Development of a Safe and Economical Synthesis of Methyl 6-chloro-5-(trifluoromethyl)nicotinate: Trifluoromethylation on Kilogram Scale

Jason A. Mulder*, Rogelio P. Frutos, Nitinchandra D. Patel, Bo Qu, Xiufeng Sun, Thomas G. Tampone, Joe Gao, Max Sarvestani, Magnus C. Eriksson, Nizar Haddad, Sherry Shen, Jinhua J. Song, and Chris H. Senanayake

Chemical Development, U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, United States

Supporting Information:

DUC1 1H 14.00 usec Pl (0.00 dB PL) 10.49968529 W SFO1 400.1327209 MHz F2 - Acquisition Parameters
Date 2012028
Time 2012028
Time 2012028

INSTRUM Spect PROBHD 5 mm PABBO BBPULPROG 32768
SOLVENT 2910
NS 256
DS 4
SWH 5896.227 Hz
FIDRES 0.179939 Hz
AQ 2.7787764 sec
RG BG 84.800 usec
DE 6.50 usec
TE 298.0 K
D1 2.00000000 sec
TD0 3012020 406 84.800 usec 6.50 usec 298.0 K 2.00000000 sec F2 - Processing parameters
SI 65536
SF 400.1299909 MHz
WDW EM
SSB 0
I.B 0.05 Hz
GB 0 Current Data Parameters
NAME in78428p
EXPNO 1
PROCNO 1 mdd α 046.5-**68**Ε.Ε − 000.5 ₽08.ε-5 9 EII.8œ 010.1 36£.8 ~ 06£.8 ~ 996.0 o, 10 12 3 proton NMR 266.0 13 14

F2 - Acquisition Parameters
Date 20120226
Time 7.32
INSTRUM Spect
PROBHD 5 mm PABBO BBPULPROG 32768
32768
SOLVENT 2000
DS 42408.461 Hz
SWH 24038.461 Hz
SWH 0.733596 Hz
AQ 26816244 sec
RG 20.6816244 sec
RG 20.000 usec
DE 6.50 usec
TE 2.00000000 sec
TD 0.030000000 sec
TD 0.030000000 sec . Data Parameters in78428 Current I NAME EXPNO PROCNO £0.0≱ -28.6£ -+2.04 -40.45 99'07 -78.04 ~ 80.14 **52.94**

usec dB W MHz

13C 9.75 u -1.00 d 43.00697708 W

PL1 PL1W SF01

CHANNEL fl ========

24038.461 Hz
0.733596 Hz
0.6816244 sec
256
20.800 usec
6.50 usec
298.0 K
2.00000000 sec

CPDPRG2 NUC2 PCPD2 PL12 PL13 PL2W PL12W PL13W SF02

2 - Processing parameters I 65536 F 100.6127223 MHz DW EM 0 SB 0 1.00 Hz C 1.40

bpm

10

- 20

- ල

- 6

- 8

- 8

- 2

- 8

- 8

100

110

120

130

140

150

160

170

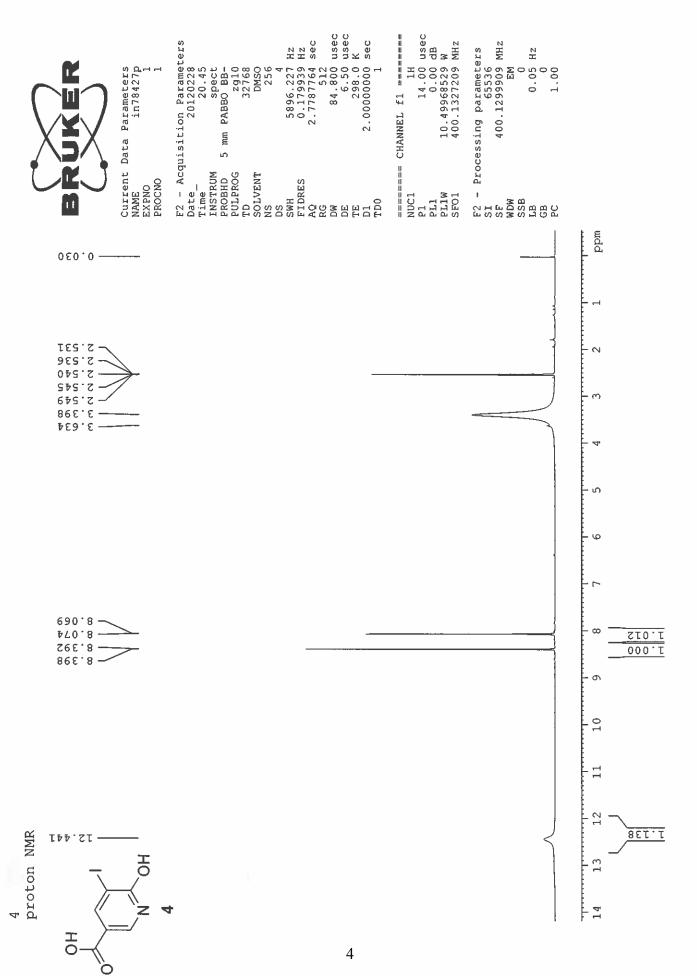
180

190

200

210

220 230


148.32 77,091 -71.491 -

3 13C NMR

11.56 ----

Z9.011 —

741.62

9.75 usec -1.00 dB 43.00697708 W 100.6243395 MHz F2 - Acquisition Parameters
Date 20120226
Time 5.57
INSTRUM spect
PROBHD 5 mm PABBO BB-- Processing parameters 65536 100.6127212 MHz CHANNEL fl ====== 1.00 Current Data Parameters
NAME in78427
EXPNO 1
PROCNO 1 29pg 32768 DMSO 2000 CPDPRG2 TD SOLVENT NS NS SWH FIDRES AQ PE DE TE DI DI TDO NUC2 PCPD2 PL2 PL12 PL13 PL13W PL12W PL13W NUC1 P1 PL1 PL1W SF01 F2 -SI SF WDW SSB LB GB 2 58.65 -40.04 40.03 Sp.0p 99.04 -80.14 ~ 78.04 ~ Z6'Z6 — 79,111 -04.141 -748.92 160.84 165.22 HO 5

