] and Paul N. Devine[†]

[†]*Process Chemistry, Merck Research Laboratories, Rahway, NJ 07065, United States and*
[‡]*Process Research Preparative Laboratory, Merck Sharp & Dohme Research Laboratories, Hoddesdon, Hertfordshire, EN11 9BU, U.K.*

E-mail: feng_xu@merck.com, john_chung@merck.com

Supporting Information

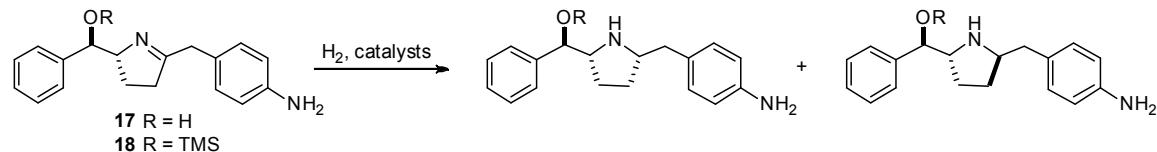

Table of Contents

1. Alternative synthesis of aldehyde 13	S2
2. Diastereoselective hydrogenation of imines 17 and 18	S3
3. Experimental procedure.....	S4
4. ^1H and ^{13}C NMR spectra.....	S9

1. Alternative synthesis of aldehyde 13

Alternative preparation of aldehyde **13** from (1*R*,2*R*)-2-amino-1-phenylpropane-1,3-diol (**6**) is depicted in Scheme S-1. Protection of diol **6** resulted in a mixture of acetonides **S-1** and **S-2**. The solvent-dependent ratio of **S-1** and **S-2** was a result of thermodynamic equilibrium between **S-1** and **S-2** under the reaction conditions. Typically, by heating **6** in a mixture of acetone and dichloromethane or toluene under Dean–Stark conditions, a 85:15 mixture of **S-1/S-2** in favor of **S-1** was obtained. The resulting reaction solution was then treated with 1.1 equiv of Boc_2O at ambient temperature to 45 °C to afford *N*-Boc oxazolidine **12** in 95% assay yield, albeit the ratio of the Boc protection products was 95:3:2 (**12** : **S-3** : **S-4**). Benefiting from the equilibration between acetonide alcohols **S-1** and **S-2**, the ratio of Boc protected acetonides (**12** : **S-3**) was improved because the major isomer **S-1** reacted with Boc_2O faster than the minor isomer **S-2**. In addition, the removal of water was important to achieve higher conversion for the acetonide formation and therefore to minimize the formation of *N*-Boc diol byproduct **S-4**.

Scheme S-1. Preparation of aldehyde **13**

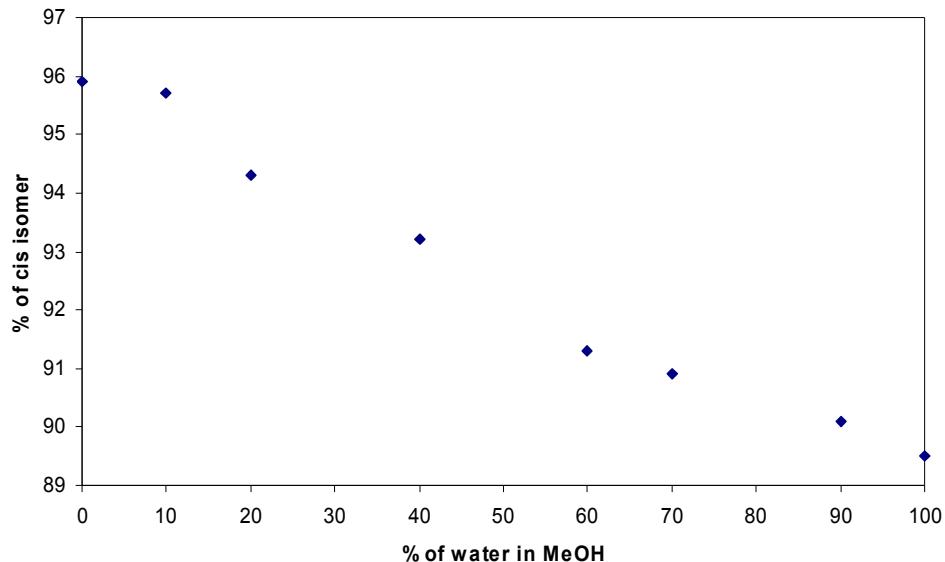


The crude Boc protected reaction mixture (in MTBE) after work-up was used directly "as-is" in the TEMPO oxidation to give aldehyde **13** in 85-95% assay yield.

Attempts to use 2,2-dimethoxypropane instead of acetone (10 mol% TsOH in toluene at up to 80 °C) for the oxazolidine formation gave only ~20% conversion. Similarly, an attempt to reverse the order of acetonide and Boc protection, by forming *N*-Boc amino diol **S-4** first followed by treating with 2,2-dimethoxypropane, in the presence of a catalytic amount of TsOH , afforded an unsatisfactory mixture of desired **12** and regioisomer **S-3**.

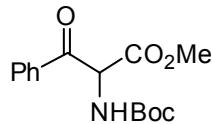
2. Diastereoselective hydrogenation of imines **17** and **18**

Table S-1. Selected Results of Hydrogenation of Imines **17** and **18**^a

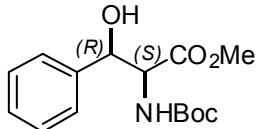

entry	substrates	catalysts	Solvents	additives	conv (%) ^b	cis/trans ^b
1	17	Pd/C	<i>i</i> -PrOH		64	60:40
2	(R = H)	Pt/C	<i>i</i> -PrOH	Na ₂ CO ₃		71:29
3		Pd/C	EtOH		93	56:44
4		Pd(OH) ₂	<i>i</i> -PrOH			60:40
5		Pd/Al ₂ O ₃	MeOH			44:55
6		Pd/Al ₂ O ₃	MeOH	Na ₂ CO ₃		44:55
7		Rh/Al ₂ O ₃	MeOH		94	61:39
8		Rh/Al ₂ O ₃	MeOH	Na ₂ CO ₃		76:24
9		Pt/Al ₂ O ₃	<i>i</i> -PrOH		>99	84:16
10		Pt/Al ₂ O ₃	EtOH			73:27
11		Pt/Al ₂ O ₃	MeOH			77:23
12		Pt/Al ₂ O ₃	H ₂ O			81:19
13		Pt/Al ₂ O ₃	CF ₃ CH ₂ OH			66:34
14		Pt/Al ₂ O ₃	DMF			81:19
15		Pt/Al ₂ O ₃	THF	Na ₂ CO ₃		87:13
16		Ru/C	<i>i</i> -PrOH		61	84:16
17		Ru/C	EtOAc			79:21
18		PtO ₂	EtOH		69	66:33
19		Raney Ni ^c	MeOH		>99	96:4 ^c
20		Raney Ni ^d	MeOH		>99	92:8 ^d
21	18	Pt/Al ₂ O ₃	DMF		>99	96:4
22	(R = TMS)	Pt/C	THF		>99	96:4
23		Rh/Al	THF		72	98:2
24		Pd/C	THF		78	91:9
25		Pd/Al	THF		37	95: 5

^a Unless otherwise mentioned, all reactions were carried out at 25 °C, 15–40psi H₂ with 10–25 wt% catalyst loading.

