Supporting Information

A Transition-metal-free Synthesis of Arylcarboxyamides from Aryl Diazonium Salts and Isocyanides

Zhonghua Xia, Qiang Zhu*

Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China zhu_qiang@gibh.ac.cn

Table of Contents

1. General Information	S2
2. General Procedures	S2
1. Preparation of Aryl Diazonium Tetrafluoroborates	S2
2. Synthesis of Arylcarboxyamides	S2
3. Radical Capturing Experiments with TEMPO	S3
4. Analytical Data for 3a-3t and 4	S4
5. References	S10
6. ¹ H and ¹³ C Spectra for 3a-3t and 4	S10

1. General Information

All reactions involving air sensitive reagents or intermediates were carried out in pre-heated glassware under an argon atmosphere using standard *Schlenk* techniques. All isocyanides were purchased from Sigma Aldrich. All other reagents were purchased without further purification unless otherwise noted. Acetone was purified according to the literature. Ferrocene was purchased in 98.8% purity from Sigma Aldrich. Water was distilled before use. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF254). Visualization of the developed plates was performed under UV light (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). H and H and T NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard or the DMSO-d₆ residual peak (δ 2.50) for H NMR. Chemical shifts of T NMR are reported relative to CDCl₃ (δ 77.0) or DMSO-d₆ (δ 39.5). The following abbreviations were used to describe peak splitting patterns when appropriate: br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants, *J*, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS Spectrometer.

2. General Procedures

1. Preparation of Aryl Diazonium Tetrafluoroborates

The appropriate aniline (10 mmole) was dissolved in a mixture of 4 mL of distilled water and 3.4 mL of 50% hydrofluoroboric acid. After cooling the reaction mixture to 0°C using ice bath, sodium nitrite (0.69 g in 1.5 mL of distilled water) was added dropwise in 5 min. The resulting mixture was stirred for 30 min and the precipitate was collected by filtration and re-dissolved in minimum amount of acetone. Diethyl ether was added until precipitation of diazonium tetrafluoroborate, which is filtered, washed several times with diethyl ether and dried under vacuum. ²

2. Synthesis of Arylcarboxyamides

General Procedure A

A *Schlenk*-tube containing diazoniumtetrafluoroborate (0.2 mmol, 1.0 equiv) was degassed by three evacuation/Ar backfill cycles, then it was cooled to 0 $^{\circ}$ C (water/ice bath), 0.5 mL of acetone, isocyanide (equiv as noted in the text) in 0.5 mL of acetone, Cs_2CO_3 (71.7 mg, 1.1 equiv) in 0.4 mL of H_2O were added successively and slowly by syringe. The mixture was stirred at 0 $^{\circ}$ C for 20 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate (3×10 mL), and the organic layers were combined, dried over anhydrous

Na₂SO₄, concentrated under reduced pressure. The residue was separated by column chromatography (petroleum ether/EtOAc 10:2) to give the pure product.

General Procedure B

A *Schlenk*-tube containing diazoniumtetrafluoroborate (0.6 mmol, 3.0 equiv) was degassed by three evacuation/Ar backfill cycles, then it was cooled to 0 $^{\circ}$ C (water/ice bath), 0.5 mL of acetone, isocyanide (0.2 mmol, 1.0 equiv) in 0.5 mL of acetone, Cs_2CO_3 (71.7 mg, 1.1 equiv) in 0.4 mL of H_2O were added successively and slowly by syringe. The mixture was stirred at 0 $^{\circ}$ C for 20 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate (3×10 mL), and the organic layers were combined, dried over anhydrous Na_2SO_4 , concentrated under reduced pressure. The residue was separated by column chromatography (petroleum ether/EtOAc 10:2) to give the pure product.

3. Radical Capturing Experiments with TEMPO

A: without 2a³

$$O_2N$$
 + TEMPO $\frac{Cs_2CO_3 (1.1 \text{ equiv})}{\text{acetone/H}_2O, Ar, 0 °C}$ O_2N 4

A *Schlenk*-tube containing 4-nitrobenzenediazonium tetrafluoroborate (0.2 mmol, 47.4 mg) was degassed by three evacuation/Ar backfill cycles, then it was cooled to 0 $^{\circ}$ C (water/ice bath), 0.5 mL of acetone, TEMPO (0.24 mmol, 37.5 mg) in 0.5 mL of acetone, Cs₂CO₃ (0.22 mmol, 71.7 mg) in 0.4 mL of H₂O were added successively and slowly by syringe. The mixture was stirred at 0 $^{\circ}$ C for 20 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate (3×10 mL), and the organic layers were combined, dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was separated by column chromatography (petroleum ether/EtOAc 10:1) to give the pure product.

B: with 3 equiv of 2a

$$O_2N$$
+ TEMPO + t -BuNC
$$\frac{Cs_2CO_3 (1.1 \text{ equiv})}{\text{acetone/H}_2O, Ar, 0 °C}$$
1 equiv
1.2 equiv
3 equiv
27%
$$27\%$$

A *Schlenk*-tube containing 4-nitrobenzenediazonium tetrafluoroborate (0.2 mmol, 47.4 mg) was degassed by three evacuation/Ar backfill cycles, then it was cooled to 0 $^{\circ}$ C (water/ice bath), 0.4 mL of acetone, *tert*-butyl-isocyanide (0.6 mmol, 68 μ L) in 0.3 mL of acetone, TEMPO (0.24 mmol, 37.5 mg) in 0.4 mL of acetone, Cs₂CO₃(0.22 mmol, 71.7 mg) in 0.4 mL of H₂O were added successively by syringe. The mixture was stirred at 0 $^{\circ}$ C for 20 minutes.

After addition of water, the reaction mixture was extracted with ethyl acetate (3×10 mL), and the organic layers were combined, dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was separated by column chromatography (petroleum ether/EtOAc 240:1) to give the pure product.

$$O_2N$$
 O_2N

The adduct 5 between the imidoyl radical intermediate **B** and TEMPO was not isolated.

4. Analytical Data for 3a-3t and 4

N-(tert-butyl)-4-nitrobenzamide (3a)

Following the general procedure A, **2a** (3.0 equiv). 35.5 mg (80%) of **3a** (yellow solid) were isolated. mp 159-161 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 6.03 (br s, 1H), 1.48 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 149.3, 141.5, 127.9, 123.6, 52.2, 28.7; IR (KBr): 3311, 3072, 2972, 2929, 1642, 1599, 1546, 1460, 1396, 1348, 1311, 1225, 866, 721 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₅N₂O₃ [M+H]⁺ 223.1077, found 223.1079.

N-(tert-butyl)-4-cyanobenzamide (3b)

Following the general procedure A, **2a** (3.0 equiv). 29.1 mg (72%) of **3b** (yellow solid) were isolated. mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 5.94 (br s, 1H), 1.48 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 139.9, 132.3, 127.5, 118.1, 114.6, 52.2, 28.7; IR (KBr): 3363, 3065, 2977, 2930, 2237, 1650, 1544, 1500, 1455, 1394, 1361, 1310, 1283, 1224, 864, 761 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{12}H_{15}N_2O$ [M+H]⁺ 203.1179, found 203.1177.

N-(*tert*-butyl)-4-chlorobenzamide (3c)

Following the general procedure A, **2a** (3.0 equiv). 28.7 mg (68%) of **3c** (yellow solid) were isolated. mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 5.88 (br s, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 137.0, 134.2, 128.4, 128.1, 51.7, 28.7; IR (KBr): 3324, 3063, 2972, 2927, 1638, 1596, 1538, 1483, 1451, 1393, 1361, 1315, 1220, 1013, 960, 846, 761 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{11}H_{15}CINO[M+H]^+$ 212.0837, found 212.0836.