usec

% % ₩ 6 6 0 0

H2

mdd

9

30

40

20

9

2

88

8

9

110

120

130

140

150

160

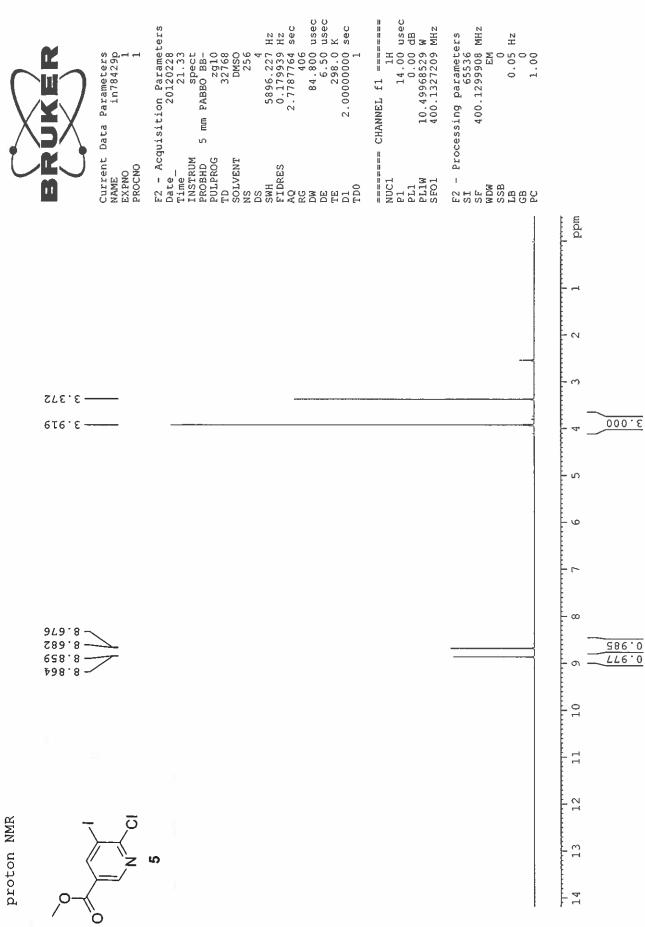
170

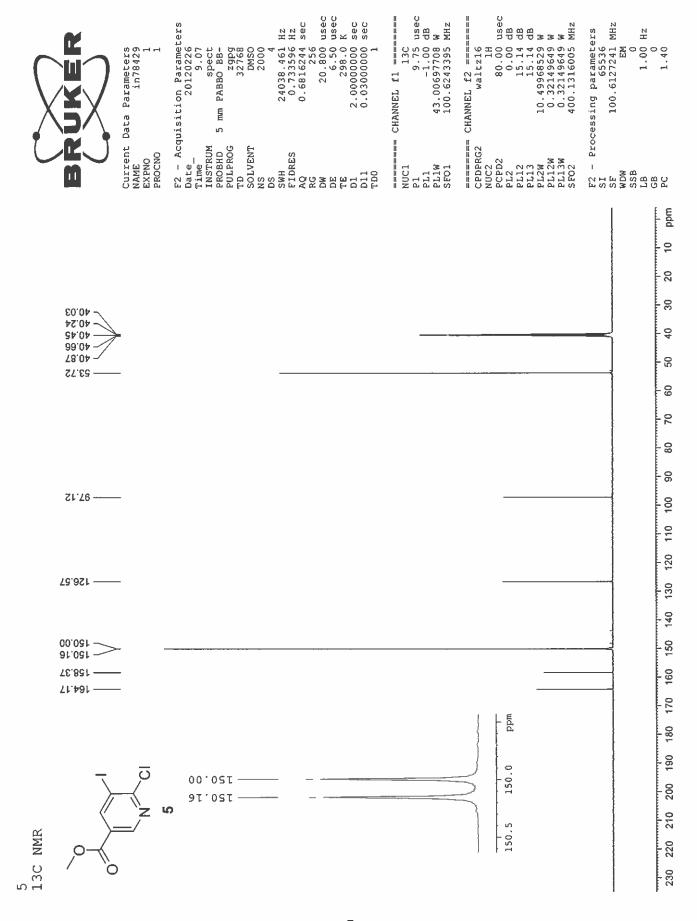
180

190

200

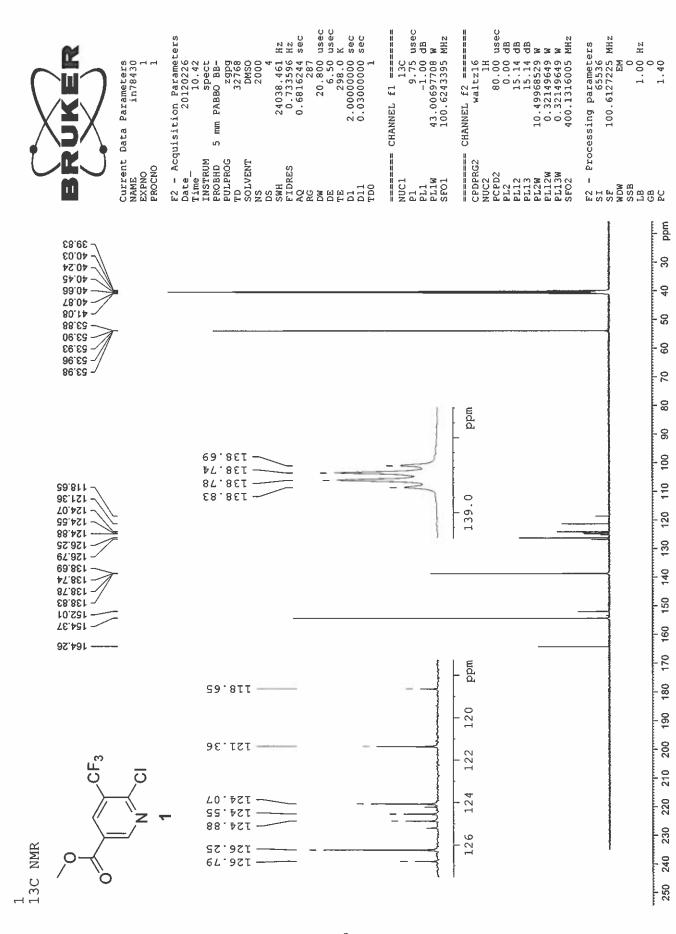
210


220


230

Hz Hz sec

4 13C NMR


proton NMR

2.778//... 406 84.800 usec 6.50 usec 298.0 K 2.00000000 sec F2 - Acquisition Parameters
Date 20120228
Time 21.57
Time 21.57