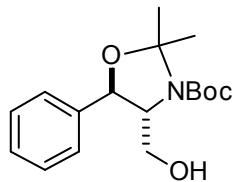
^b Determined by HPLC analysis: Waters Xbridge C18 column, 3.5μm particle size, 150 × 4.6mm; mobile phase: 0.1% aqueous NH₄OH adjust to pH 9.5 with HCl / acetonitrile, 1ml/min flow rate, 25 °C, detection at 210 nm.


^c 75 °C, 40psi H₂, 100 wt% Raney Ni.

^d 50 °C, 40psi H₂, 100 wt% Raney Ni.


Figure S-1. Hydrogenation of alcohol imine **17** in the presence of Raney Ni: Water effect on diastereoselectivity. Reaction conditions: 75 °C, 40psi H₂, 100wt% Raney Ni with various ratios of MeOH–water.

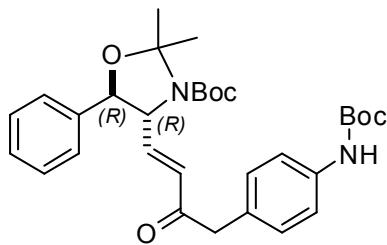
3. Experimental Procedure



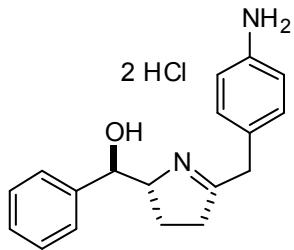
Methyl 2-((tert-butoxycarbonyl)amino)-3-oxo-3-phenylpropanoate (9). To a mixture of Na₂CO₃ (110 g, 1.034 mol) in water (600 mL) and EtOAc (600 mL) at 0-5 °C was added glycine methyl ester hydrochloride (119 g, 0.948 mol) in portions over 30 min. The resulting slurry was aged for additional 15-30 min, PhCOCl (100 mL, 0.862 mol) was then added dropwise over 1.5 h at 0-5 °C. After aging additional 1 h at 0-5 °C, the reaction mixture was warmed to 25 °C and formed a homogenous biphasic solution. The separated organic phase was azeotropically concentrated and solvent switched to MeCN at a final volume of ~600 mL. DMAP (43.1 mmol, 5.26 g) was added. A solution of Boc₂O (0.948 mol, 207 g) in MeCN (200 mL) was added at ambient temperature dropwise over 2-3 h. After the reaction solution was stirred at ambient temperature for ~6 h, the batch was vacuum degassed with N₂ to remove CO₂ generated in the amidation step. THF (540 mL) was added. Then, a solution of *t*-BuOK (1.12 mol, 128 g, 97%) in THF (670 mL) was added at 0-10 °C dropwise over 1-2 h. After aging at 0-5 °C for additional 1 h, a solution of 15 wt% citric acid in water (0.431 mol, 91 g citric acid in 515 mL H₂O) was added at <10 °C. The organic phase was washed with 480 mL of half saturated aqueous NaCl, and solvent switched to *i*-PrOH at a final volume of ~1.25 L containing ~10% water at < 45 °C. Water (1.25 L) was added dropwise at 40-50 °C over 2 h. Then, the slurry was cooled to ambient temperature and aged for 1-2 h before filtration. The wet cake was displacement washed with 30% *i*-PrOH in water (640 mL x 2), and vacuum oven dried at < 50 °C to give 227 g of white crystalline solid **9**. 90% yield. m.p. 96-97 °C; ¹H NMR (400 MHz, *d*₆-DMSO): major rotomer:

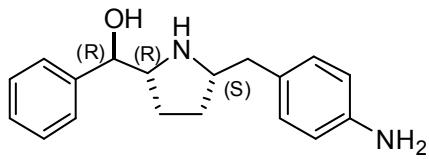
δ 7.95 (d, J = 7.6 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.69 (m, 1 H), 7.55 (m, 2 H), 5.89 (d, J = 8.4 Hz, 1 H), 3.67 (s, 3 H), 1.38 (s, 9 H); ^{13}C NMR (100 MHz, d_6 -DMSO): major rotomer: δ 192.9, 168.3, 155.5, 134.5, 133.9, 128.74, 128.68, 79.1, 59.1, 52.4, 28.0; HRMS calc'd for $\text{C}_{15}\text{H}_{19}\text{NO}_5$ [$\text{M}+\text{Na}$]⁺ 316.1155, found 316.1156.


Methyl (2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-3-phenylpropanoate (10). To a solution of K_2HPO_4 (141 g) in water (800 mL) at ambient temperature was added dextrose (98 g, 0.49 mol) followed by NADP (3.6 g), GDH-105 (1.15 g), CDX-018 (2.9 g). The resulting homogenous solution was pH adjusted to a minimum of 7.5 with 2M NaOH prior to use. A solution of ketone **9** (120 g, 0.409 mol) in DMSO (360 mL) was added over 4 h at 30 °C with vigorous agitation, while 2M NaOH (~2.1 L total) was added dropwise to maintain the reaction mixture at pH = 7.3–7.7. Once 90% (~1.9 L) of 2M NaOH solution was added, the reaction temperature was raised to 35 °C until >95% conversion was achieved. *i*-PrOH (0.9 L) followed by MTBE (0.49 L) were added and the organic phase was separated. The aqueous phase was extracted with *i*-PrOH:MTBE (1.4 L, *i*-PrOH:MTBE = 20:80). The combined organic phase was washed with brine (0.5 L, 10% w/v brine) and the crude product containing compound **10** was directly used for the next step. 90–92% assay yield.