N-(*tert*-butyl)-4-bromobenzamide (3d)

Following the general procedure A, **2a** (3.0 equiv). 33.2 mg (65%) of **3d** (yellow solid) were isolated. mp 135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 5.89 (br s, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 134.7, 131.5, 128.3, 125.5, 51.7, 28.7; IR (KBr): 3611, 3525, 3445, 3351, 2981, 2962, 1636, 1588, 1539, 1484, 1454, 1399, 1362, 1314, 1222, 1010, 845, 756 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{11}H_{15}BrNO [M+H]^+ 256.0332$, found 256.0331.

N-(*tert*-butyl)-4-acetylbenzamide (3e)

Following the general procedure A, **2a** (3.0 equiv). 26.3 mg (60%) of **3e** (white solid) were isolated. mp 138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 6.03 (br s, 1H), 2.61 (s, 3H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 165.9, 139.8, 138.7, 128.3, 127.0, 51.9, 28.7, 26.7; IR (KBr): 3298, 3060, 2974, 2926, 1681, 1641, 1537, 1451, 1396, 1359, 1314, 1266, 1231, 959, 854, 767, 661 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₈NO₂ [M+H]⁺ 220.1332, found 220.1332.

N-(tert-butyl)-2-iodo-4-(trifluoromethyl)benzamide (3f)

Following the general procedure A, **2a** (3.0 equiv). 48.2 mg (65%) of **3f** (white solid) were isolated. mp 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.62 (dd, J = 8.0, 0.8 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 5.53 (br s, 1H), 1.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ

167.6, 146.5 , 136.4 (q, $J_{C-F} = 3.8$ Hz), 132.4 (q, $J_{C-F} = 32.9$ Hz),128.1, 125.4 (q, $J_{C-F} = 28.3$ Hz), 122.3 (q, $J_{CF3} = 271.3$ Hz), 92.2, 52.5, 28.6; IR (KBr): 3610, 3525, 3255, 1635, 1563, 1322, 1175, 1117, 1075, 835 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{12}H_{14}F_{3}INO$ [M+H]⁺ 372.0067, found 372.0069.

N-(tert-butyl)-4-chloro-2-iodobenzamide (3g)

Following the general procedure A, **2a** (5.0 equiv). 39.1 mg (58%) of **3g** (white solid) were isolated. mp 142-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 1.6 Hz, 1H), 7.33 (m, 2H), 5.53 (br s, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 141.5, 138.9, 135.5, 128.7, 128.3, 92.5, 52.3, 28.6; IR (KBr): 3611, 3525, 3257, 3075, 2965, 1638, 1581, 1554, 1460, 1365, 1323, 1225, 822 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₄ClINO [M+H]⁺ 337.9803, found 337.9805.

N-(tert-butyl)-4-methylbenzamide (3h)

Following the general procedure A, **2a** (5.0 equiv). 16.8 mg (44%) of **3h** (white solid) were isolated. mp 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 5.90 (br s, 1H), 2.38 (s, 3H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 141.3, 133.1, 129.0, 126.6, 51.4, 28.9, 21.3; IR (KBr): 3355, 3034, 2979, 2927, 1643, 1544, 1453, 1360, 1391, 1360, 1312, 1226, 957, 875, 838, 752 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₂H₁₈NO [M+H]⁺ 192.1383, found 192.1382.

N-(*tert*-butyl)-4-methoxybenzamide (3i)

Following the general procedure A, **2a** (5.0 equiv). 17.8 mg (43%) of **3i** (white solid) were isolated. mp 120 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.86 (br s, 1H), 3.83 (s, 3H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 161.8, 128.4, 128.2, 113.6, 55.3, 51.4, 28.9; IR (KBr): 3312, 3069, 2967, 2845, 1635, 1546, 1508, 1452, 1320, 1254, 1218, 1180, 878, 844, 769 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{12}H_{18}NO_2$ [M+H]⁺ 208.1332, found 208.1334.

N-(*tert*-butyl)benzamide (3j)

Following the general procedure A, **2a** (5.0 equiv). 17.0 mg (48%) of **3j** (white solid) were isolated. mp 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 6.8 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.41 (dd, J = 7.6, 6.8 Hz, 2H), 5.94 (br s, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 135.9, 131.0, 128.4, 126.7, 51.5, 28.8; IR (KBr): 3323, 3061, 2971, 1638, 1538, 1488, 1449, 1362, 1311, 1221, 935, 875, 804, 718 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₆NO [M+H]⁺ 178.1226, found 178.1228.

N-(*tert*-butyl)-3-nitrobenzamide (3k)

Following the general procedure A, **2a** (3.0 equiv). 32.0 mg (72%) of **3k** (yellow solid) were isolated. mp 126-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 1.4 Hz, 1H), 8.27 (dd, J = 8.0, 1.4 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 6.21 (br s, 1H), 1.48 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 148.0, 137.5, 133.0, 129.7, 125.6, 121.5, 52.2, 28.7; IR (KBr): 3316, 3081, 2971, 2929, 1651, 1530, 1457, 1394, 1354, 1315, 1222, 919, 717 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₅N₂O₃ [M+H]⁺ 223.1077, found 223.1078.

N-(tert-butyl)-3-chlorobenzamide (3l)

Following the general procedure A, **2a** (3.0 equiv). 25.8 mg (61%) of **3l** (white solid) were isolated. mp 99-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.34 (dd, J = 7.6, 8.0 Hz, 1H), 5.91 (br s, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 137.7, 134.6, 131.1, 129.8, 127.1, 124.8, 51.9, 28.8; IR (KBr): 3609, 3520, 3284, 2967, 1639, 1544, 1453, 1364, 1317, 1217, 898 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₅ClNO [M+H]⁺ 212.0837, found 212.0838.

N-cyclohexyl-4-nitrobenzamide (3m)

$$O_2N$$

Following the general procedure A, cyclohexyl isocyanide (3.0 equiv). 39.2 mg (79%) of **3m** (yellow solid) were isolated. mp 159 °C; 1 H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.6 Hz, 2H), 7.91 (d, J = 8.6 Hz, 2H), 6.03 (br d, NH, 1H), 3.98 (m, 1H), 2.06-1.20 (m, 10H); 13 C NMR (125 MHz, CDCl₃) δ 164.6, 149.4, 140.7, 128.0, 123.7, 49.2, 33.1, 25.4, 24.8; IR (KBr):

3320, 2929, 2860, 1625, 1611, 1541, 1506, 1353, 1252 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{13}H_{17}N_2O_3$ [M+H]⁺ 249.1234, found 249.1240.

N-cyclohexyl-4-chlorobenzamide (3n)

Following the general procedure A, cyclohexyl isocyanide (5.0 equiv). 27.0 mg (57%) of **3n** (yellow solid) were isolated. mp 184-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 6.03 (br s, NH, 1H), 3.94 (m, 1H), 2.02-1.17 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 137.4, 133.5, 128.7, 128.3, 48.8, 33.2, 25.5, 24.9; IR (KBr): 3288, 2929, 1629, 1541, 1486, 1454, 1332, 1154, 1018 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{13}H_{17}CINO [M+H]^+ 238.0993$, found 238.1000.

N-isopropyl-4-nitrobenzamide (30)

Following the general procedure A, isopropyl isocyanide (3.0 equiv). 29.1 mg (70%) of **30** (yellow solid) were isolated. mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 5.99 (br s, NH, 1H), 4.30 (m, 1H), 1.29 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 149.5, 140.5, 128.0, 123.7, 42.4, 22.7; IR (KBr): 3611, 3525, 3446, 3304, 2980, 1639, 1602, 1543, 1520, 1345, 1318, 1290, 871, 827 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₀H₁₃N₂O₃ [M+H]⁺ 209.0921, found 209.0923.

