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Scheme, Tables and Figures:

Table S1: Possible (thio)carbonate units in the resultant copolymer and cyclic (thio)carbonates from crossed
copolymerization of the coexistent species of PO, COS, CO,, and PS (propylene sulfide).

Possible Reactions Thiocarbonate units Cyclic thiocarbonates
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(1) O/S exchange reaction: O S , PS had not been captured by GC-MS



spectrum. We thought it was very active and converted to the products promptly after its generation. The capture of

CO; could prove the production of PS.

(2) O marked with red color in this table represents the oxygen atom from the monomer COS for 2 and 2°. O from
COS might also be at the site of C=0 group.

(3) 1’ and 4’ were produced by different backbiting routes, which were described in the text. And both could be

differentiated by GC-MS and 'H NMR spectrum.

Table S2: Rac-PO/COS copolymerization results.

. TOF®  copolymer PPMTC Tail-to-Head ~ O/S ER M.E PDI®
entry” catalyst  cocatalyst 1 4 ) q ) . .
(h™)  selectivity’ linkages® (%) linkages® (%)  product (kg/mol)  (My/M,)

1 a DMAP 8 60/40 77 N.D N.D <1.0 1.88
2 a DTMeAB 112 91/9 97 96.2 F 5.9 1.32
3 a [PPN]CI 184 90/10 98 98.8 N.F 16.9 1.42
4 a [PPN]CI 321 96/4 >99 97.5 N.F 12.1 1.15
5 a [PPNIClI 164 96/4 >99 98.5 N.F 10.3 1.08
6~ a [PPN]CI 328 95/5 >99 972 F 11.3 1.17
b DMAP 172 96/4 >99 97.8 N.F 9.7 1.12

b DTMeAB 216 97/3 >99 98.3 F 134 1.10

b P(Ph), N.D N.D N.D N.D N.D N.D N.D

10 b BTPhPB N.D N.D N.D N.D N.D N.D N.D
11 b N(Ph); N.D N.D N.D N.D N.D N.D N.D
12 b N-Melm N.D N.D N.D N.D N.D N.D N.D
13 c DMAP 86 90/10 >99 97.1 N.F 8.0 1.22
14 c DTMeAB 148 92/8 >99 97.4 F 9.0 1.16

* The reaction was performed in neat PO (2.0 ml, 28.6 mmol; catalyst/cocatalyst = 1/1, catalyst/PO = 1/1000,
COS/PO = 2/1, all in molar ratio) in a 10 ml autoclave at 25 °C for 3 h. b P(Ph); = triphenylphosphine, BTPhPB =
Benzyltriphenylphosphonium bromide, N(Ph); = triphenylamine, N-Melm = Methylimidazole. © (Mol epoxide
consumed)/(mol Cr h). 4 Determined by using 'H NMR spectroscopy. The product selectivity is represented by the
molar ratio of polymer (1)/cyclic product. PPMTC linkage is the molar percentage of monothiocarbonate linkage in
polymer chain. © Determined by using "C NMR spectroscopy. " Determined by using °C NMR spectroscopy. N.F
= not found and F = found. & Determined by gel permeation chromatography in THF, calibrated with polystyrene
standards. " The molar ratio of COS/PO = 1. | The molar ratio of COS/PO = 3.’ CH,Cl, as a solvent. kCH2C12 asa

solvent, and the reaction temperature was 60°C.

TOF (turnover frequency), which indicates the molar amounts of epoxide consumed per mole chromium center per
hour, was used in the present work to represent the activity of the catalyst system. Besides [PPN]CI, other

quaternary ammonium salts and phosphonium salts were tested in conjunction with b for catalyzing the



copolymerization (Table S2, entries 7 ~ 12), only DMAP and DTMeAB were effective for the copolymerization.
DMAP and DTMeAB were also effective when a or ¢ was used as the catalyst for the copolymerization. The
(Salen)CrCl complex combined with [PPN]CI was the best binary catalyst system for the copolymerization of PO

and COS.