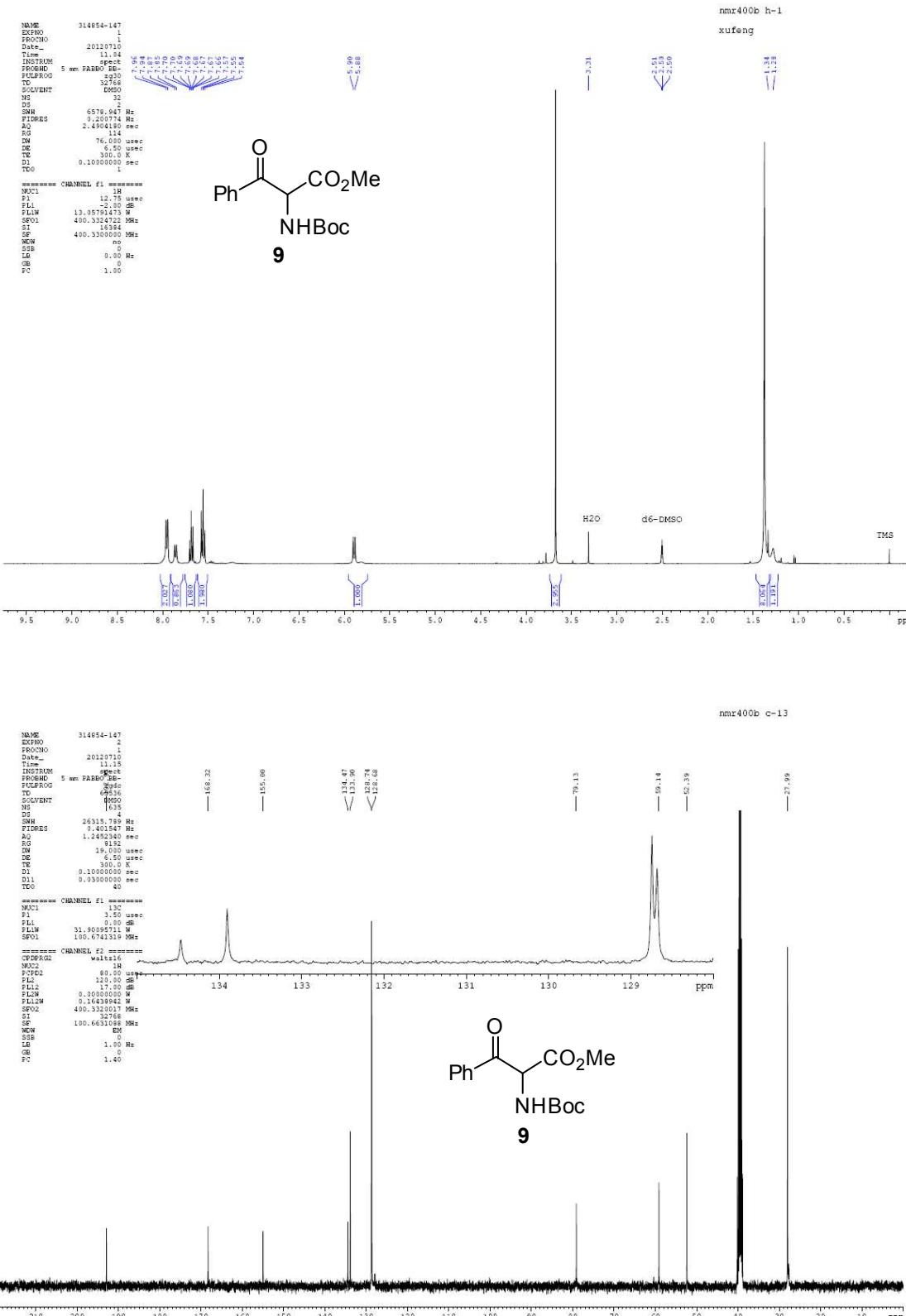

tert-Butyl (4R,5R)-4-(hydroxymethyl)-2,2-dimethyl-5-phenyl-1,3-oxazolidine-3-carboxylate (12). To a toluene solution of ester **10** (35.9 mmol, 10.6 g, in ~25 to 30 mL toluene, crude solution from previous DKR step) were added acetone (50 mL) and 2,2-dimethoxy propane (20 mL). A solution of BF_3 etherate (3.59 mmol, 0.43 mL) in toluene (2 mL) was then added via a syringe pump at ambient temperature over 2 h. The reaction solution was aged at ambient temperature for 15 h. Et_3N (3.59 mmol, 0.5 mL) was added dropwise. After aging for additional 15 min, the solution was solvent switched to toluene (~30 mL) while most of the acetone was removed in vacuum. MTBE (60 mL) was added and the organic phase was washed with 5% NaHCO_3 /brine (40 mL). The organic phase was azeotropically dried and solvent switched to toluene at a final volume of ~35–40 mL (95% assay yield of **11**).

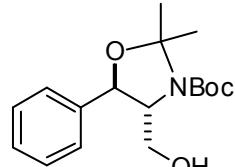
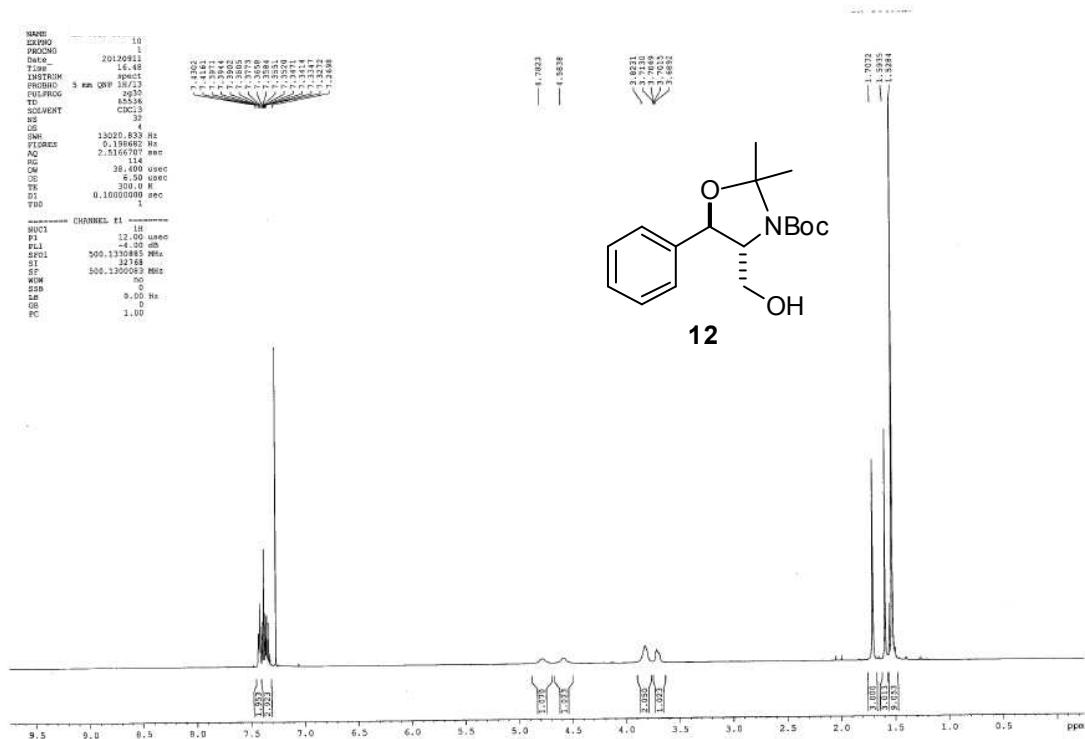
The above solution was added to a mixture of LiBH_4 (44.3 mmol, 966 mg) in THF (60 mL) over 30 min. The reaction mixture was aged for 15 h at 35 °C. The reaction solution was cooled to ambient temperature and added to a solution of 10% NH_4Cl (40 mL) below 5 °C with external cooling. The quenched solution was aged at ambient temperature for 2–3 h or until the evolution of H_2 gas ceased. MTBE (100 mL) was added. The separated organic layer was solvent switched to toluene at a final volume of ~40 mL, which was directly used in the subsequent oxidation step. 92% assay yield of **12**.


