SUPPORTING INFORMATION for

UV induced formation of bromophenols from polybrominated diphenyl ethers

Paul Bendig and Walter Vetter*
University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart,

Germany

* Corresponding author:
Walter Vetter
fax: +49 711 459 24377

Email: walter.vetter@uni-hohenheim.de

submitted to Environmental Science and Technology



GC/ECNI-MS analysis of bromophenols in the presence of PBDEs

All di- and triBP standards eluted prior to BDE-1 (i.e. the first eluting PBDE
congener) and they could be easily analyzed by GC/ECNI-MS '. The GC/ECNI-MS spectra
of di- and triBP standards featured the molecular ion ([M]") as the base peak followed by [Br]
which reached about 50% of the abundance of [M] (Fig. S1). BP congeners not available as
standard compounds were determined by means of the molecular ion. The isomer structure
information was derived from the retention data on DB-5 like columns % The mass spectra
tetra- and pentaBPs (Fig Slc,d) compared well to those published by Stemmler and Hites 3,
These were characterized by highly abundant [M-Br]” and [M-HBr|" fragment ions which
enabled us to distinguish them from mono- to tribrominated diphenyl ethers with which they
shared the GC retention time range. In addition, the absence of m/z 159/161 (these ions were
included in the SIM method) which is characteristic for PBDEs can be used for the
verification of BPs in the presence of the lowly brominated PBDEs as they exclusively
formed [Br] and [HBr;] 4, Additionally, 2,4,6-tribromoanisole and 2,3,5-triBP coelute on the
DB-5 like GC phase but could be distinguished by means of their mass spectra.

In addition, the BP analysis required a very clean GC/MS system. After a couple of
injections of pg amounts of pure BP standards the BP peaks became broader and the signal
intensity was decreased. The effect was not observed for non-phenolic compounds such as
2,4,6-tribromoanisole or 2,4-dibromoanisole (Fig. S2). Throughout the study, frequent
instrumental maintenance was necessary (e.g. exchange of the inlet liner and column cutting).
These effects were less pronounced when higher amounts (>1-10 ng BP on column) were

injected.
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Figure S1: GC/ECNI-MS spectra of a) 2,4-dibromophenol, b) 2,4,6-tribromophenol,

¢) tetrabromophenol and d) pentabromophenol



Figure S2
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Figure S2: GC/ECNI-MS chromatograms (TIC of m/z 79, 81, 172, 174, 249.9, 251.9,
253.9, 327.8, 329.8 and 331.8) of a standard mixture of 2,4-, 2,6-
dibromophenol (diBP), 2,4-dibromoanisole (DBA), 2,4,6-tribromoanisole
(TBA) and 2.,4,6-tribromophenol (50 pg each), a) before and b) after system

maintenance
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a) b)
S BDE-196 o BDE-183
- [--]
§ 1.2 g
40

B =
o
E 08 23-0
© s .
: — 220 -
E 04 E - P
(=] =
%}) 210 —
3 E /
L 00" — : E0.0" .
& 0 0 20 3 40 5 60 70 80 90 e 0 10 20 30 40 50 60 70 80 90
< irradiation time [min] o irradiation time [min]

——diBP -~ triBP  tetraBP — YBPs ® —~—diBP ~*~triBP  tetraBP — YBPs
c) d)
Q BDE-153 3 BDE-154
',‘3" 0.8 530
o [=]
B -

06

g / 820
s / £
£ 04 / 5 -
= z
£ 0 / £10 //,
- / o
Q o
£ et £ %/
8 0.0 ‘ ‘ ‘ £ g r==—= ‘ ‘ ‘
& "0 10 20 30 40 5 6 70 8 9 (2770 10 20 30 40 5 60 70 8 90
< irradiation time [min] % irradiation time [min]

——diBP =-1riBP  tetraBP — ¥BPs = —~—diBP ~*~triBP  tetraBP — YBPs

Figure S3:  Formation of di-, tri- and tetrabromophenols with from a) BDE-196, b) BDE-

183, ¢) BDE-153 and d) BDE-154 in dependency of irradiation time.
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Figure S4: UV absorbance spectra of BDE-47, DE-79,m 2,4-dibromophenol, and 2.4,6-

tribromophenol, normalized to Apay. 10% of Anax is marked with a dotted line.
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Figure S5:  Abundances of tribromophenols (triBPs) relative to 2,4,5-triBP, after 80 min
irradiation of BDE-183 in pure methanol, methanol/water (80/20) and

methanol water (50/50)
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Figure S6:  GC/ECNI-MS SIM chromatograms of m/z 252 (black ion trace) and m/z 330
(blue ion trace) of a) a passive water sampler extract from the Great Barrier

Reef (Australia) and b) BDE-183 irradiated for 60 min.
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