Supporting Information

Design, Synthesis, and Evaluation of Multitarget-Directed Resveratrol Derivatives for the Treatment of Alzheimer's Disease

Chuanjun Lu, Yueyan Guo, Jun Yan, Zonghua Luo, Hai-Bin Luo, Ming Yan, Ling Huang*, Xingshu Li*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China

Table of Contents

- SI1. Docking study of compounds to MAO-B (S2)
- SI2. Docking study of compounds to AChE (S3)
- SI3. In Vitro Blood-Brain Barrier Permeation Assay (S4-S5)
- SI4. Metal-chelating properties of CQ (S6)
- SI5. Association constant study (S6-S7)
- SI6. HPLC chromatograms of target compounds (S8-S17)

SI1: Docking study of compounds to MAO-B

Figure S1. Predicted positions of **5d** (purple red) and **10d** (yellow) into hMAO-B catalytic sites. Compounds and the FAD cofactor were depicted using stick and space fill representation, respectively.

Figure S2. Representation of compounds **5d** (purple red) and **10d** (yellow) docked into the binding site of MAO-B highlighting the protein residues that form the main interactions with the inhibitors. FAD cofactor were depicted using space fill representation. Hydrogen-bonding interaction between ligands and residues are shown with the green line.

SI2: Docking study of compounds to AChE

Figure S3. Predicted positions of **5d** (purple red) and **10d** (yellow) into *Tc*AChE catalytic sites. Compounds and protein were depicted using stick and solid ribbon, respectively.

Figure S4. Representation of compounds **5d** (purple red) and **10d** (yellow) docked into the binding site of *Tc*AChE highlighting the protein residues that form the main interactions with the inhibitors.

SI3. In Vitro Blood-Brain Barrier Permeation Assay

Table S1. Permeability ($P_e \times 10^{-6} \text{ cm s}^{-1}$) in the PAMPA-BBB Assay for 13 commercial drugs used in the Experiment Validation.

Commercial drugs	Bibl ^a	PBS:EtOH(70:30) b
testosterone	17	22.3 ± 1.4
verapamil	16	21.2 ± 1.9
desipramine	12	16.4 ± 1.2
progesterone	9.3	17.7 ± 1.2
promazine	8.8	14.3 ± 0.5
chlorpromazine	6.5	6.0 ± 0.3
clonidine	5.3	5.1 ± 0.3
piroxicam	2.5	0.24 ± 0.01
hydrocortisone	1.9	0.65 ± 0.01
lomefloxacin	1.1	0.37 ± 0.02
atnolol	0.8	0.78 ± 0.02
ofloxacin	0.8	0.37 ± 0.02
theophylline	0.1	0.26 ± 0.01

^a Taken from ref. ¹

 $^{^{}b}$ Data are the mean \pm SD of three independent experiments

Figure S5. Lineal correlation between experimental and reported permeability of commercial drugs using the PAMPA-BBB assay. P_e (exp.)=1.4574Pe (bibl.) -1.0773 (R^2 =0.9427)

Table S2.Ranges of Permeability of PAMPA-BBB Assays (P_e , 10^{-6} cm s⁻¹)

Compounds of high BBB permeation (CNS+)	$P_{\rm e} > 4.7$
Compounds of uncertain BBB permeation (CNS+/-)	$4.7 > P_e > 1.8$
Compounds of low BBB permeation (CNS-)	$P_{\rm e} < 1.8$

SI4. Metal-chelating properties of CQ

(A) UV spectrum of compound CQ (20 μ M) alone and in the presence of $CuSO_4$ (40 μ M), $FeSO_4$ (40 μ M), $FeCl_3$ (40 μ M) or $ZnCl_2$ (40 μ M) in 20% (v/v) ethanol/buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). (B) Determination of the stoichiometry of complex CQ-Cu(II) by Job's method.

The conditional stability constant for $Cu(CQ)_2$ is $1.2 \times 10^{10} \, M^{-2}$ as literature report.²

SI5. Association constant study

The studies were conducted in 20% (v/v) ethanol/buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). Solutions were obtained with the condition that the concentrations of **5d** or **10d** was constant in all samples (20μM), but the proportions of copper ion varied between 0 and 300%. The spectrum was recorded after 30 min incubation at room temperature. The association constant were calculated using nonlinear least-square analysis.

Fig S7. Spectra of **5d** (20 μ M) upon addition of Cu²⁺ (0–40 μ M) in 20% (v/v) ethanol/buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). Inset: Absorption at 341 nm of **5d** (20 μ M) as a function of Cu²⁺.

Fig S8. Spectra of **10d** (20 μ M) upon addition of Cu²⁺ (0–60 μ M) in 20% (v/v) ethanol/buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). Inset: Absorption at 327 nm of **10d** (20 μ M) as a function of Cu²⁺.