An analytically pure sample of **12** was obtained by crystallization from toluene/heptane: m.p. 69–72 °C; ^1H NMR (500 MHz, CDCl_3): δ 7.42 (m, 2 H), 7.37 (m, 3 H), 4.78 (br s, 1 H), 4.58 (br s, 1 H), 3.82 (br s, 2 H), 3.70 (br m, 1 H), 1.71 (s, 3 H), 1.59 (s, 3 H), 1.53 (s, 9 H); ^{13}C NMR (125 MHz, CDCl_3): δ 154.3, 137., 129.0, 128.9, 127.5, 94.9, 81.6, 78.6, 67.9, 63.7, 28.6, 27.9, 26.2; Anal. Calcd. for $\text{C}_{17}\text{H}_{25}\text{NO}_4$: C, 66.43; H, 8.20; N, 4.56; Found: C, 66.33; H, 8.43; N, 4.59.

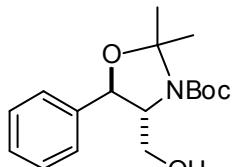
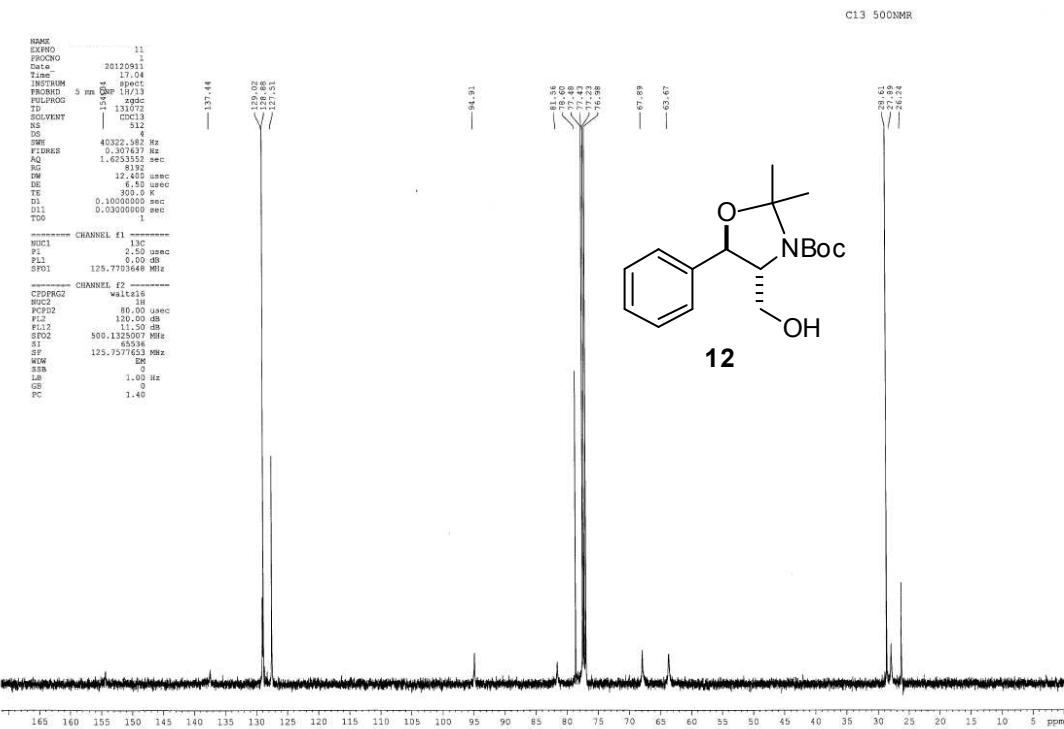

tert-Butyl (4S,5R)-4-formyl-2,2-dimethyl-5-phenyloxazolidine-3-carboxylate (13). To a solution of alcohol **12** in toluene (65.07 mmol, 20 g assay, ~60 mL) was added acetonitrile (120 mL) at ambient temperature. KBr (9.76 mmol, 1.16 g), NaHCO₃ (21.48 mmol, 1.8 g) and water (40 mL) were then charged. The biphasic mixture was cooled to 5 °C and TEMPO (1.95 mmol, 305 mg) was added. Then, 6 wt% NaOCl solution (81.38 mmol, 101 g) was added dropwise at 0-5 °C over 2 h. After addition, the reaction was stirred at 5 °C for additional 30 min. The reaction was quenched by dropwise addition of 10% sodium sulfite (50 mL) at 5 °C. The organic layer was separated and directly used for the subsequent HWE coupling step without further purification. The assay yield of **13** was 17.5 g (88%). ¹H NMR (400 MHz, CDCl₃): **12** exists as a mixture of two rotomers. Overlap of signals does not permit unequivocal assignment of each rotomers. δ 9.62-9.50 (br d, 1 H), 7.5-7.4 (m, 5 H), 4.99 (d, 1 H), 4.3-4.1 (br m, 1 H), 1.8-1.7 (m, 6 H), 1.55-1.47 (m, 9 H); Selected data of ¹³C NMR (100 MHz, CDCl₃): Some ¹³C signals are too broad to be assigned due to a mixture of rotomers at 20 °C. δ 197.2, 136.7, 129.1, 129.0, 126.7, 96.2, 81.9, 76.3, 71.5, 28.4, 26.4, 25.5.

tert-Butyl (4R,5R)-4-((E)-4-((tert-butoxycarbonyl)-amino)-phenyl)-3-oxobut-1-en-1-yl)-2,2-dimethyl-5-phenyloxazolidine-3-carboxylate (14). To a solution of aldehyde **13** in wet toluene/acetonitrile (57.3 mmol, 17.5 g assay; 10.81 wt%, 162 g crude stream solution) obtained above at -10 °C were added acetonitrile (140 mL), phosphonate **4** (68.8 mmol, 24.6 g) and LiBr (171.9 mmol, 14.9 g) while the internal temperature was maintained below 0 °C. Then, Hunig's base (171.9 mmol, 22.2 g) was added at 0-5 °C dropwise over 2 h. The resulting reaction mixture was stirred at 0-5 °C for 2-4 h followed by at ambient temperature for 12 h. The slurry was cooled to 5 °C, and a 10% aqueous solution of citric acid (39.1 mmol, ~75 g) was added dropwise to adjust the pH to 6.5-7.0 while maintaining the batch temperature at 0-5 °C. The organic layer was washed with saturated NaHCO₃ (57 mL) and H₂O (57 mL) successively. The organic phase was solvent switched to *i*-PrOH at a final volume of ~190 mL. The product was gradually crystallized during the distillation. Water (16.4 mL) was added and the slurry was heated to 49 °C to give a homogeneous solution. The resulting solution was cooled to 40 °C and seeded (0.27 g). After aging at 40 °C for 2 h to establish a seed bed, H₂O (93 mL) was charged dropwise at 40 °C over 3 h. After aging at 40 °C for additional 1 h, the slurry was gradually cooled to 5-10 °C and agitated at 5-10 °C for additional 2 h before filtration. The wet cake was washed with 50% H₂O/ *i*-PrOH (a 164 mL displacement wash followed by a 110 mL slurry wash). Suction dried under nitrogen gave the product as an off-white solid (24.9 g, >99% purity). 80% isolated yield. m.p. 134-135 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (m, 5 H), 7.23 (m, 2 H), 7.07 (d, J = 8.4 Hz, 2 H), 6.76 (dd, J = 15.7, 8.0 Hz, 1 H), 6.50 (s, 1 H), 5.93 (d, J = 15.7 Hz, 1 H), 4.65 (d, J = 8.2 Hz, 1 H), 4.30-4.02 (br m, 1 H), 3.71 (s, 2 H), 1.74 (s, 3 H), 1.63 (s, 3 H), 1.53 (s, 9 H), 1.32 (br s, 9 H); Selected data of ¹³C NMR (100 MHz, CDCl₃): Some ¹³C signals are too broad to be assigned due to a mixture of rotomers at 20 °C. δ 196.8, 152.9, 137.7, 136.8, 130.1, 129.5, 128.9, 128.8, 127.0, 119.0, 80.9, 66.4, 48.0, 28.54, 28.50, 26.5, 26.0; Anal. Calcd. for C₃₁H₄₀N₂O₆: C, 69.38; H, 7.51; N, 5.22. Found: C, 69.11; H, 7.58; N, 5.24.