INSTRUM Spect Spect PROBHD 5 mm PABEO BBPULPROG 32768
SOLVENT 2410
TD DMSO 32768
NS 5896.227 Hz
SWH 0.179939 Hz
FIDRES 0.179939 Hz
AQ 2.7787764 sec
RG 84.800 usec
DE 6.50 usec
TE 298.0 K 14.00 usec 0.00 dB 10.49968529 W 400.1327209 MHz F2 - Processing parameters
SI 65536
SF 400.1299908 MHz
WDW EM
SSB 0
I.B 0.05 Hz
GB 0 ======= CHANNEL fl ======= Current Data Parameters
NAME in78430p
EXPNO 1 NUC1 P1 PL1 PL1W SF01 mdd - 2.536 - 2.536 - 2.531 α 2.549 99ε.ε-3.000 TL6'E -S **[**− ∞ 165.8 962.8 771.6 971.9 986.0 ₽L6.0 10 11 1 proton NMR 13 14

Data Collection by ARSST Instrument:

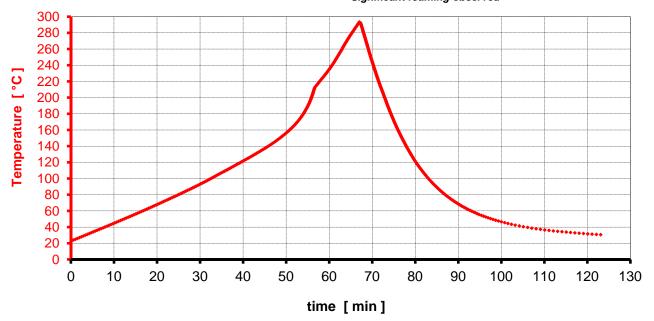
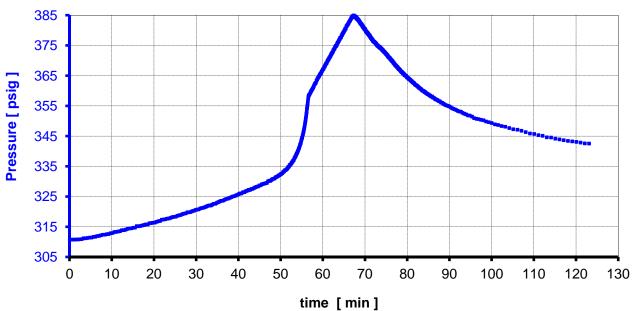
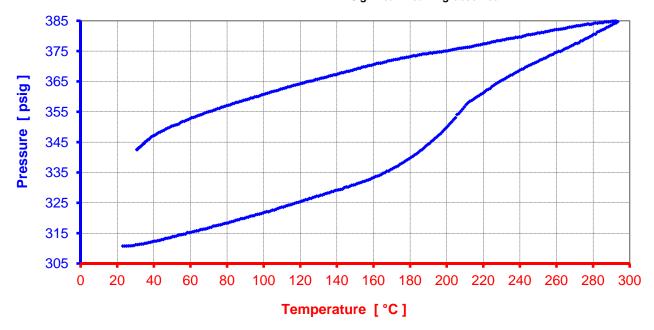
Advanced Reactive Systems Screening Tool (ARSST) calorimeter is manufactured by Fauske and Associates. ARSST is a quasi-adiabatic calorimeter that works on basis of heat loss compensation principle. The basic component of the ARSST instrument includes a spherical 10-mL glass test cell (*), its surrounding "bottom heater" jacket and insulation, thermocouple, pressure transducer, and a 350-mL containment vessel that serves as both pressure simulator and safety vessel. Tests are usually performed in the open test cell in closed containment. Nitrogen pressure in the containment vessel is used to suppress the boiling point of the sample. The sample temperature is measured by a thermocouple inside the test cell. A magnetic stir bar is placed inside the test cell and driven by an external magnetic stirrer. A key feature of the apparatus is its low effective heat capacity relative to that of the sample (low ϕ factor). Thus, the heat released by chemical reaction goes to heat up the sample with negligible energy absorbed by the test cell itself. A fill tube is used to add the mixture to the purged test cell.

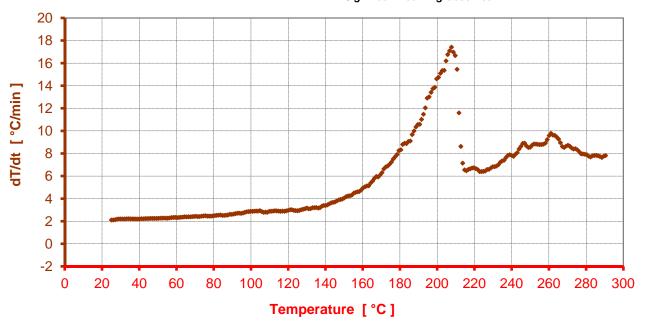
For screening purposes, ARSST data is usually collected with the use of 2 °C/min temperature ramp polynomial and approximately 10 mL of the reaction mixture. All data points in the plots are smoothed over five data points.