Scheme S1. Three reported methods for synthesizing various poly(thiocarbonate)s. A: Polycondensation. B:

Ring-opening polymerization (ROP). C: Alternating copolymerization. '
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Figure S1. (a) '"H NMR spectrum of the purified copolymer of entry 1 in Table 1. (b) "H NMR spectrum of the

crude product of entry 3 in Table S2. (¢) "C NMR spectrum of the crude product of entry 1 in Table 1. (d) '"H NMR

spectrum of the purified copolymer of entry 4 in Table S2.

In most of the NMR spectra of all entries, 1” was the only cyclic product detected; the amount of 4> and other cyclic
product was negligible. The product selectivity was determined by the weight ratio of copolymer 1/cyclic
propylene thiocarbonate (1’ + 4°), which was determined by the calculation of the integration of peak area in 'H

NMR spectrum (i.e. b in Figure S1) of the crude product. The selectivity of 1/1” = 118A,/118(Aq + Ay).
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Figure S2. (a) "H NMR spectrum of the crude product of entry 4 in Table 1. (b) °C NMR spectrum of the crude

product of entry 4 in Table 1.
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Figure S3. (a) 'H NMR spectrum of the purified copolymer of entry 5 in Table 1. (b) >C NMR spectrum of the

crude product of entry 5 in Table 1.
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Figure S4. (a) 'H NMR spectrum of the purified copolymer of entry 6 in Table 1. (b) >C NMR spectrum of the

crude product of entry 6 in Table 1.
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Figure S5. (a) '"H NMR spectrum of the purified copolymer of entry 7 in Table 1. (b) ">C NMR spectrum of the

crude product of entry 7 in Table 1.



The Influencing Factors of TOF and product selectivity (1/1°).

[PPN]CI made a better performance in TOF and product selectivity than DMAP and DTMeAB. An increase in
reaction temperature or a decrease in COS/PO molar ratio made a significant reduction in TOF and product
selectivity (Table 1, entry 6; Table S2, entry 3).

Variation of diamine backbone in (Salen)CrCl complex had a neglected effect on TOF and product selectivity. The
copolymerization via the catalysis of binary (Salen)CrCl (a, b, ¢)/[PPN]CI systems at 25°C for 3.0 h resulted in
nearly complete conversion of PO (yield of 1 + 1” = 100%), affording copolymer 1 with perfect selectivity (1/1° >

99), high M, and narrow PDI (Table 1, entry 1, 4, 5).

The Influencing Factors of Alternating Degree.

The binary catalyst system exhibited superior selectivity for COS/PO copolymerization; all entries had alternating
monothiocarbonate linkages. The alternating degrees decreased when the catalyst system exhibited very low
activity (Table S2, entry 1, 2). For example, the alternating degree of entry 1 in Table S2 was 77% because M, of
the resultant copolymer was very low (< 1kDa) and the signal of the end groups in "H NMR spectrum distorted the
calculation of the alternating degree. Low MW copolymer was also fully alternating, which was confirmed by the
ESI-MS results (see Figure S16). In addition, a decrease of COS/PO molar ratio made a slight reduction in
monothiocarbonate linkages (Table S2, entry 3).

The a(b, ¢)/DTMeAB system caused relative low activity and copolymer selectivity (Table S2, entries 2, 8 and 14).
The “C NMR spectra of entries 8 and 14 in Table S2 (A, B in Figure $6) showed clearly resonances of the
dithiocarbonate linkage (188.04 ppm), carbonate linkage (153.48 ppm). That is, O/S ER occurred when DTMeAB
was used as the cocatalyst. We considered that O/S ER in a(b, ¢)/DTMeAB catalyst system might be caused by the

contained water in the commercial DTMeAB. Note that DTMeAB was easier to absorb water than [PPN]CL.

10
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GC-MS analysis for the cyclic products of COS-PO copolymerization.
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Figure S7. GC-MS spectrum of the cyclic products of entry 6 in Table 1.

Table S3. Four cyclic five-membered compounds with m/z values (Figure S7, entry 6 in Table 1).