(R)-((R)-5-(4-aminobenzyl)-3,4-dihydro-2H-pyrrol-2-yl)-phenylmethanol bis hydrochloric acid salt monohydrate (17). A mixture of enone **14** (0.354 mol, 190.0 g) and 10% Palladium on 10% Pd/C (9.5 g) in THF (0.85 Kg) was hydrogenated under 20 psig H₂ for 90 min at 25 °C until uptake of hydrogen had ceased. The catalyst was removed through filtration of a bed of solka floc. The filtered residues were washed with THF (0.85 Kg). The combined filtrate was solvent switched to *i*-PrOH at a final volume of ~1.4 L. 4N HCl in *i*-PrOH (1.5 L) at ambient temperature. The reaction mixture was stirred at 20-25 °C for 24 h. The batch was distilled under reduced pressure, at constant volume by charging *i*-PrOH up to one batch volume, to remove HCl. The batch was then concentrated to a final volume of ~1.5 L. The resulting slurry was heated to 45°C, and *i*-PrOAc (2.5 L) was slowly added to the batch over 2-3 h. The slurry was then cooled to ~20 °C over 1-2 h and aged overnight. The batch was filtered, and the cake was washed with a 1:2 mixture of *i*-PrOH / *i*-PrOAc (0.8 L) followed by *i*-PrOAc (0.8 L). The wet cake was dried at 45 °C in vacuum under nitrogen sweep to give the cyclic imine bis-HCl salt **17** (124 g, >97% purity). 94% yield. m.p. 220-226 °C; ¹H NMR (500 MHz, CDCl₃): δ 11.16 (br s, 2 H), 7.47-7.28 (m, 9 H), 4.74 (d, J = 6.8 Hz, 1 H), 4.63 (br m, 1 H), 4.21 (AB q, J = 22.1, 14.5 Hz, 2 H), 2.89 (m, 1 H), 2.78 (m, 1 H), 1.96 (m, 1 H), 1.86 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 194.7, 140.5, 132.5, 131.7, 130.7, 128.3, 137.9, 126.9, 123.5, 73.2, 72.1, 36.2, 36.1, 22.3; HRMS calc'd for C₁₈H₂₀N₂O [M+H]⁺ 281.1654, found 281.1645.

(R)-((2R,5S)-5-(4-aminobenzyl)pyrrolidin-2-yl)-phenylmethanol (1). To a mixture of imine dihydrochloride **17** (0.318 mol, 120.0 g, 98.5 wt%) and THF (0.9 L) under nitrogen was charged hexamethyldisilazane (0.679 mol, 109.5 g) while maintaining the batch temperature below 25 °C. The resulting slurry was stirred vigorously at ambient temperature for 2 h. The slurry was transferred to an 3 L autoclave charged with a suspension of 5% platinum on alumina (6.05 g) in THF (240 mL). The transfer line was flushed with THF (85 mL). The resulting mixture was stirred at ambient under hydrogen (40 psig) until the hydrogen uptake ceased (~12 h). The catalyst was filtered through a pad of Solka Floc, and washed with THF (1 L). The combined filtrate was stirred with 0.5 M hydrochloric acid (1.3 L) at ambient temperature for 1 h. The aqueous layer was separated and *i*-PrOAc (400 mL) was added. Sodium hydroxide (5 N, ~150 mL) was added to adjust the pH to 10.0. The organic phase was treated with carbon (AquaGuard® powder, Meadwestvaco; 25 g) at ambient temperature for 2 h. The mixture was filtered through a pad of Solka Floc and was washed with 2-propanol (180 mL). The combined filtrate was concentrated to ~700 mL. The solution was distilled at the constant volume by feeding a total of 1.4 L of 2-propanol, maintaining the batch temperature at 33-35 °C in vacuum. The resulting solution was then concentrated to 340 mL and heated to 50 °C, followed by addition of H₂O (65 mL). The resulting solution was cooled to 41-43 °C and seeded with pyrrolidine aniline hemihydrate (0.4 g). The resulting mixture was aged at 41-43 °C for 1 h to establish a seed bed. H₂O (610 mL) was charged at 41-43 °C over 6 h, and the resulting mixture was cooled to 10 °C over 3 h, followed by aging at 10 °C for 2 h before filtration. The wet cake was displacement washed with 25% 2-propanol/H₂O (1:3 v/v, 500 mL). The wet cake was suction-dried at ambient temperature under nitrogen to afford 76.8 g of pyrrolidine aniline as



hemihydrate in 99% purity. 80% isolated yield. m.p. 88-89 °C. ^1H NMR (400 MHz, d_6 -DMSO): δ 7.27 (m, 4 H), 7.17 (m, 1 H), 6.81 (d, J = 8.1, 2 H), 6.45 (d, J = 8.1 Hz, 2 H), 5.07 (s, br, 1 H), 4.75 (s, 2 H), 4.18 (d, J = 7.0 Hz, 1 H), 3.05 (m, 2 H), 2.47 (dd, J = 13.0, 6.7 Hz, 1 H), 2.40 (dd, J = 13.0, 6.6 Hz, 1 H), 1.53 (m, 1 H), 1.34 (m, 1 H), 1.22 (m, 2 H). ^{13}C NMR (100 MHz, d_6 -DMSO): δ 146.5, 144.3, 129.2, 127.8, 127.4, 126.8, 126.7, 114.0, 76.8, 64.4, 60.1, 42.1, 30.2, 27.2. HRMS calc'd for $\text{C}_{18}\text{H}_{22}\text{N}_2\text{O} [\text{M}+\text{H}]^+$ 283.1810, found 283.1805.