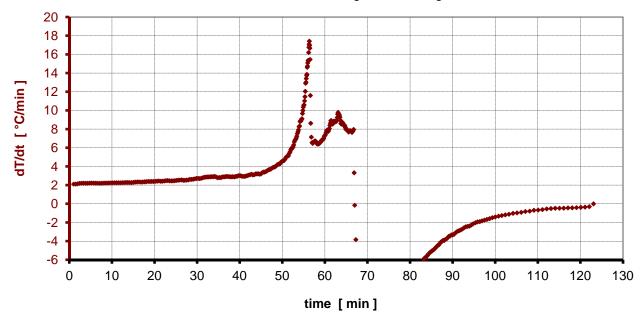
It is worth to mention, that the fill level in ARSST cell is about 3% of the total vessel volume (open cell in closed containment. 10 ml of reaction mixture in a containment volume of 350 ml). This fact needs to be considered for pressure increase and pressure rates.

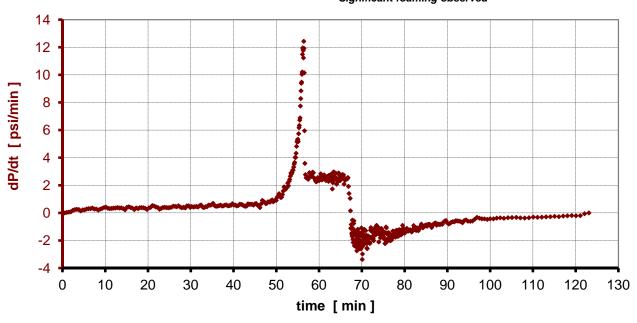
(*) Options for performing tests in other cell volume and cell materials are available. Experiments in closed test cells are also possible.

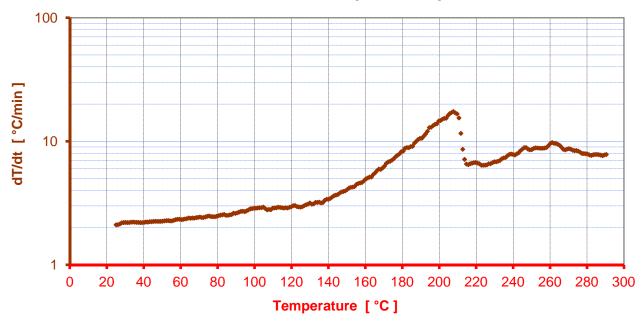
Figure A1: Temperature vs. Time Profile; Preparation of "1" in Batch mode; ARSST experiment


Figure A2: Pressure vs. Time Profile; Preparation of "1" in Batch mode; ARSST experiment


Figure A3: Pressure vs. Temperature Profile; Preparation of "1" in Batch mode; ARSST experiment


Figure A4: Time Derivative of Temperature vs. Temperature Profile; Preparation of "1" in Batch mode; ARSST experiment; only heat-up part of the curve is shown here.


Figure A5: Time Derivative of Temperature (Self Heat Rate) vs. Time Profile; Preparation of "1" in Batch mode; ARSST experiment

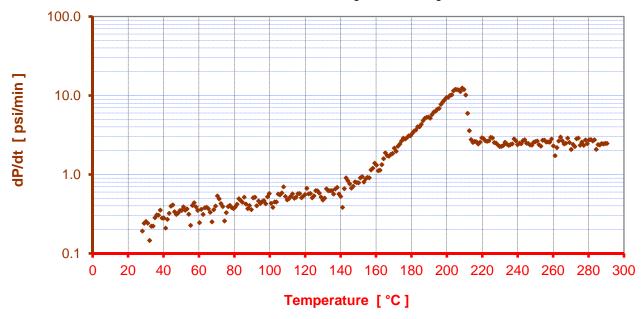
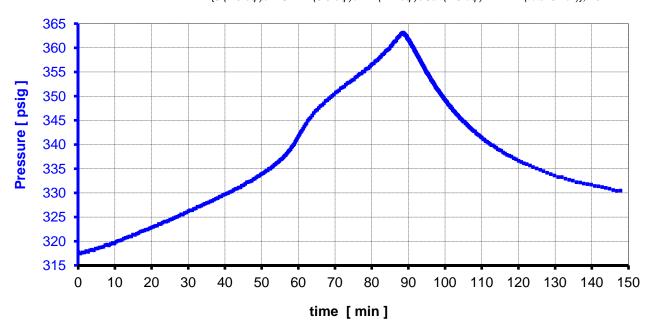
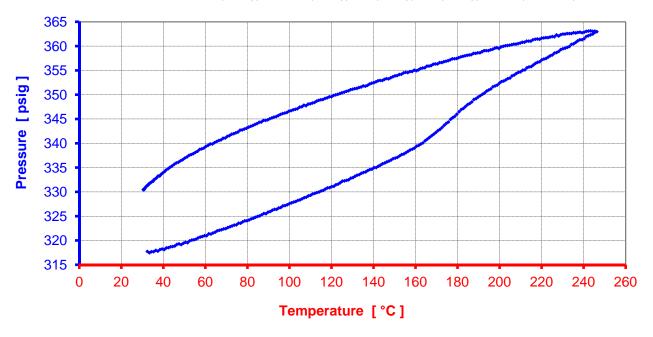
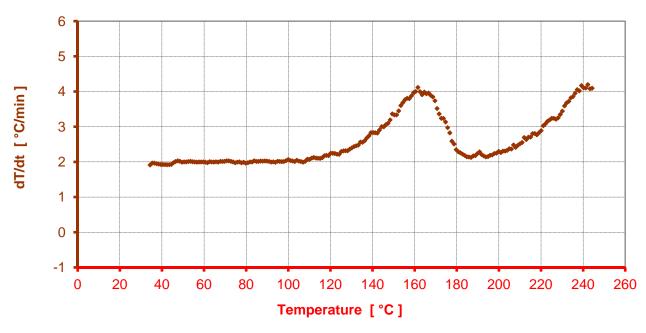
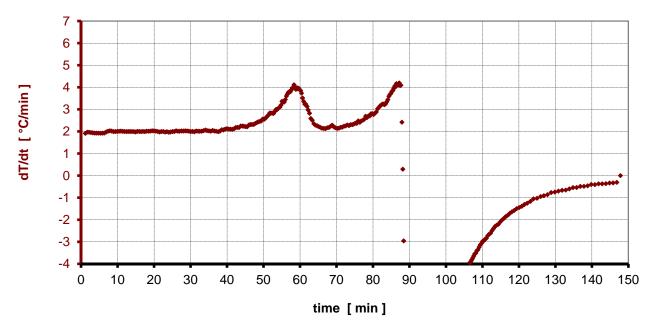