N-isopropyl-4-chlorobenzamide (3p)

Following the general procedure A, isopropyl isocyanide (5.0 equiv). 24.8 mg (63%) of **3p** (yellow solid) were isolated. mp 142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 6.00 (br s, NH, 1H), 4.26 (m, 1H), 1.25 (d, J = 6.4 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 137.4, 133.4, 128.7, 128.2, 42.0, 22.8; IR (KBr): 3746, 3610, 3525, 3446, 3310, 2977, 1630, 1596, 1538, 1487, 1016, 846, 764 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₀H₁₃ClNO [M+H]⁺ 198.0680, found 198.0681.

4-nitro-N-(1-phenylethyl)benzamide (3q)

Following the general procedure B. 40.5 mg (75%) of **3q** (yellow solid) were isolated. mp 120-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 8.8 Hz, 2H),7.40-7.29 (m, 5H), 6.43 (br d, NH, 1H), 5.34 (m, 1H), 1.64 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 149.6, 142.4, 140.1, 128.9, 128.1, 127.8, 126.3, 123.8, 49.8, 21.5; IR (KBr): 3746, 3610, 3526, 3446, 3334, 1710, 1596, 1519, 1349, 1168, 853, 747 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₅N₂O₃ [M+H]⁺ 271.1077, found 271.1085.

4-chloro-N-(1-phenylethyl)benzamide (3r)

Following the general procedure B. 27.0 mg (52%) of **3r** (yellow solid) were isolated. mp 137-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.8 Hz, 2H), 7.40-7.27 (m, 7H), 6.32 (br s, NH, 1H), 5.32 (m, 1H), 1.61 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 142.9, 137.7, 133.0, 128.8, 128.4, 127.6, 126.2, 49.4, 21.6; IR (KBr): 3609, 3526, 3445, 3276, 1647, 1630, 1595, 1536, 1486, 1331, 1091, 1013, 847, 760, 700 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₅ClNO [M+H]⁺ 260.0837, found 260.0838.

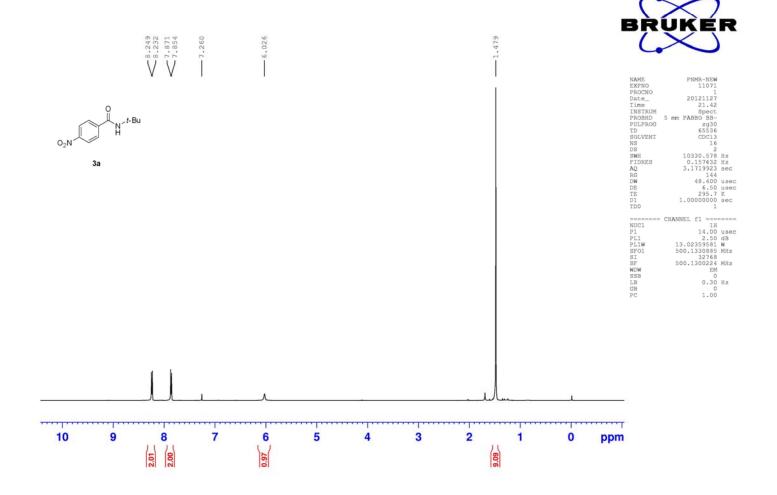
4-nitro-*N*-(1-tosylmethyl)benzamide (3s)

Following the general procedure B. 42.8 mg (64%) of **3s** (yellow solid) were isolated. mp 206-207 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.82 (br s, NH, 1H), 8.31 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H), 4.88 (d, J = 6.4 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.9, 149.4, 144.8, 138.6, 134.7, 129.9, 129.0, 128.5, 123.7, 61.1, 21.1; IR (KBr): 3611, 3526, 3446, 3334, 1652, 1520, 1329, 1142, 719 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{15}H_{15}N_2O_5S$ [M+H]⁺ 335.0696, found 335.0708.

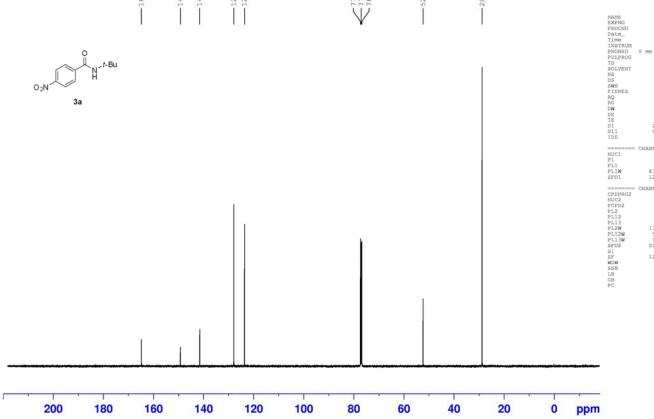
4-chloro-*N*-(2,4-dimethylphenyl)benzamide (3t)

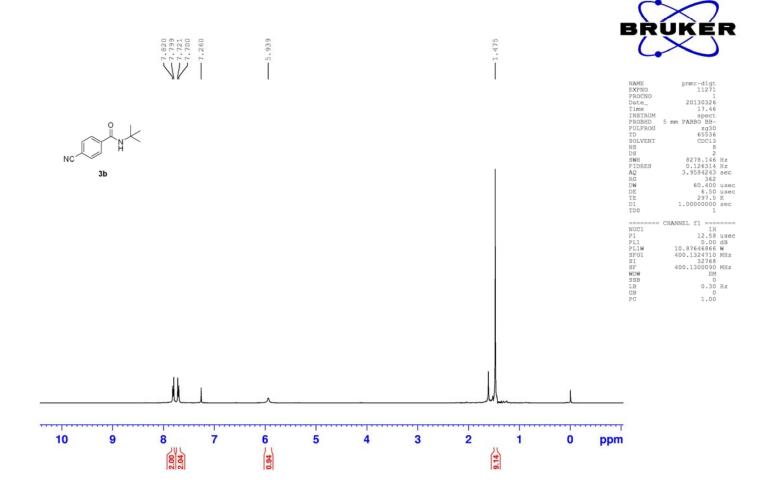
Following the general procedure A, 2,4-dimethylphenyl isocyanide (3.0 equiv). 10.4 mg (20%) of **3t** (yellow solid) were isolated. mp 160-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 6.8 Hz, 1H), 7.58 (s, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.06-7.05 (m, 2H), 2.32 (s, 3H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 138.0, 135.5, 133.3, 132.8, 131.3, 130.0, 129.0, 128.5, 127.4, 123.7, 20.9, 17.8; IR (KBr): 3747, 3610, 3527, 3445, 3332, 3063, 1649, 1596, 1527, 1330, 1277, 1142, 963, 849, 819 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₅CINO [M+H]⁺ 260.0837, found 260.0834.

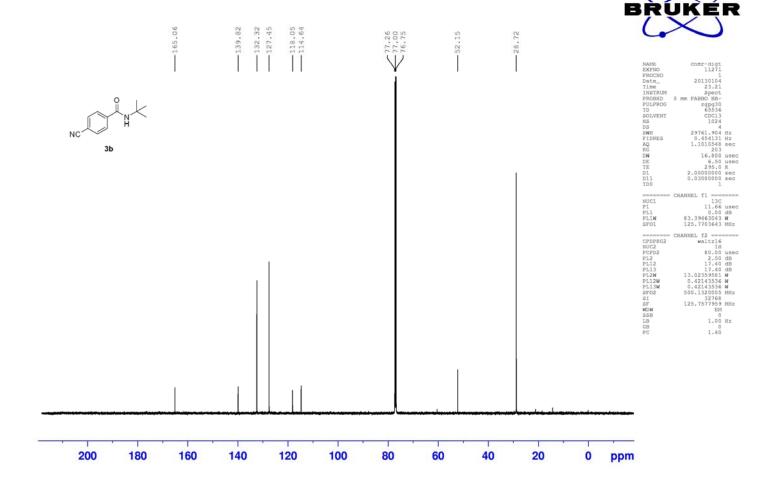
2,2,6,6-tetramethyl-1-(4-nitrophenoxy)piperidine (4)

