Dynamics of the Formation of a Charge Transfer State in 1,2-bis(9-anthryl)acetylene in Polar Solvents: Symmetry Reduction with the Participation of an Intramolecular Torsional Coordinate

Luis Gutiérrez-Arzaluz¹, Cesar A. Guarin¹, William Rodríguez-Córdoba^{1,2}, and Jorge Peon^{1,*}

¹Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, 04510, D.F., México.

²Escuela de Física, Universidad Nacional de Colombia, Sede Medellín, A.A. 3840, Medellín, Colombia

Supporting Information

- 1) Detailed synthetic procedures
- 2) Steady-state emission spectra at different concentrations of BisAA in acetonitrile and cyclohexane
- 3) Full reference 27

1) Detailed synthetic procedures

General: Reagents and solvents were purchased from Sigma-Aldrich Chemical Company. Toluene and tetrahydrofuran were dried with Linde type 4A molecular sieves and sodium wires/benzophenone, respectively. Dichloromethane and triethylamine were distilled from CaH₂ immediately before use. Except for the bromination of anthracene, all reactions were carried out under a dry N₂ atmosphere. All compounds synthesized in this study were purified by column chromatography on silica gel (100–200 mesh) using a suitable mixture petroleum ether and ethyl acetate. All physical properties and spectroscopic data agree with the values reported in the scientific literature. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Unity 300 MHz spectrometer in deuterochloroform with tretramethylsilane as internal standard. Melting points were measured on a Fisher-Johns melting point apparatus and are uncorrected. Data are reported as follows: chemical shifts (multiplicity, coupling constants, and number of protons).

9-Bromoanthracene (2).

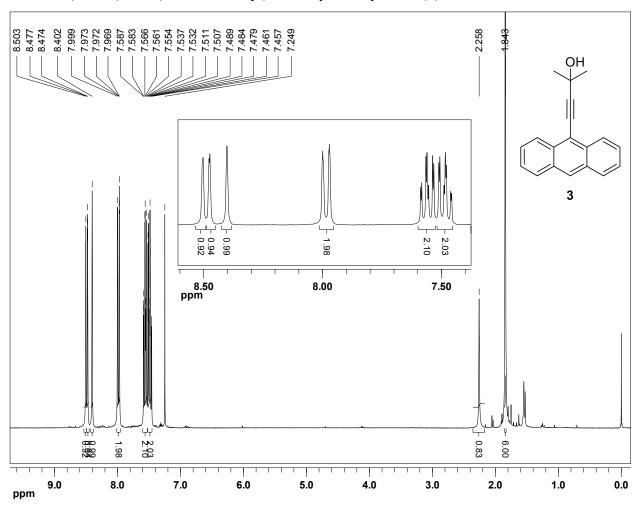
9-Bromoanthracene was synthesized following the procedure reported by Vyas et al. ¹ To a stirred solution of anthracene (2.0 g, 11.2 mmol) and 1.2 equivalents of hydrobromic acid (1.1 g, of a 40% aq. solution, 13.5 mmol) in a 9:1 mixture of CH₂Cl₂:H₂O (30 mL) was slowly added 1.0 equivalent of hydrogen peroxide (1.2 g of a 30% aq. solution; 11.2 mmol) over a period of 25 min at 10–15 °C. The progress of the reaction was monitored by thin layer chromatography (TLC) and the mixture was stirred until the starting anthracene disappeared. After completion of bromination, the solvent was removed under reduced pressure and then treated with water and brine and the organic layer was extracted with ethyl acetate (3 x 20 mL). The organic layer was dried over anhydrous sodium sulphate and the product was purified by chromatography on silica

gel using petroleum ether as eluent to give pure 9-bromoanthracene as a light yellow solid (2.36 g, 82%). The structure of compound **2** was characterized by various spectroscopic methods (spectra not showed) including ¹H NMR (200 MHz), UV–Vis and mass spectrometry (EIMS m/z 257). All spectroscopic results agree with the reported properties.

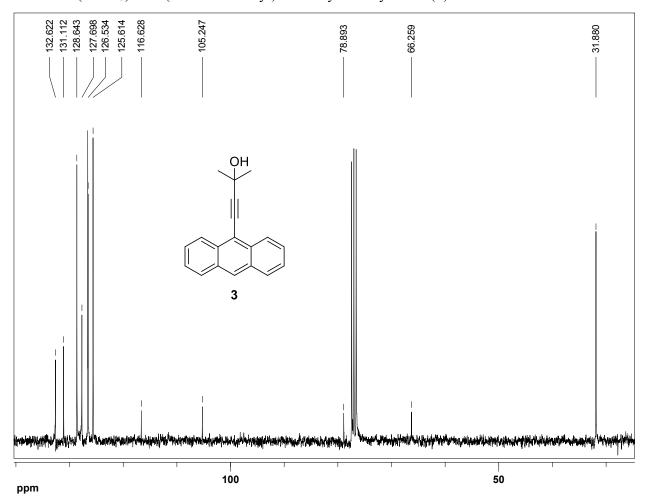
4-(Anthracen-10-yl)-2-methylbut-3-yn-2-ol(3).²⁻⁶