Figure A6: Time Derivative of Pressure (Pressure-rise Rate) vs. Time Profile; Preparation of "1" in Batch mode; ARSST experiment

Figure A7: Time Derivative of Temperature (Self Heat Rate) vs. Temperature Profile; Preparation of "1" in Batch mode; ARSST experiment


Figure A8: Time Derivative of Pressure (Pressure-rise Rate) vs. Temperature Profile; Preparation of "1" in Batch mode; ARSST experiment


Figure B1: Temperature vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure B2: Pressure vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure B3: Pressure vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

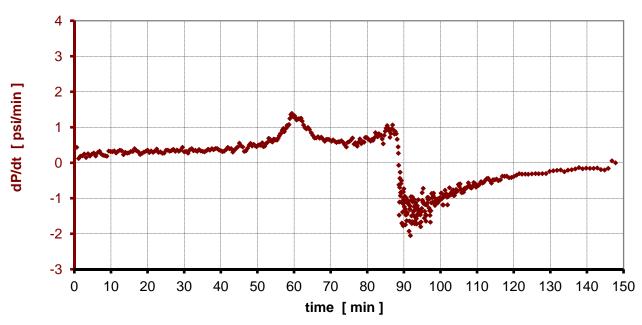

Figure B4: Time Derivative of Temperature vs. Temperature Profile: Preparation of "1" in Semi-Batch mode; ARSST experiment; only heat-up part of the curve is shown here.

Figure B5: Time Derivative of Temperature (Self Heat Rate) vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

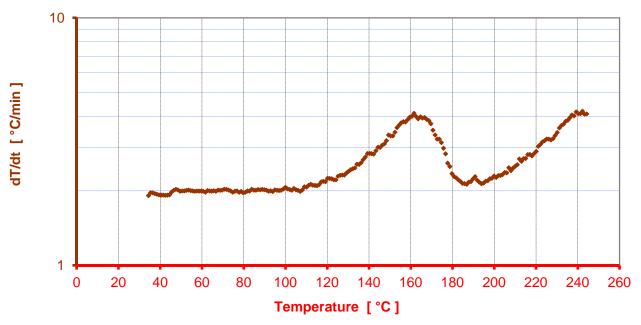


Figure B6: Time Derivative of Pressure (Pressure-rise Rate) vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

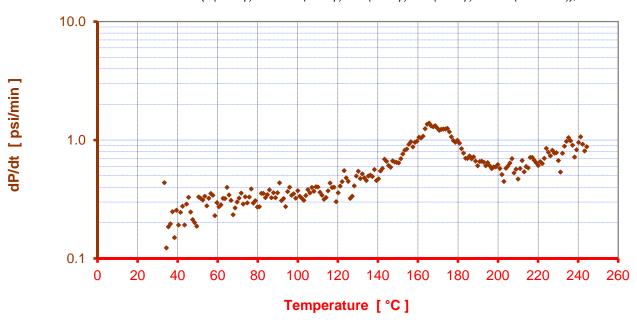
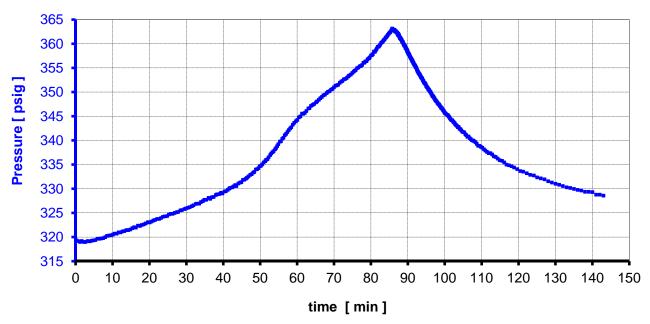
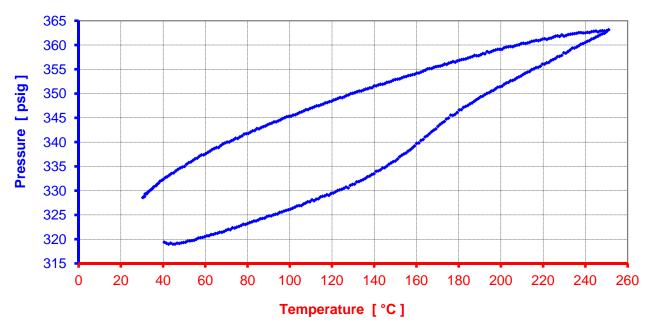
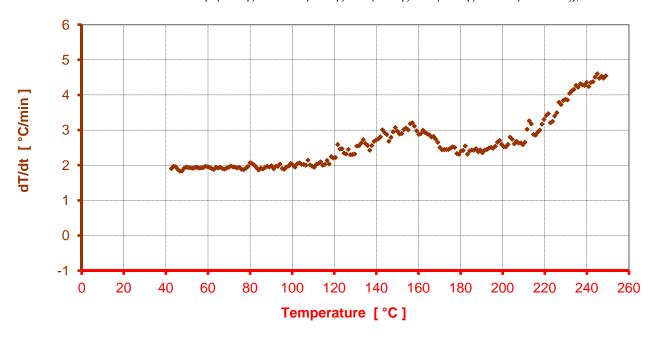