4. ^1H and ^{13}C NMR spectra

12

12

nmr400b h-1

Current Data Parameters

NAME 0298909-0006-0

EXPNO 1

PROBODP

PLATE

PSLWFG 5 mm QNP 1H/1

PSLWFG2 250

TD 32768

SOLVENT CDCl3

NS 32

DS 32

SWH 8578.247 Hz

ETDFTES 0.2300 sec

TDZ 2,494,180 sec

ACQ 114

TD 76,200 usec

DE 7.00 usec

TE 300.0 K

D1 0.1000000 sec

TDD 1

==== CHANNEL F1 =====

HZCL 1H

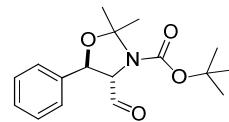
DPL 11.000 usec

DPL1 6.00 dB

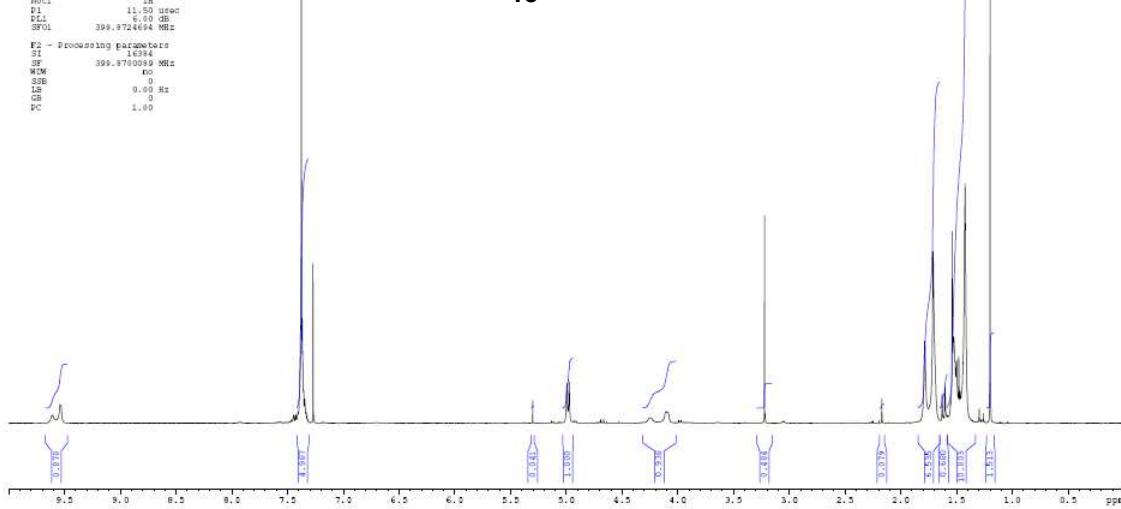
SWFO1 399.9724644 MHz

==== CHANNEL F2 =====

SI 14700


SP 399.9700099 MHz

MW 100


SWB 0.00 Hz

LB 0

GB 1.00

13

nmr400b h-1

Current Data Parameters

NAME 0249880-0010-6

EXPNO 1

PR0CH0 1

F2 - Acquisition Parameters

DATE 20030919

TIME 10:24

INSTRUM spect

PROBHD 5 mm QNP 1H

TD 32768

SW1 250.13

SOLVENT CDCl3

NS 32

DS 2

SW0 6579.047 Hz

TDRES 0.20000000000000002 Hz

TE 2.4934180 sec

TM 7.011.6

DM 74.00 usec

TE 7.00 usec

TM 300.0 K

LB 128.00 usec

D1 0.10000000000000002 sec