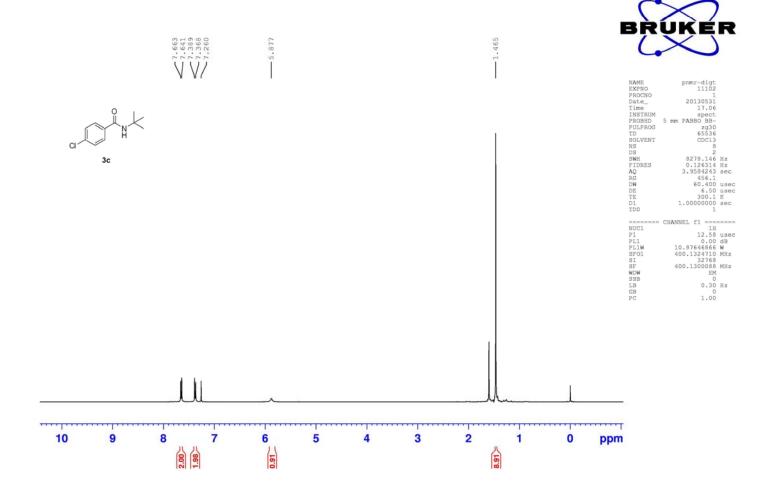

4

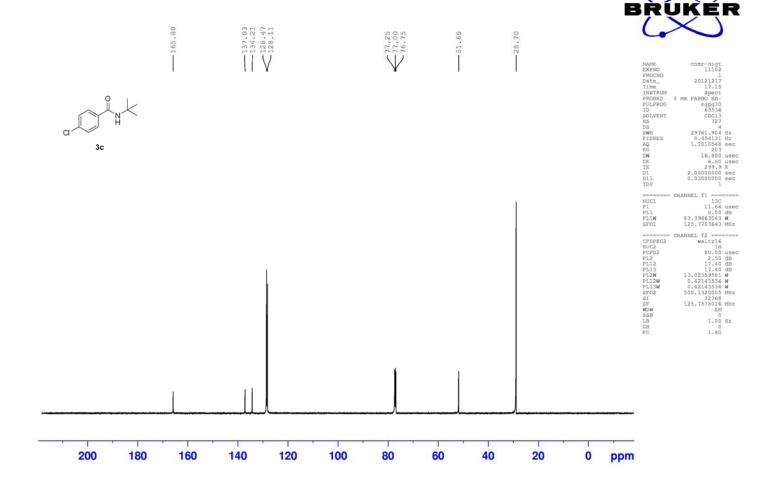
White solid. 1 H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 9.6 Hz, 2H), 7.4-7.2 (m, 2H), 1.66-1.60 (m, 5H), 1.46-1.42 (m, 1H), 1.24 (s, 6H), 0.99 (s, 6H); 13 C NMR (125 MHz, CDCl₃) δ 168.7, 141.2, 125.5, 114.1, 60.9, 39.7, 32.3, 20.5, 16.9; ESI-MS: 279.1 (100, M+1); HRMS (ESI): Exact mass calcd for $C_{15}H_{23}N_{2}O_{3}$ [M+H] $^{+}$ 279.1703, found 279.1686.

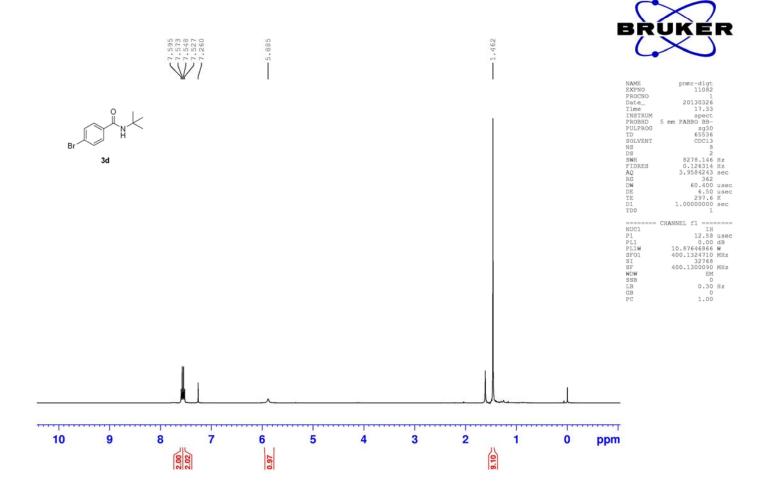

5. References

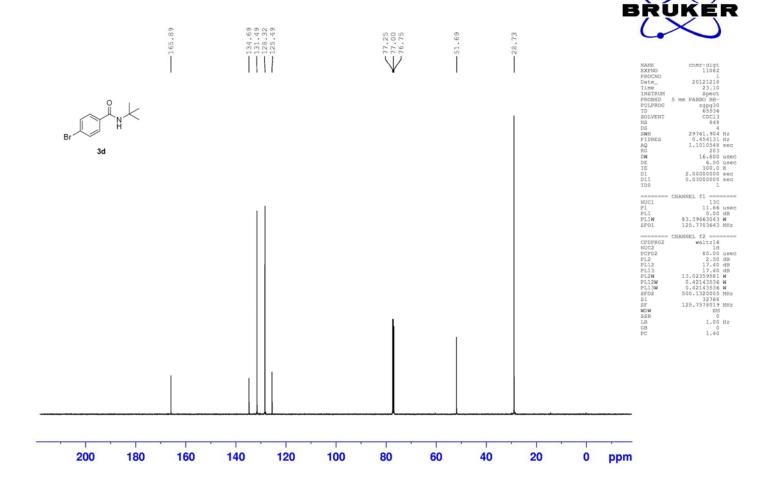

- (1) Burfield, D. R.; Smithers, R. H. J. Org. Chem. 1978, 43, 3966.
- (2) Hanson, P.; Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem. Soc., Perkin Trans. 2. 2002, 1135.
- (3) (a) Hering, T.; Hari D. P.; König, B. *J. Org. Chem.* **2012**, *77*, 10347. (b) Hari D. P.; Schroll, P.; König, B. *J. Am. Chem.Soc.* **2012**, *134*, 2958.