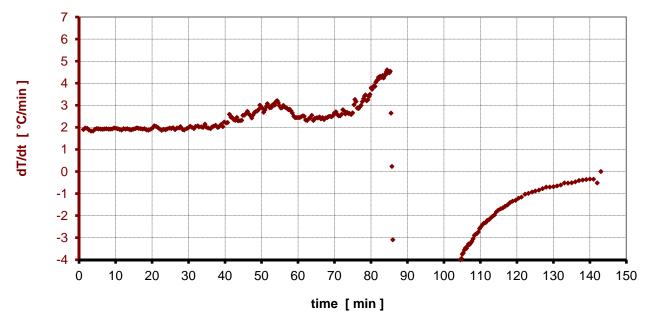
Figure B7: Time Derivative of Temperature (Self Heat Rate) vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

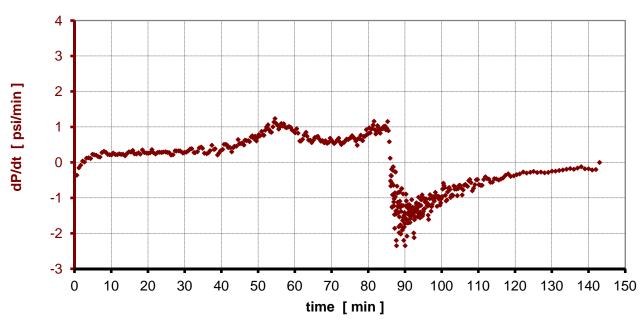
Preparation of "1" in Semi-Batch mode; Rxn Mixture after "half of "5" addition at 120 °C"; $\{5 \ (1.0 \ \text{eq.}) \ / \ \text{MCDFA} \ (3.0 \ \text{eq.}) \ / \ \text{KF} \ (1.1 \ \text{eq.}) \ / \ \text{CuI} \ (1.5 \ \text{eq.}) \ in \ \text{NMP} \ (\text{total 5 vol.})\}; \ 10 \ \text{ml}$

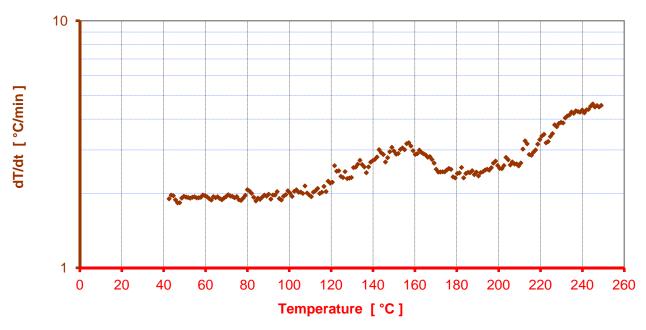

Figure B8: Time Derivative of Pressure (Pressure-rise Rate) vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure C1: Temperature vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure C2: Temperature vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure C3: Temperature vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment


Figure C4: Time Derivative of Temperature vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment; only heat-up part of the curve is shown here.


Figure C5: Time Derivative of Temperature (Self Heat Rate) vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

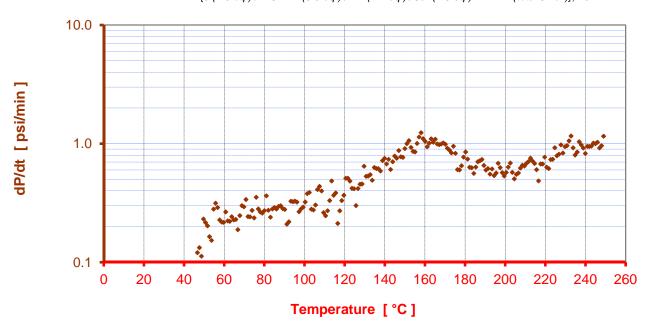

Figure C6: Time Derivative of Pressure (Pressure-rise Rate) vs. Time Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

Figure C7: Time Derivative of Temperature (Self Heat Rate) vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

Figure C8: Time Derivative of Pressure (Pressure-rise Rate) vs. Temperature Profile; Preparation of "1" in Semi-Batch mode; ARSST experiment

Chlorination in 10V solvent, 2 equiv $POCl_3$, 1 equiv Hunig base. (200 mg scale) (220 nm)

Entry	solvent	temp	time	conv	pdt	SM	assay
1	ACN	80 °C	12h	99.6%	99.3%	0.4%	-
2	dioxane	100 °C	12h	100%	100%	0	97%
3	anisole	100 °C	12h	98.7%	97.9%	1.3%	94%
4	anisole	105 °C	14h	84.7%	77.4%	15.3%	-
5	fluorobenzene	100 °C	12h	40%	15%	60%	-
6	CPME	100 °C	12h	96.3%	96.1%	3.7%	88%
7	CPME	105 °C	14h	96.3%	95.1%	3.7%	-
8	toluene	100 °C	12h	40%	20%	60%	
9	diethoxyethane	100 °C	12h	98.5%	97.9%	1.5%	90%
10	diethoxyethane	105 °C	14h	99.8%	99%	0.2%	98%
11	DMF	100 °C	12h	94.6%	89%	5.4%	84%
12	DMF	105 °C	14h	86.2%	54.6%	13.8%	
13	MeTHF	80 °C	14h	76.0%	67.3%	24.0%	-
14	2-butanone	80 °C	14h	91.2%	85.7%	8.8%	-
15	DME	85 °C	14h	99.6%	98.3%	0.4%	99%
16	NMP	105 °C	14h	39.9%	27.6%	60.1%	-
17	Sec-butylacetate	105 °C	14h	97.0%	93.2%	3.0%	-
18	DMAc	100 °C	12h	messy	trace		-

TRIFLUOROMETHYLATION USING STOICHIOMETRIC COPPER: SELECTED SCREENING DATA

Summary of observations:

- Copper iodide is superior to other copper sources for the trifluoromethylation using stoichiometric copper.
- NMP is inferior to DMAc (entry 3 vs entry 1)
- 3v, 5v, 10v give similar yield, there is a minor concentration effect (entries 1, 5, 8), some difficulty stirring observed with 3v.
- Reducing CuI below 1.5 equiv. is detrimental to the reaction (entries 6, 7 vs entry 5). More than 1.5 equiv. is not beneficial (entry 4 vs entry 5).
- 70% assay yield was obtained with 1.5 h slow addition of ClF₂CCO₂Me (entry 5), longer addition time (3h in entry 2) is detrimental.
- Addition of ligand (1,10 phenanthroline) is detrimental under stoichiometric copper conditions (entry 9 vs entry 6).
- A major by-product is hydro-deiodination of **5** (des-I).