SI6. HPLC chromatograms of target compounds

HPLC chromatograms of 5a

	#	[min]		[min]	[mAU*s]	[mAU]	%
-							
	1	3.627	BB	0.0953	20.70368	3.38793	0.7950
	2	4.597	MM	0.1246	5.91027	7.90761e-1	0.2270
	3	5.788	BV	0.1987	2.77632	1.79236e-1	0.1066
	4	6.290	VB	0.3124	6.47548	3.04170e-1	0.2487
	5	7.204	BV	0.2644	2.80996	1.33051e-1	0.1079
	6	8.064	VB	0.2172	2507.47461	179.27007	96.2884
	7	9.867	VB	0.3726	16.74744	5.80486e-1	0.6431
	8	11.016	BV	0.5759	25.70781	5.72534e-1	0.9872
	9	12.333	MM	0.3397	15.52500	7.61658e-1	0.5962

HPLC chromatograms of **5b**

#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.611	BV	0.0678	6.76398	1.58502	0.3414
2	3.428	MM	0.1497	6.77063	7.53708e-1	0.3417
3	7.522	BV	0.2191	2.25709	1.39235e-1	0.1139
4	8.227	$\nabla\nabla$	0.2325	1917.02808	126.68177	96.7503
5	9.072	VB	0.3430	11.36791	4.58866e-1	0.5737
6	9.985	BB	0.2691	37.23132	2.11807	1.8790

HPLC chromatograms of 5c

#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	1.609	MM	0.0460	2.38470	8.64449e-1	0.1847
2	3.073	VB	0.1400	11.44960	1.15131	0.8867
3	3.595	BB	0.1419	4.06998	4.09689e-1	0.3152
4	4.529	BB	0.1782	1.73461	1.44376e-1	0.1343
5	6.777	BB	0.3431	1257.42859	60.85807	97.3793
6	8.333	BB	0.3229	6.89660	3.08374e-1	0.5341
7	10.376	BB	0.3135	7.30514	3.16280e-1	0.5657

HPLC chromatograms of 5d

HPLC chromatograms of 5e

	254nm			
#	min	mAU*s	mAU	%
1	3. 170	37342	1647	1. 508
2	5. 769	7879	1111	0.318
3	9. 430	2426467	227770	97. 994
4	10.386	4444	525	0. 179

HPLC chromatograms of 5f

HPLC chromatograms of 6a

HPLC chromatograms of 6b

	254nm			
#	min	mAU*s	mAU	%
1	4.609	36797	5047	0. 575
2	5. 738	43458	5649	0.679
3	6. 140	2999	345	0.047
4	6. 332	1764	174	0.028
5	13. 418	5034	288	0.079
6	14. 477	6276927	377757	98. 102
7	15. 739	31370	1736	0.490

HPLC chromatograms of 7a

#	min	mAU*s	mAU	%
1	2. 590	13736	503	0. 167
2	3. 049	5074	672	0.062
3	5. 612	2913	396	0. 036
4	5.874	12008	1414	0. 146
5	8. 408	8116773	737819	98. 936
6	9. 122	45848	2957	0. 559
7	9. 792	3475	230	0.042
8	11.418	4274	313	0.052

HPLC chromatograms of 7b

HPLC chromatograms of 9a

HPLC chromatograms of 9b

 $254 \mathrm{nm}$

#	min	mAU*s	mAU	%
1	2.894	6452	627	1. 421
2	3. 660	934	121	0. 206
3	4.812	2151	272	0. 474
4	6. 678	435998	43607	96. 038
5	7. 163	8449	792	1.861

HPLC chromatograms of 9c

HPLC chromatograms of 10a

HPLC chromatograms of 10b

HPLC chromatograms of 10c

HPLC chromatograms of 10d

	254nm			
#	min	mAU*s	mAU	%
1	2.910	3570	408	0.492
2	3. 170	712221	110466	98. 170
3	3. 505	9705	1138	1. 338

HPLC chromatograms of 10e

	254nm			
#	min	mAU*s	mAU	%
1	1. 999	9790	581	0.350
2	3. 427	5412	897	0. 193
3	4. 889	23939	1311	0.855
4	5. 093	19629	1804	0.701
5	5. 570	2691423	312071	96.098
6	6. 737	7530	899	0. 269
7	7. 304	42983	4698	1. 535

HPLC chromatograms of 12

	254nm			
#	min	mAU*s	mAU	%
1	7. 858	2427528	248949	95. 446
2	8. 612	38910	4111	1. 530
3	9. 283	69517	5816	2. 733
4	14. 980	7406	595	0. 291

HPLC chromatograms of 14

	254nm			
#	min	mAU*s	mAU	%
1	2. 835	194165	24390	98. 645
2	3. 721	1651	131	0.839
3	8. 173	1015	83	0. 516

REFERENCES

1. Di, L.; Kerns, E. H.; Fan, K.; McConnell, O. J.; Carter, G. T. High throughput artificial membrane permeability assay for blood–brain barrier. *Eur. J. Med. Chem.* **2003**, *38*, 223-232.

2. Ferrada, E.; Arancibia, V.; Loeb, B.; Norambuena, E.; Olea-Azar, C.; Pablo Huidobro-Toro, J. Stoichiometry and conditional stability constants of Cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy. NeuroToxicology **2007**, *28*, 445–449.