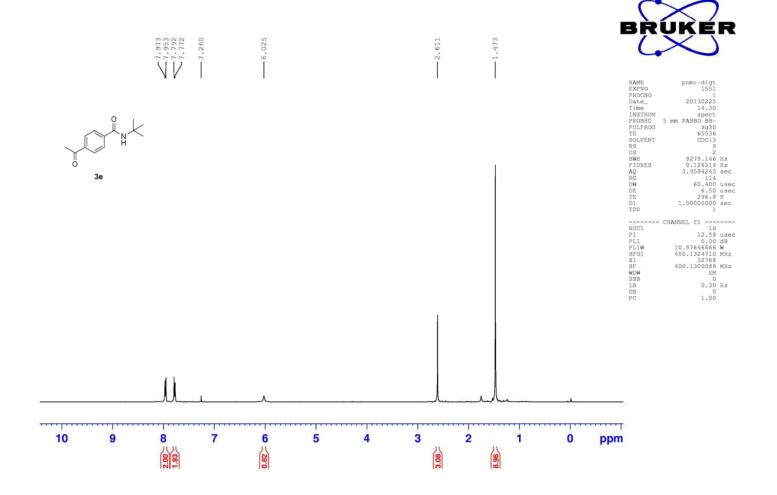

6. ¹H and ¹³C Spectra for 3a-3t and 4

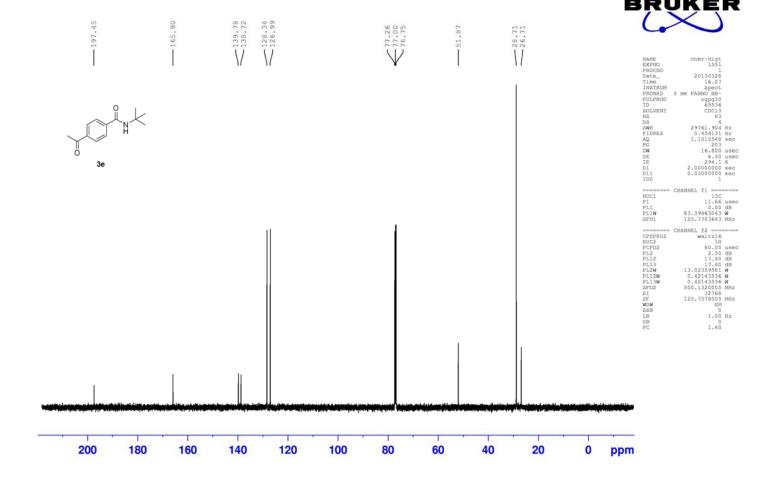


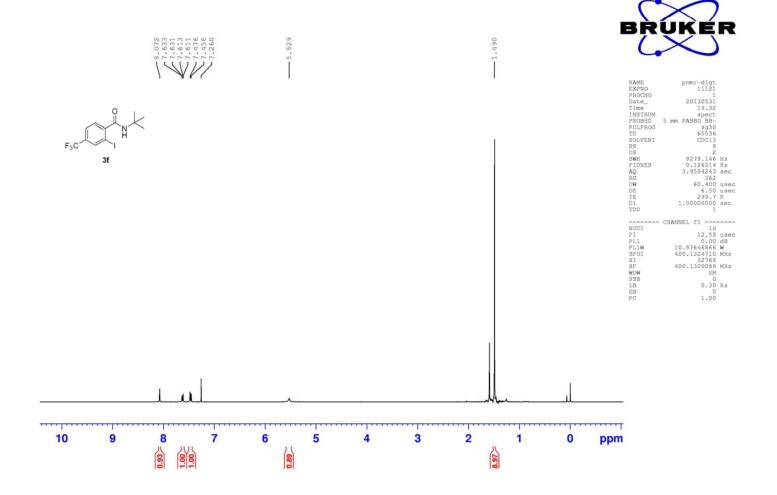


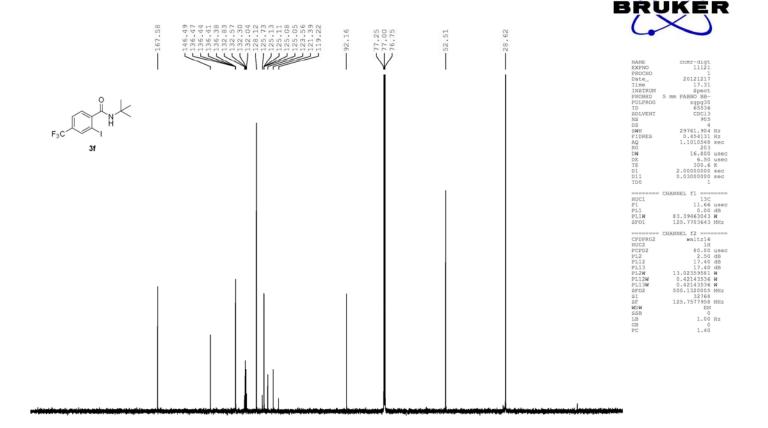


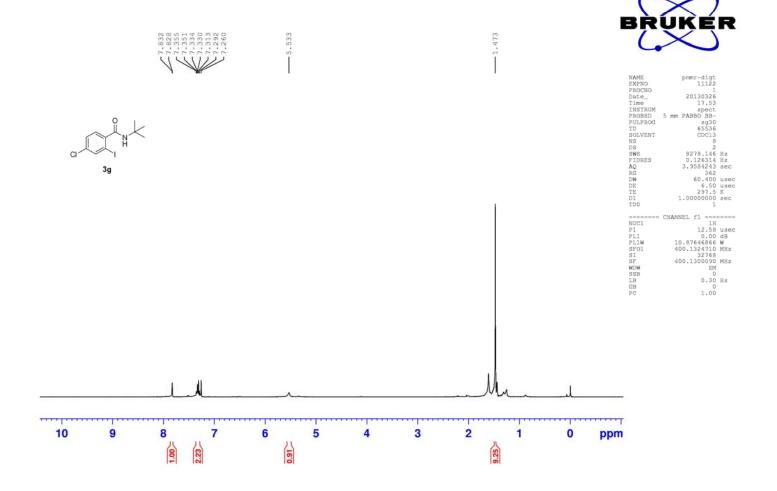


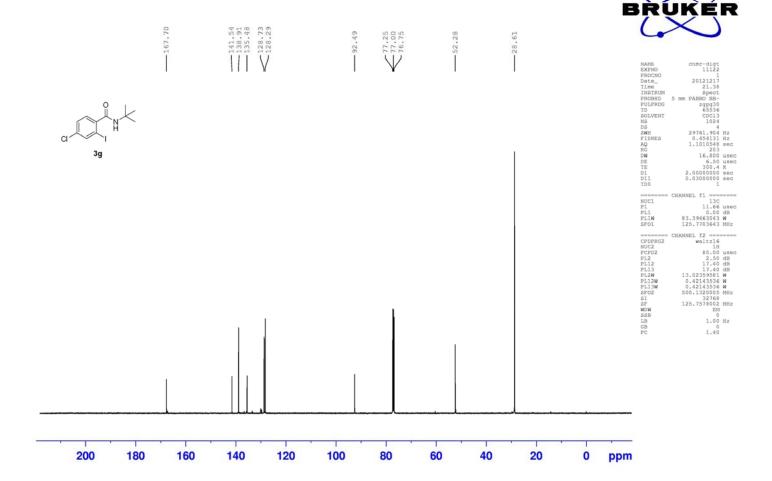


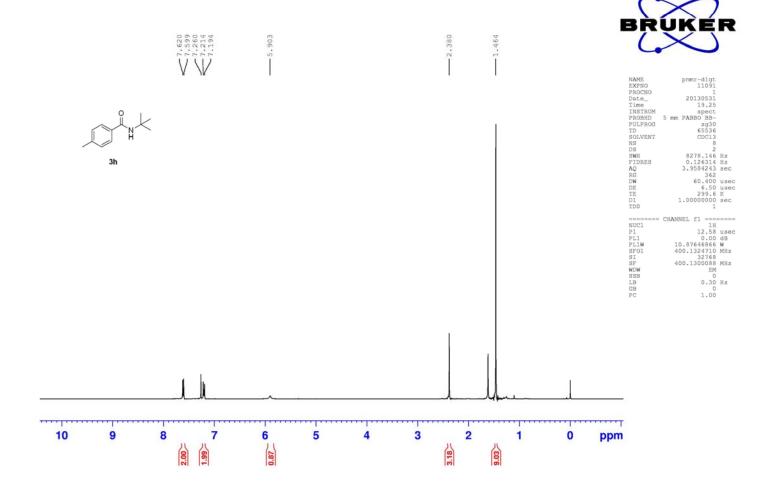


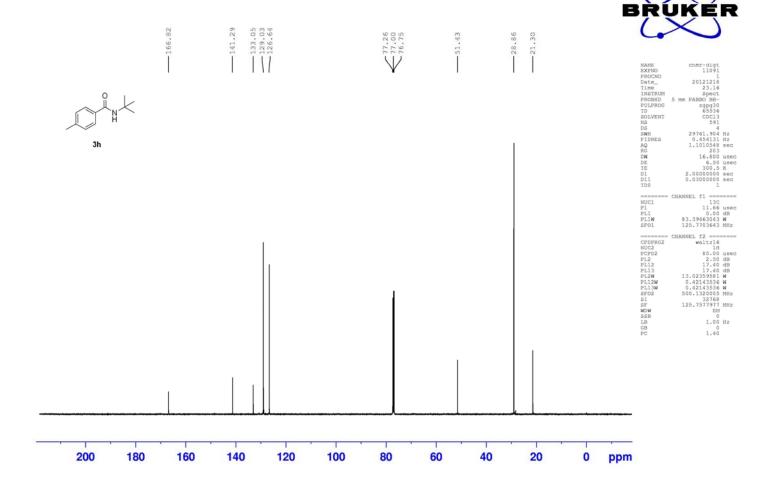


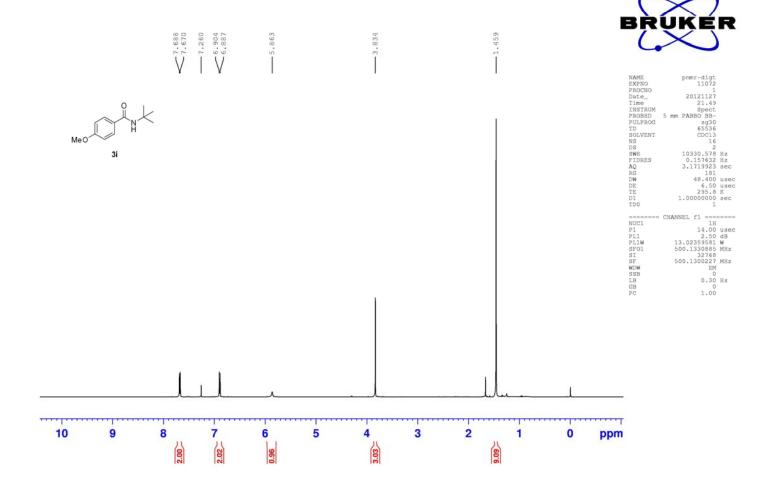