Table A: Stoichiometric Trifluoromethylation: Copper Source Screen

	copper reagent	DMAc	conv. 3h	pdt. (1) (HPLC A%)	des-I (HPLC A%)	notes
1	CuI	5v	98%	80.3%	7.7%	
2	Cu(II)(acac) ₂	5v	75% (3h) 79% (6h)	47% (3h) 52% (6h)	85.% (3h) 11% (6h)	
3	Cu(II)(OTf) ₂	5v	37%	1%	1.5%	5,6 Bis-Cl 22%
4	Cu(I)Br(1,10-phen)(PPh ₃)	10v	98%	18%	63%	
5	Cu(I)(NO ₃)(1,10-phen)(PPh ₃)	5v	99%	0	37%	5,6 Bis-Cl 7%
6	Cu(I)(ACN) ₄ (PF ₆)	5v	40%	2%	20%	5,6 Bis-Cl 11% Dimer 6%
7	(Cu(II)(OTf)) ₂ .C ₆ H ₆ (90%)	5v	72%	2%	14%	5,6 Bis-Cl 16% Dimer 38%
8	CuBr	5v	95%	41%	5%	5,6 Bis-Cl 3% 5-Br, 6-Cl 40%
9	Cu(TC) TC=thiophene-2-carboxylate	5v	55%	1%	25%	5,6 Bis-Cl 3% Dimer 4% + 2 unknown
10	$Cu(II)Br_2(1,10\text{-phen})$	5v	96%	38%	25%	Dimer major

0.5g (5) in DMAc at 120 °C, KF 1.2 equiv, ClCF₂CCOOMe 3 equiv, HPLC A% (220 nm).

Table B: Stoichiometric Trifluoromethylation With CuI: Reagent / Condition Screening

	solvent (vol)	F ₂ ClCCO ₂ Me Add. Time	CuI	KF	conv.	sm (5) (A%)	pdt. (1) (A%)	des-I (A%)	assay
1	DMAc 10v	1.5h	1.5	1.5	97%	1%	82.5%	5.4%	68%
2	DMAc 10v	3h	1.5	1.5	86%	14%	76.5%	6.5%	61%
3	NMP 10v	1.5h	1.5	1.5	98%	2.4%	69%	4.5%	57%
4	DMAc 5v	1.5h	2	1.2	97.7%	3.0%	83.3%	5.1%	68.1%
5	DMAc 5v	1.5h	1.5	1.2	98.6%	3.6%	82.8%	7.1%	70.5%
6	DMAc 5v	1.5h	1.2	1.2	97%	4.5%	80.7%	3.0%	62.3%
7	DMAc 5v	1.5h	1.0	1.2	98%	8.4%	72.5%	10.3%	54%
8	DMAc 3v	1.5h	1.5	1.2	98.7%	4.3%	81.5%	8.6%	66.6%

0.5g (5) at 120 °C, CIF₂CCOOMe 3 equiv, HPLC A% (220 nm), assay is wt% based on an HPLC standard. *Added 10% 1,10-phenanthroline

TRFLUOROMETHYLATION USING CATALYTIC COPPER: SELECTED SCREENING DATA

More than 20 copper (I) and copper (II) sources and a variety of CF_3 (: CF_2) sources were screened, below is some additional data as a supplement to the information provided in the manuscript.

Table C: Trifluoromethylation Catalytic in Copper: Reagent Screen

entry	copper reagent	ligand	CF ₃ reagent	conv.	sm (5) (A%)	pdt.(1) (A%)	des-I (A%)	assay
1	Cu(TC)	1,10- phenanthroline (1,10-phen)	ClF ₂ CCOOMe	100%	0%	71%	6%	63%
2	Cu(TC)	2,2'-Bipyridine	ClF ₂ CCOOMe	92%	8%	72%	4%	58%
3	Cu(TC)	2-(2- thienyl)pyridine	CIF ₂ CCOOMe	42%	58%	24%	5%	
4	Cu(TC)	1,10-phen	CF ₃ COONEt ₄	25%	75%	0%	6%	
5	Cu(TC)	1,10-phen	CF₃COOEt	22%	78%	0%	6%	
6	Cu(TC)	1,10-phen	CF ₃ TMS	91%	9%	4%	54%	
7	Cu(TC)	1,10-phen	FSO ₂ CF ₂ CO ₂ Me	100%	0%	81%	2%	