R.Time m/z Area% Cyclic product
3.903 118, 74, 59, 45, 41 2.31 4-methyl-[1,3Joxathiolan-2-one
4.452 102, 87, 57,43 0.90 4-methyl-[1,3]dioxolan-2-one
5.075 118, 74, 59, 46, 41 92.12 5-methyl-[1,3]oxathiolan-2-one
5.659 134,106, 74, 59, 45, 41 1.84 4-methyl-[1,3]dithiolan-2-one

14



The effect of reaction time on the copolymerization of COS/PO.
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Figure S8. Plots of M, () and PDI (@) vs reaction time, other reaction conditions were same as entry 5 in Table

I.

PDIs in the late polymerization stage became wide because high monomers’ conversion and high viscosity of the

reaction system.
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Figure S9. (a) '"H NMR spectrum of the crude product (entry 1 in Table 2). (b) >C NMR spectrum of the crude

product (entry 1 in Table 2).
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Figure $10. (a) '"H NMR spectrum of the crude product (entry 2 in Table 2). (b) >C NMR spectrum of the crude

product (entry 2 in Table 2).
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Figure S13. (a) '"H NMR spectrum of the crude product (entry 5 in Table 2). (b) >C NMR spectrum of the crude

product (entry 5 in Table 2).
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FT-IR and Raman spectra.
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Figure S14. FT-IR spectra of (a) the crude product of entry 5 in Table 1 and (b) the purified polymer of entry 5 in

Table 2.
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Figure S15. Raman spectrum of the purified polymer of entry 5 in Table 2.
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ESI-MS analysis for the products of COS-PO copolymerization
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Figure S16. (a) ESI-MS analysis for the products of COS-PO copolymerization (entry 5, Table 2).
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(b) ESI-MS spectrum (880 ~1010 m/z) of the products of COS-PO copolymerization (entry 5, Table 2).

The ESI-MS spectrum (880 ~ 1010 m/z) showed above was ascribed to four species (insert scheme). A species with
one more PO unit (A) was captured with rather small relative abundance. Such small amounts of consecutive ether
unit could not found by "H NMR spectrum (Note that this is a copolymer with rather small MW), so we can say

that the alternating degree of COS-PO copolymers (esp. that with high MWs) were > 99%.
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Scheme S2. H,0 acted as a chain transfer agent in the reaction.
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H,O acted as a chain transfer agent in this reaction, it could terminate the copolymerization and gave a copolymer
with one -OH chain end and the other -Cl chain end. Meanwhile, the Cr-OH became a new initiating center. The
Cr-OH center could initiate PO/COS copolymerization and lead to a copolymer with both two -OH chain ends. The
Cr-OH could also react with a COS so that a O/S ER occurred, which offered a new initiating center : Cr-SH.
Similar with Cr-OH, the Cr-SH could initiate PO/COS copolymerization and lead to a copolymer with one -OH
chain end and the other -SH. These two copolymers were both detected in ESI-MS spectrum. When the system was
well water-removed, the Cr-Cl would be the only initiating center, as reported elsewhere, and the copolymers with
-Cl chain end were in majority. However, when a large amounts of H,O were added (entry 5, Table 2), the
copolymer with one —Cl end group was not observed by ESI-MS spectrum because the chain transfer reaction of
propagating species to water was very fast. The Cr-OH became the major initiating center and the copolymer with

two -OH chain ends was in large abundance (Figure S16).
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Scheme S3. Plausible reaction mechanism of the copolymerization of PO-COS.
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The Thermal Performance of the Copolymer
The copolymer 1 of entry 1 in Table 1 (PPMTC linkages = 100%, M, = 24 400 Da) was chosen for DSC and TGA

measurements. The 7, of the copolymer 1 was 19.5 °C and the 7} of the copolymer 1 was137.3 °C.

EXO

Temperature (°C)

Figure S17. The DSC curve of the copolymer (entry 1, Table 1).
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Figure S18. The TGA curve of the copolymer (entry 1, Table 1).
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