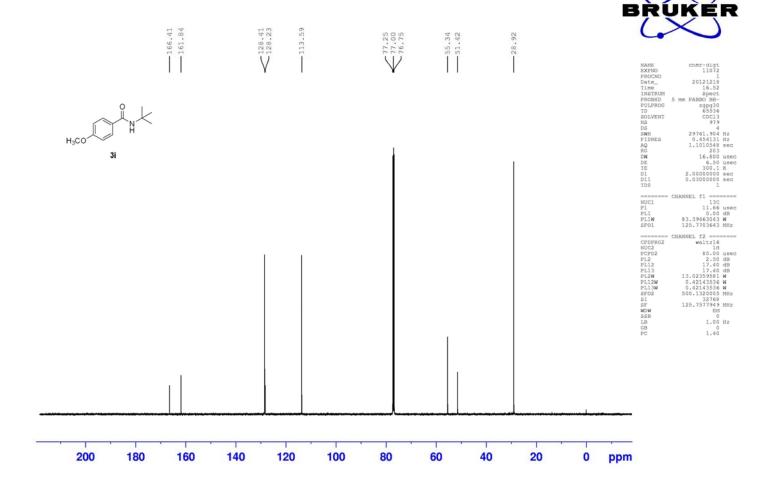


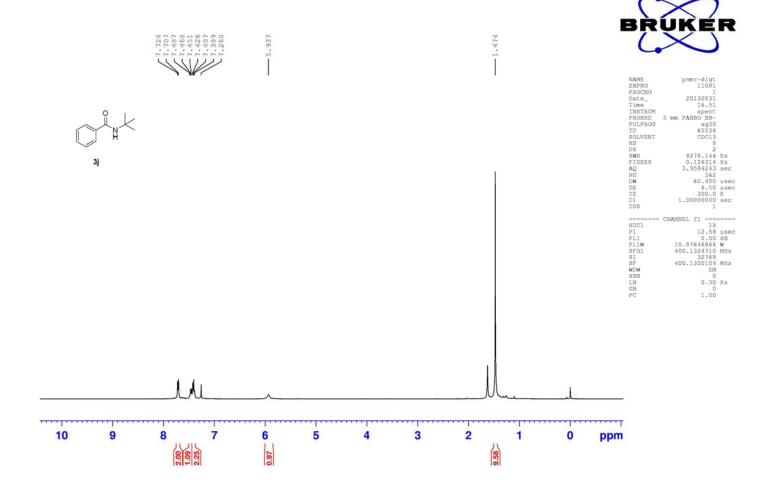


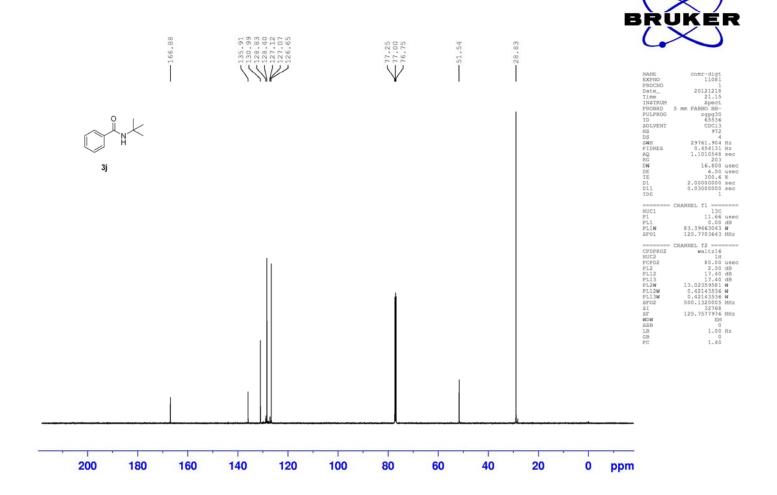


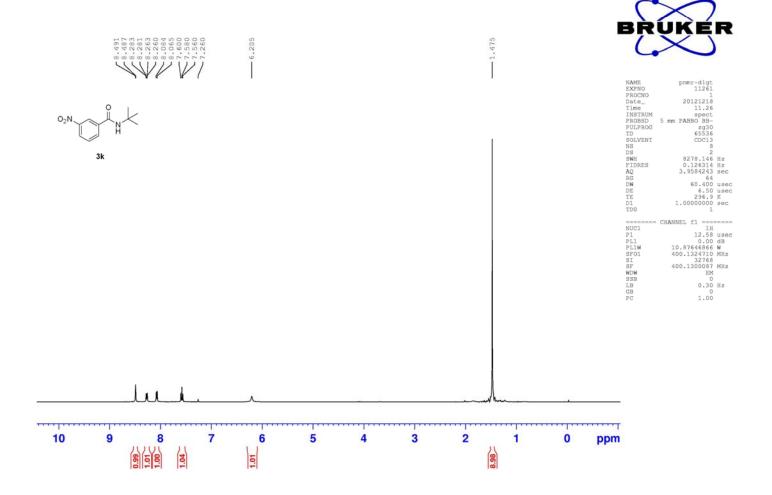


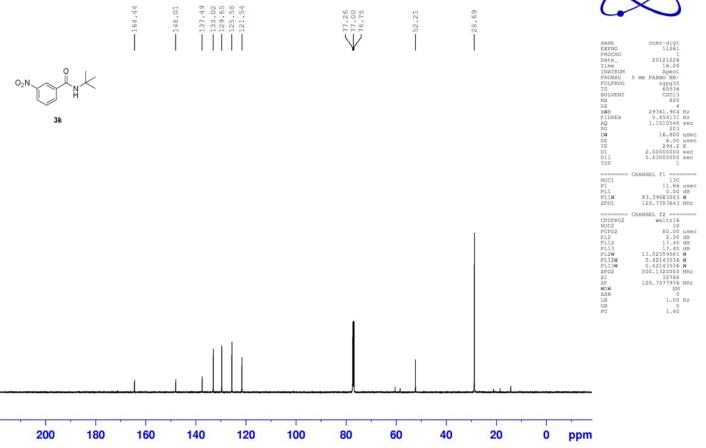

ppm

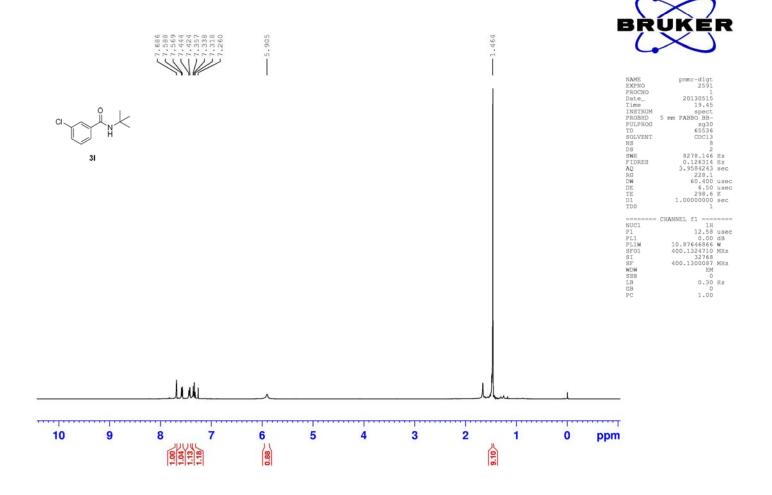


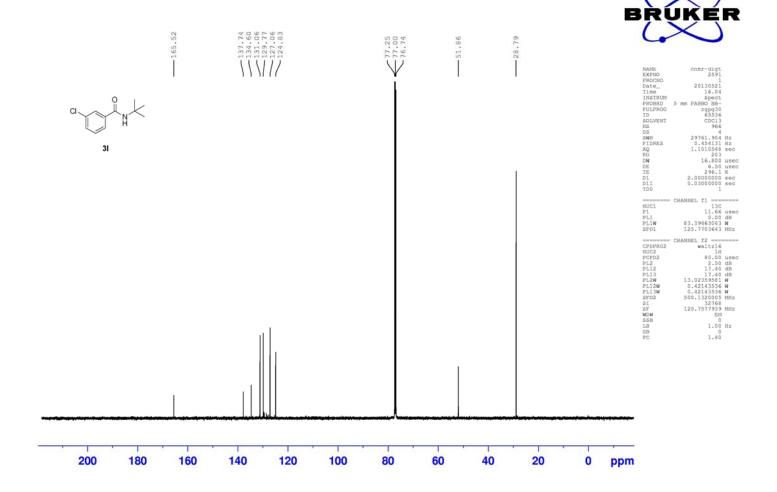


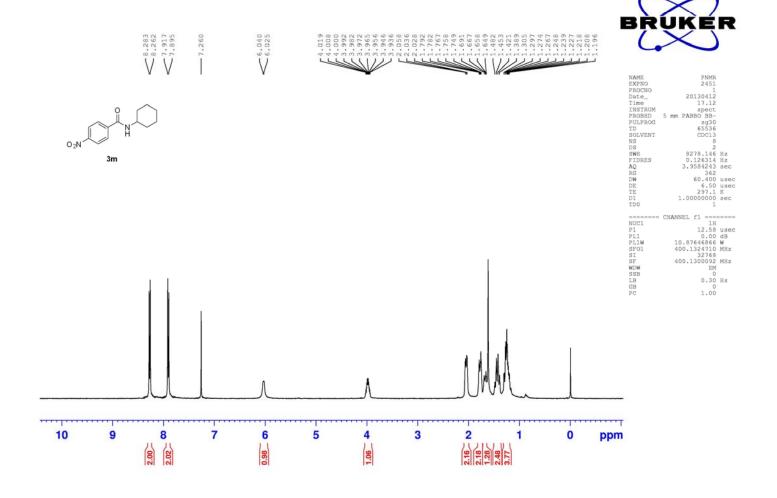


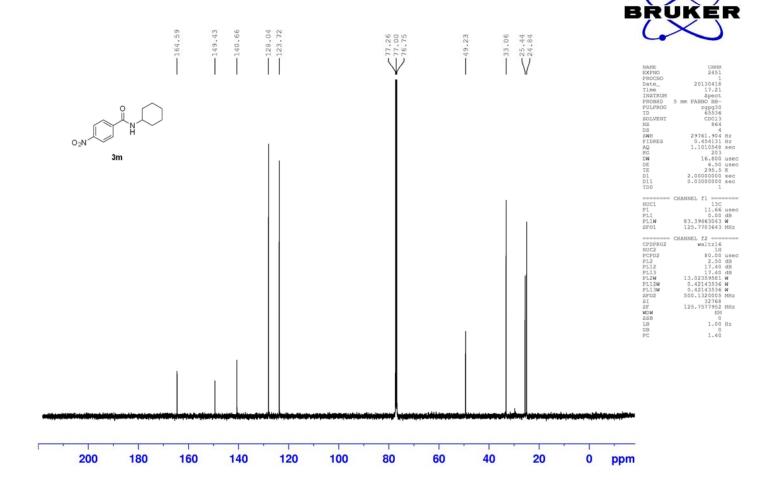