TDS 1

===== CHANNEL f1 =====

SW1 1H

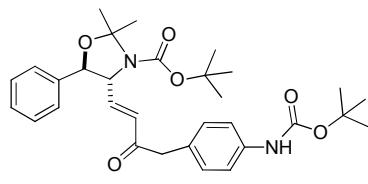
SI 11.50 usec

D1 6.00 dB

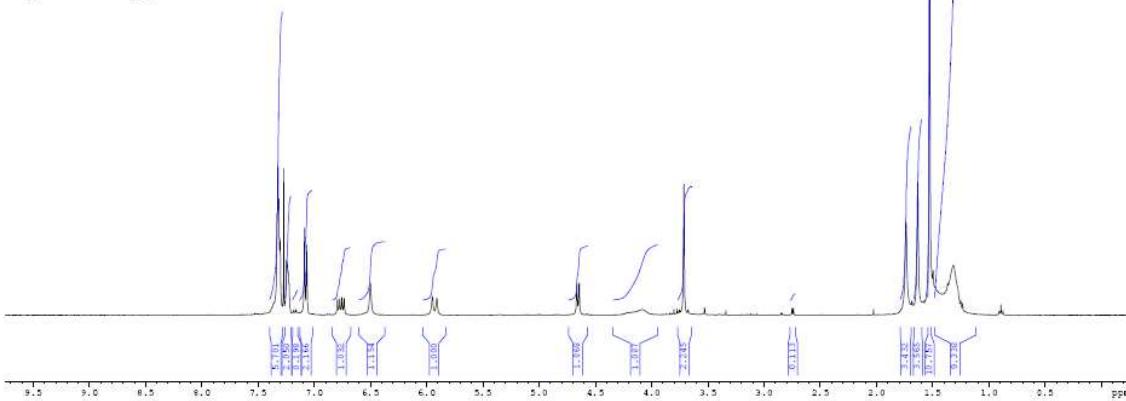
SW0 399.8724694 MHz

F1 - Processing parameters

SI 14384


SF 399.8700000 MHz

SWB 0


LB 0.00 Hz

GB 0

DC 1.00

14

nmr400b c-13

Current Data Parameters

NAME 0249880-0010-6

EXPNO 1

PR0CH0 1

F2 - Acquisition Parameters

DATE 20030919

TIME 10:24

INSTRUM spect

PROBHD 5 mm QNP 1H

ID 6556

SOLVENT CDCl3

NS 1053

DS 4

SW0 24351.79 Hz

TDRES 0.445147 Hz

TE 1.2454180 sec

TM 8.02

DM 19.000 usec

TE 7.00 usec

TM 300.0 K

LB 0.10000000000000002 sec

D1 0.03000000000000001 sec

TDS 40

===== CHANNEL f1 =====

SW1 1H

SI 10.00 usec

D1 6.00 dB

SW0 100.5594512 MHz

===== CHANNEL f2 =====

SW1 13C

SI 10.00 usec

D1 12.00 dB

SW0 174.4000000 MHz

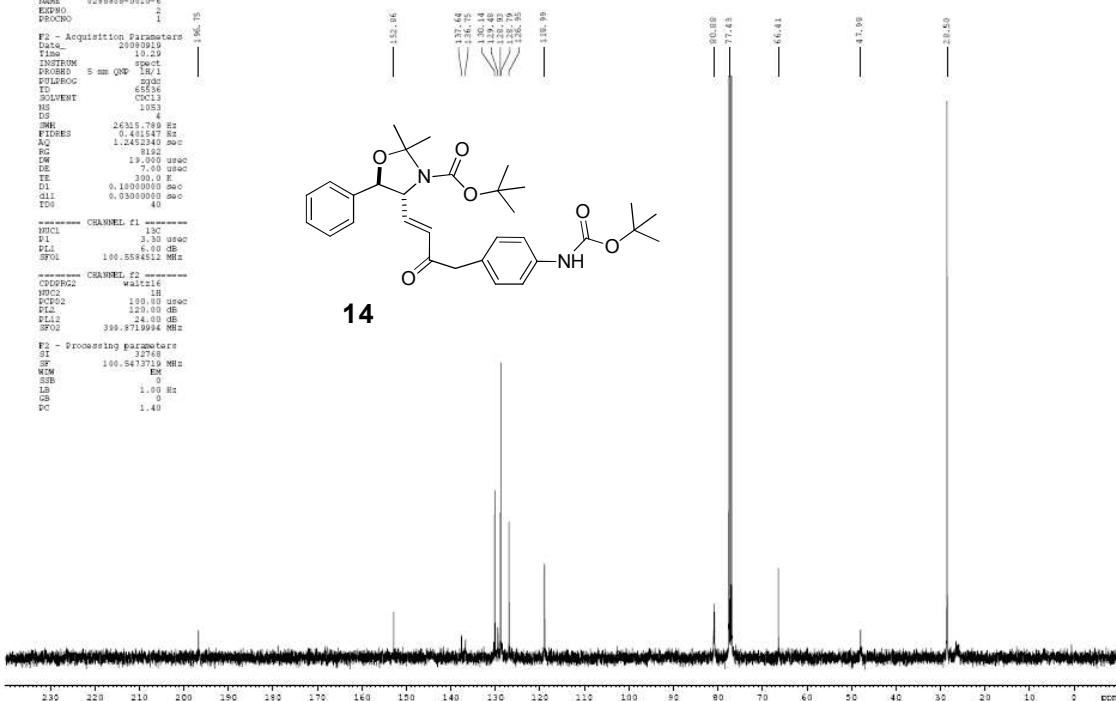
SF02 399.8719994 MHz

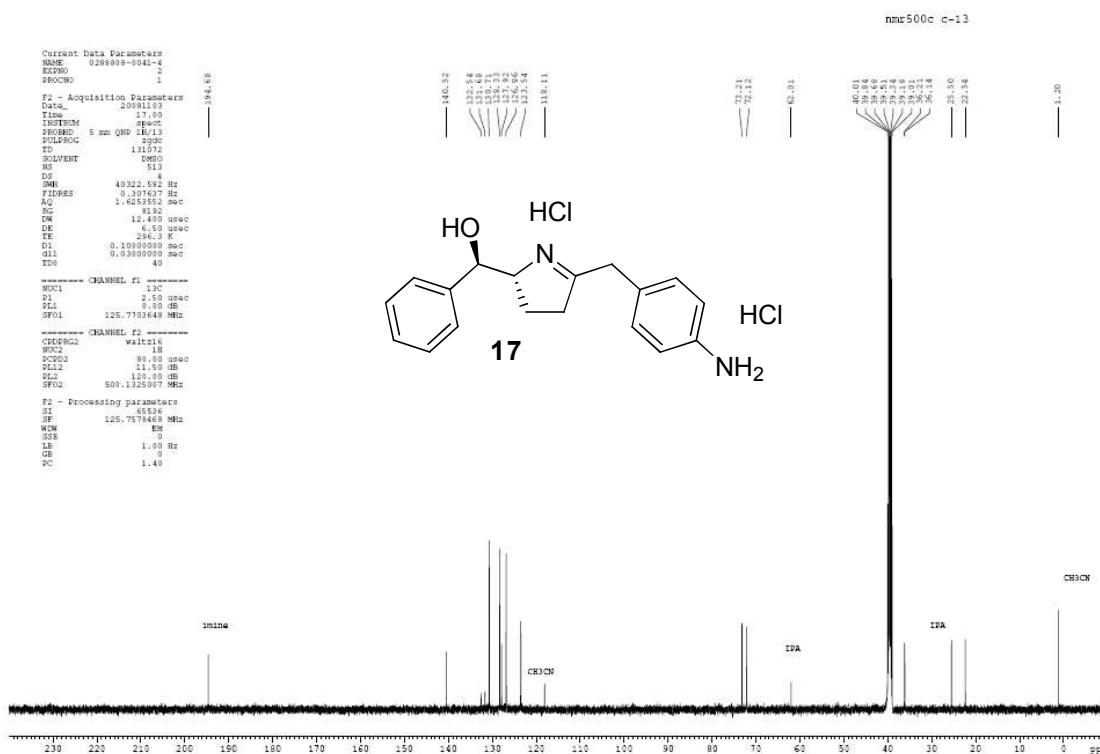
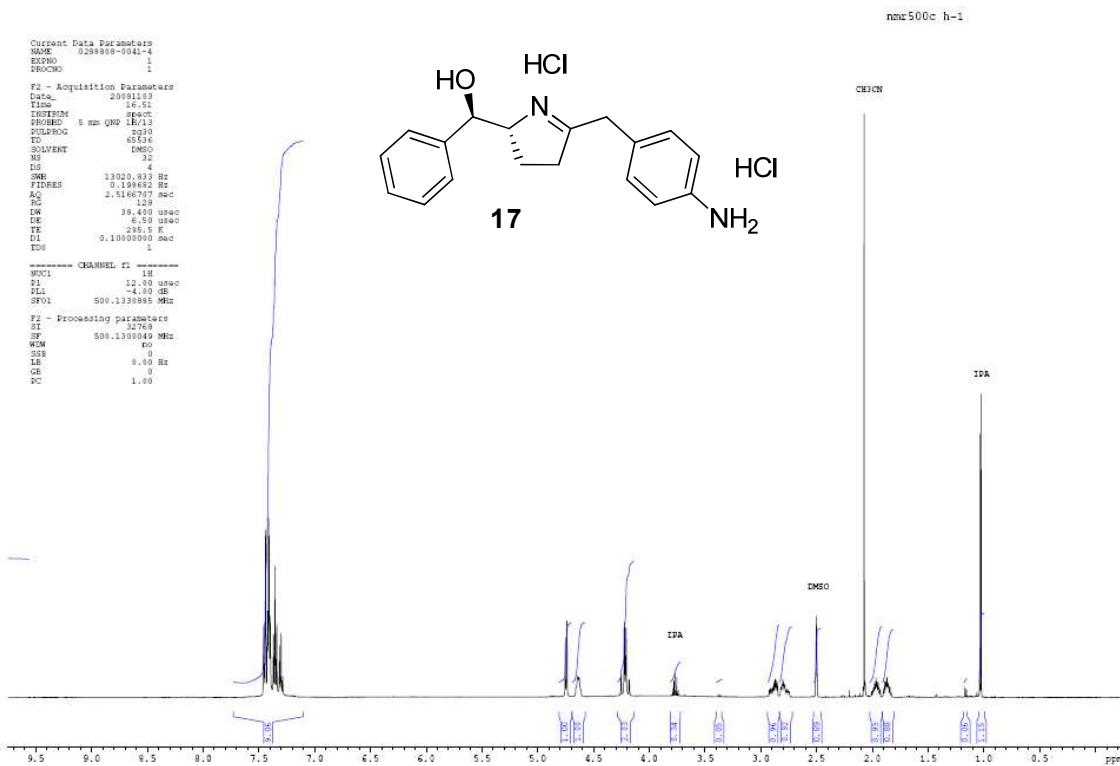
F2 - Processing parameters