8	CuI	2-(2- thienyl)pyridine	CIF ₂ CCOOMe	47%	53%	42%	1%	
9	CuI	1,10-phen	ClF ₂ CCOOMe	91%	9%	68%	6%	67%
10	CuI	2,2'-Bipyridine	ClF ₂ CCOOMe	84%	16%	70%	2%	64%
11	CuI	1,10-phen	CF ₃ COONEt ₄	33%	67%	0%	4%	
12	CuI	1,10-phen	CF₃COOEt	2%	98%	1%	1%	
13	CuI	1,10-phen	CF ₃ TMS	92%	8%	2%	66%	
14	CuI	1,10-phen	TFAA	20%	80%	0%	2%	
15	CuI	1,10-phen	FSO ₂ CF ₂ CO ₂ Me	100%	0%	80%	1%	55%
16	Cu(II)Br ₂ (1,10- phen)	2-(2- thienyl)pyridine	ClF ₂ CCOOMe	43%	57%	33%	5%	
17	Cu(II)Br ₂ (1,10- phen)	1,10-phen	ClF ₂ CCOOMe	55%	45%	34%	12%	
18	Cu(II)Br ₂ (1,10- phen)	2,2'-Bipyridine	ClF ₂ CCOOMe	94%	6%	70%	7%	69%
19	Cu(II)Br ₂ (1,10- phen)	1,10-phen	CF ₃ COONEt ₄	42%	58%	0%	4%	
20	Cu(II)Br ₂ (1,10- phen)	1,10-phen	CF₃COOEt	5%	95%	3%	0%	
21	Cu(II)Br ₂ (1,10- phen)	1,10-phen	CF₃TMS	53%	47%	16%	2%	
22	Cu(I)(ACN) ₄ (PF ₆)	2-(2- thienyl)pyridine	ClF ₂ CCOOMe	40%	60%	36%	1%	
23	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	ClF ₂ CCOOMe	95%	5%	75%	5%	73%
23	Cu(I)(ACN) ₄ (PF ₆)	2,2'-Bipyridine	ClF ₂ CCOOMe	72%	28%	40%	14%	
25	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	CF ₃ COONEt ₄	22%	78%	0%	2%	
26	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	CF ₃ COOEt	9%	91%	0%	2%	
27	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	CF ₃ TMS	62%	38%	22%	17%	
28	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	FSO ₂ CF ₂ CO ₂ Me	99%	1%	76%	1%	72%
29	Cu(II)(NO ₃) ₂ (1,10- phen)	2-(2- thienyl)pyridine	ClF ₂ CCOOMe	76%	24%	46%	16%	
30	Cu(II)(NO ₃) ₂ (1,10- phen)	1,10-phen	ClF ₂ CCOOMe	65%	35%	41%	8%	
31	Cu(II)(NO ₃) ₂ (1,10- phen)	1,10-phen	ClF ₂ CCOOMe	65%	35%	41%	8%	
32	Cu(II)(NO ₃) ₂ (1,10- phen)	1,10-phen	CF₃COONEt₄	5%	95%	5%	0%	
33	Cu(II)(NO ₃) ₂ (1,10- phen)	1,10-phen	CF₃COOEt	5%	95%	2%	0%	
34	Cu(II)(NO ₃) ₂ (1,10-	1,10-phen	CF ₃ TMS	42%	58%	18%	8%	

	phen)							
35	Cu(II)(acac) ₂	2-(2- thienyl)pyridine	ClF ₂ CCOOMe	33%	67%	30%	1%	
36	Cu(II)(acac) ₂	1,10-phen	ClF ₂ CCOOMe	100%	1%	86%	5%	76%
37	Cu(II)(acac) ₂	2,2'-Bipyridine	ClF ₂ CCOOMe	94%	6%	83%	2%	74%
38	Cu(II)(acac) ₂	1,10-phen	CF ₃ COONEt ₄	37%	63%	0%	29%	
39	Cu(II)(acac) ₂	1,10-phen	CF ₃ COOEt	16%	84%	0%	10%	
40	Cu(II)(acac) ₂	1,10-phen	CF ₃ TMS	93%	7%	0%	75%	
41	Cu(II)(acac) ₂	1,10-phen	FSO ₂ CF ₂ CO ₂ Me	62%	38%	45%	1%	
42	Cu(II)(OAc) ₂	2-(2- thienyl)pyridine	ClF ₂ CCOOMe	22%	78%	17%	1%	
43	Cu(II)(OAc) ₂	1,10-phen	ClF ₂ CCOOMe	99%	1%	84%	2%	71%
44	Pd(acac) ₂	1,10-phen	ClF ₂ CCOOMe	31%	69%	22%	3%	
45	Pd(acac) ₂	1,10-phen	TFAA	35%	65%	0%	0%	
46	Pd(acac) ₂	2-(2- thienyl)pyridine	TFAA	33%	67%	0%	0%	

Trifluoromethylation: 50 mg at 80-90 $^{\circ}$ C, CF₂ClCOOMe 3 equiv, KF 2 equiv. HPLC A% (220 nm).

A wide variety of ligands were tested. A subset of these results is shown below. The variety of copper sources should not skew the results as CuI, Cu(TC), and Cu(I)(CH $_3$ CN) $_4$ PF $_6$ all show good results (entries 1-3) at this scale using the 1,10-phenanthroline ligand.

Table D: Trifluoromethylation Catalytic in Copper: Ligand Survey

entry	scale	catalyst	ligand		equiv	sm (A%)	pdt (A%)	des-I (A%)
1	50 mg	Cu(TC)	1,10-phen	KF	2	18%	71%	11%
2	50 mg	CuI	1,10-phen	KF	2	34%	58%	8%
3	50 mg	Cu(I)(ACN) ₄ (PF ₆)	1,10-phen	KF	2	5%	75%	5%
4	50 mg	CuI	L1	KF	2	69%	29%	2%
5	50 mg	CuI	L2	KF	2	51%	42%	8%
6	50 mg	cat1	-	KF	2	21%	69%	10%
7	50 mg	cat2	-	KF	2	50%	39%	11%
8	50 mg	Cu(TC)	L3	KF	2	54%	38%	8%
9	0.2g	Cu(TC)	L4	KF	2	94%	5%	1%
10	0.2g	Cu(TC)	L5	KF	2	97%	2%	1%
11	0.2g	Cu(TC)	L6	KF	2	97%	1%	1%
12	50 mg	Cu(TC)	L7	CsF	2	80%	1%	2%
13	0.2g	Cu(TC)	L8	KF	2	97%	1%	2%
14	0.2g	Cu(TC)	L8 (1 eq.)	KF	2	93%	4%	2%
15	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	TBTA	KF	2	79%	18%	2%
16	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	BINAP	KF	2	97%	2%	1%
17	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	L9	KF	2	99%	0	1%

18	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	L10	KF	2	99%	1%	0%
19	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	2,2'-Bipyridine	KF	2	99%	0	1%
20	0.2g	Cu(I)(CH ₃ CN) ₄ PF ₆	Proline	KF	2	99%	0	1%

10 v DMAc at 80 °C, 3h, 10 mol% Cu, 10 mol% ligand (if applicable), KF 2 equiv., CIF₂CCO₂Me 3-4 equiv. (HPLC A% 220 nm)