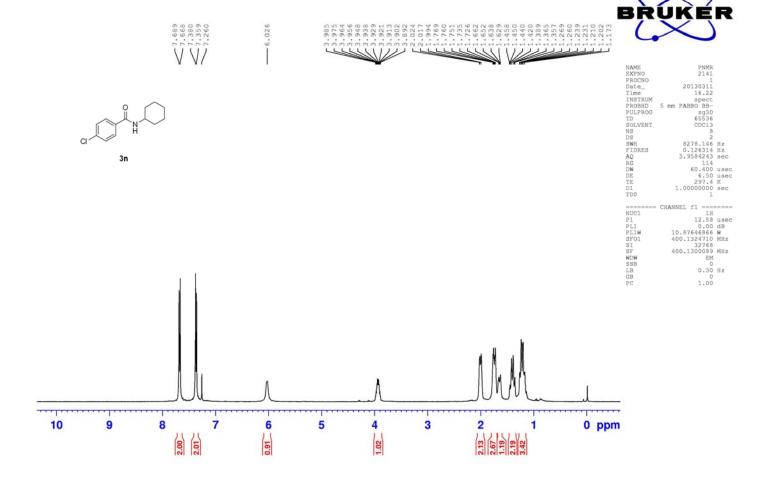


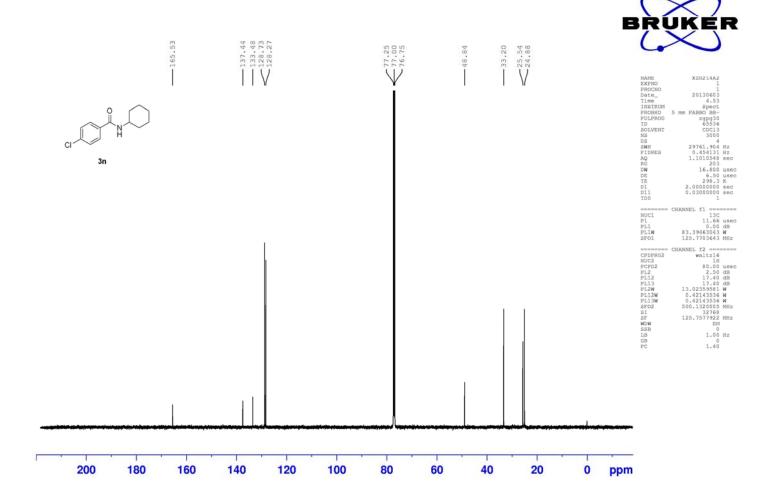


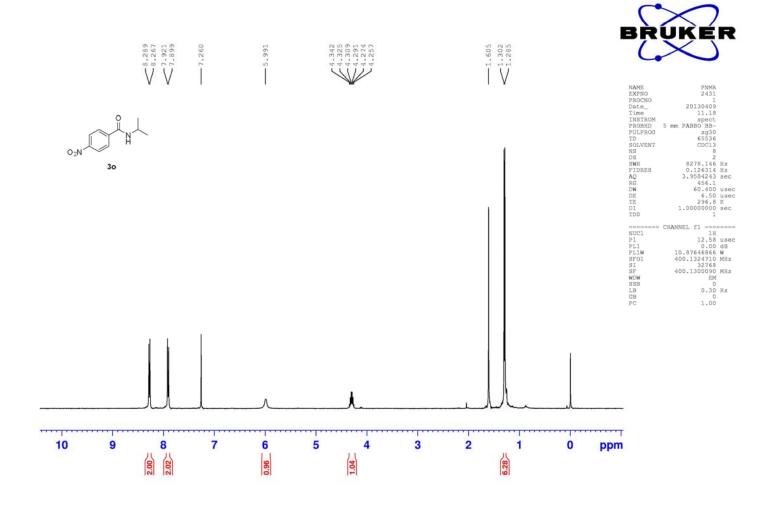


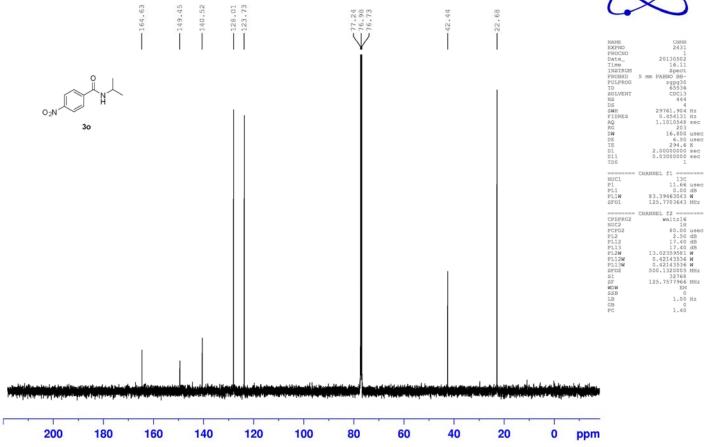


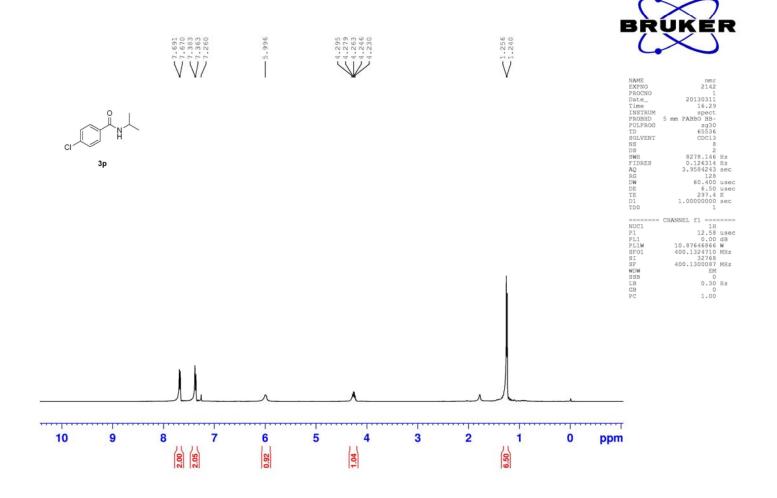


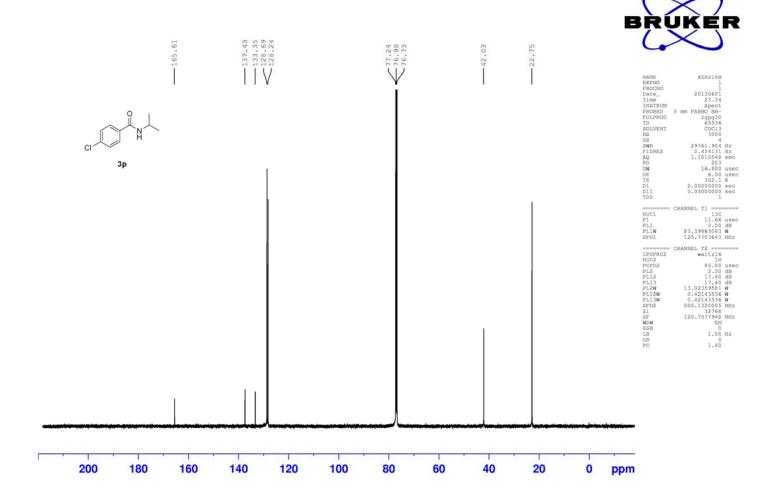


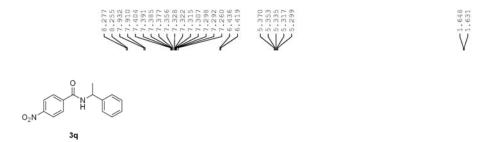


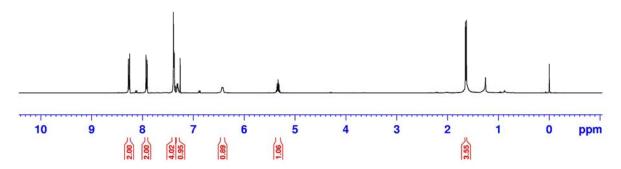


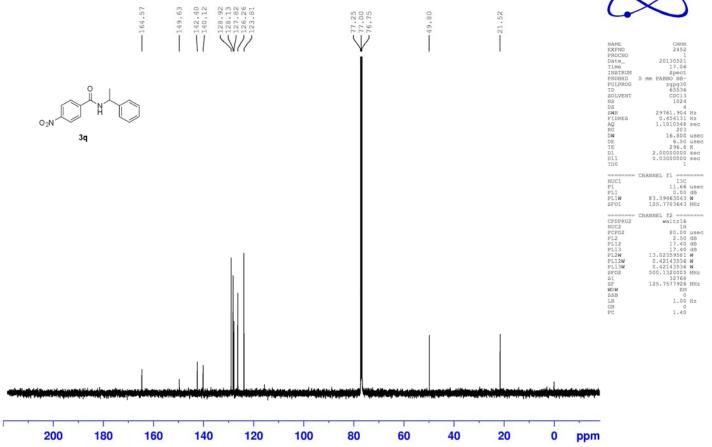


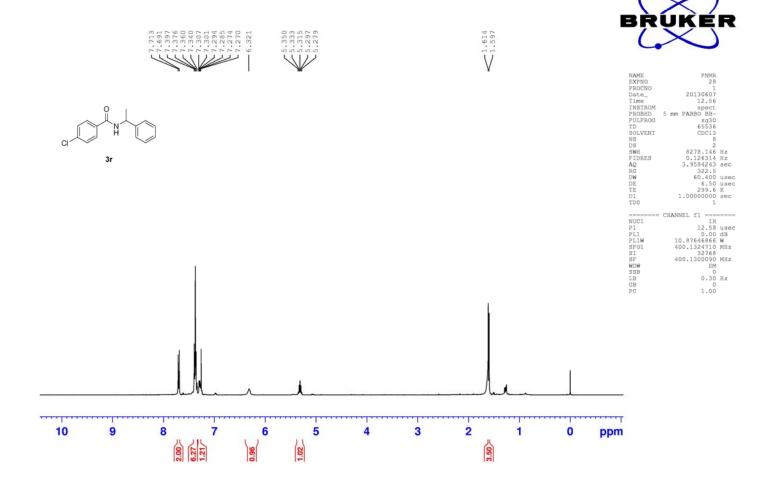











NAME	pnmr-digt	
EXPNO	2452	
PROCNO	1	
Date_	20130516	
Time	19.26	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	8278.146	Hz
FIDRES	0.126314	
AO	3.9584243	
RG	362	266
DW	60.400	
DE	6.50	
TE	298.4	
D1	1.00000000	sec
TDO	1	

	CHANNEL fl ====	-
NUC1	1H	
P1	12.58	u
PL1	0.00	d.
PL1W	10.87646866	W
SF01	400.1324710	M
SI	32768	
SF	400.1300090	M
WDW	EM	
SSB	0	
LB	0.30	H
GB	0	
PC	1.00	