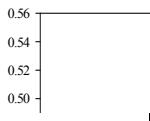
SI 32768


SF 100.5471000 MHz

MM EM

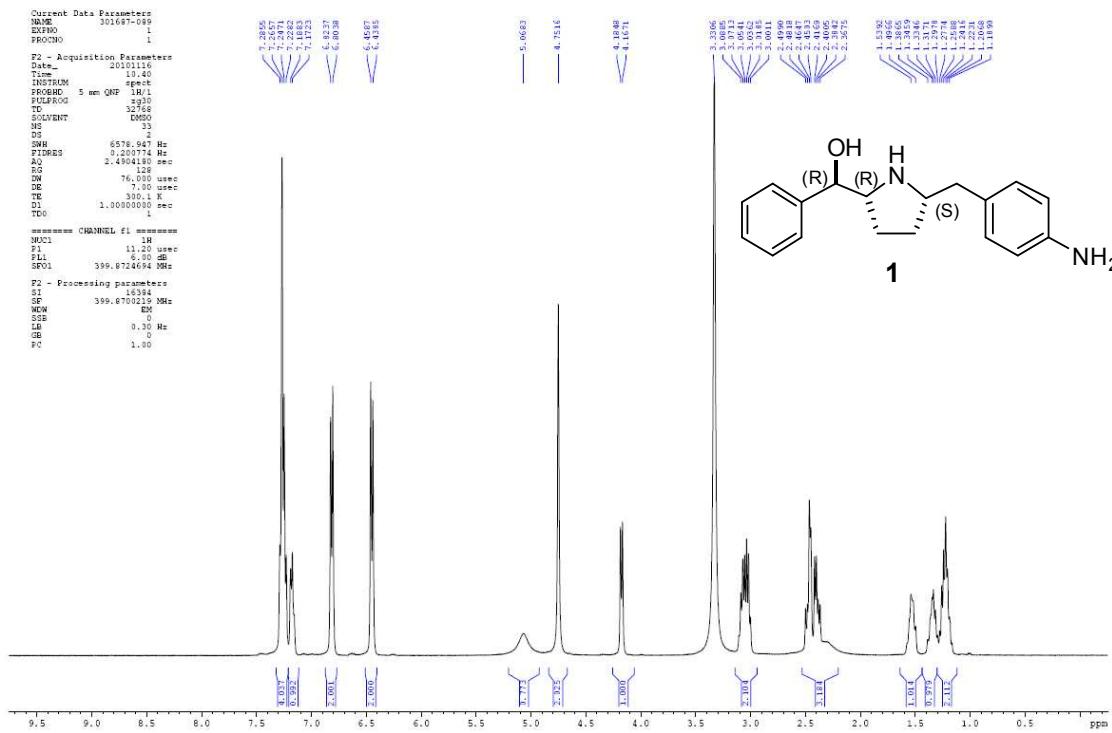

LB 0



GB 1.00 Hz


DC 1.40

14


```

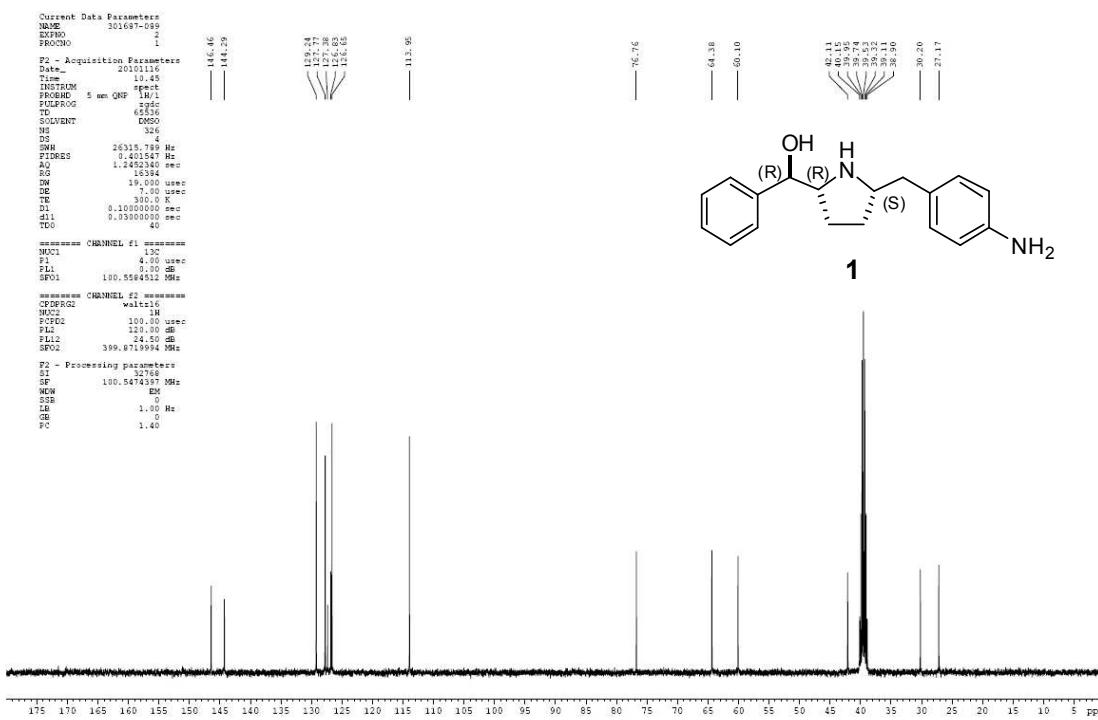

Current Data Parameters
NAME: 301687-089
EXPNO: 1
PROCNO: 1
P2: Acquisition Parameters
Date: 20101116
Time: 10.40
TE (ms): 1.17
TR (ms): 1.00
PROBOD: 5 mm QNP EM1/1
PULPROG: 1920
ND: 32768
SWEEP: 0.0500
SOLVENT: DMSO
D1: 200.0000
DS: 25
SF0: 6576.947 Hz
D1AMES: 0.10000000000000002
SF0AMES: 2.4804000000000003
RG: 128
DW: 76.00 usec
DE: 7.00 usec
TE: 1.0000000000000001
D1: 1.0000000000000001
D1: 1

***** CHANNEL F1 *****

NUC1: 1H
F1: 11.73 usec
P1: 11.73 usec
F2L: 6.00 dB
SF01: 399.87246494 MHz

P2: Processing parameters
D1: 1.0000000000000001
SF: 399.87002019 MHz
EM: EM
ND: 1
LB: 0.30 Hz
GB: 1
PC: 1.00

```



SM in DMSO 400NMR

```

Current Data Parameters
NAME      301697-D95
EXPRO     2
PROFCNO   1

P2 - Acquisition Parameters
Date_      20010116
Time      10.45
INSTRUM   spect
PROFIL    5 mm QNP
PULPROG  zg30
TD       65536
SOLVENT   DMSO
NS        32
DS        4
SWH      16315.799 Hz
ETR      0.01340 sec
AVER    1.2452340 sec
RG       16384
DW       19.000 usec
DE       6.500 usec
TE       300.0 K
D1      0.1000000 sec
D11     0.0300000 sec
TDO      40

```