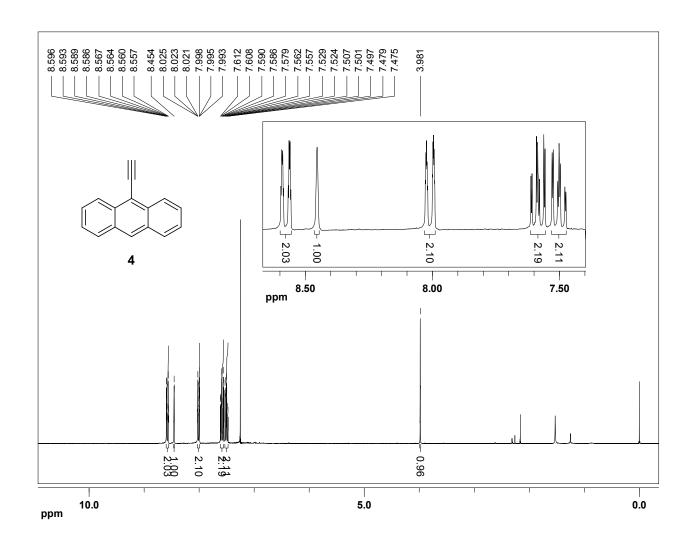
To a stirring solution of 9-bromoanthracene (5.0 g, 20.0 mmol) in 25 mL of triethylamine, 2-methylbut-3-yn-2-ol (3.28 g, 39.1 mmol), Pd(PPh₃)₂Cl₂(37 mg), CuI (50 mg) and PPh₃ (77.5 mg) were added. The mixturewas refluxed for 5 h under nitrogen atmosphere, cooled at room temperature and filtered. After removal of the solvent under reduced pressure, the residue was treated with dichloromethane (75 mL), washed with distilled water (3 x 20 mL) and with a salt aqueous solution of NaCl. After drying the organic layer with anhydrous Na₂SO₄, the dichloromethane was distilled off and the residual was purified by column chromatography on silica gel using petroleum ether/ethyl acetate 95:5 to yield **3** (4.5 g, 90%) as a light yellow crystalline solid. Mp 124-127 °C; ¹H NMR (300 MHz, CDCl₃): δ8.49 (d, *J*=8.72 Hz, 2H), 8.40 (s, 1H), 7.99 (d, *J*=8.33 Hz, 2H), 7.58–7.53 (m, 2H), 7.51–7.45 (m, 2H), 2.26 (s, 1H, OH), 1.84 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 132.6, 131.1, 128.6, 127.7, 126.5, 125.6, 125.7, 116.6, 105.2, 78.9, 66.2, 31.8; MS (EI) m/z 260.12.

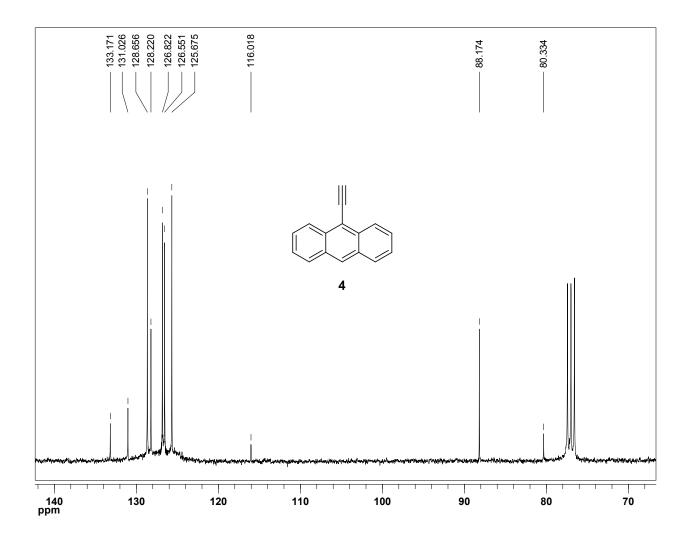
9-Ethynylanthracene(4).^{2, 5}

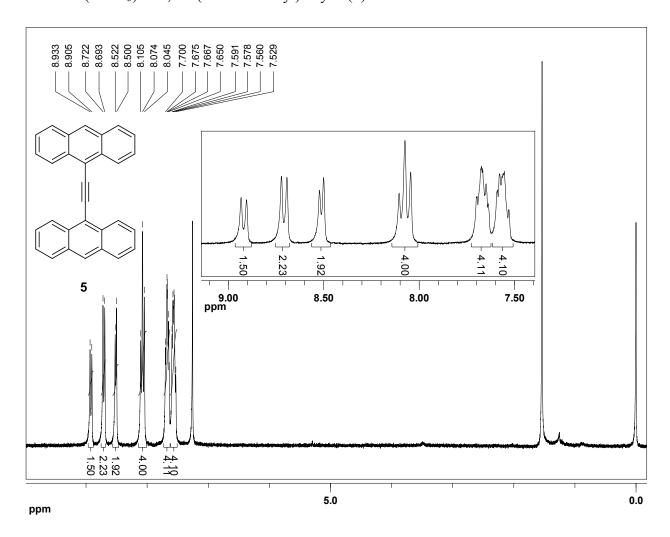

A solution of 4-(Anthracen-10-yl)-2-methylbut-3-yn-2-ol (3.0 g, 11.5 mmol) in dry toluene (100 mL) was treated with KOH (0.8 g, 14.3 mmol). The reaction mixture was heated under reflux for 25 min under nitrogen atmosphere, cooled and filtered. The solvent was removed in vacuo and the residue was purified by column chromatography using petroleum ether as eluent to yield $\underline{4}$ (1.9 g, 85%) as a light yellow crystalline solid. Mp 69-72 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.58 (d, J=8.6 Hz, 2H), 8.45 (s, 1H), 8.01 (d, J=8.4 Hz, 2H), 7.61–7.48 (m, 4H), 3.98 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 133.1, 131.0, 128.6, 128.2, 126.8, 126.5, 125.6, 116.0, 88.2, 80.3; MS (EI) m/z 202.08.

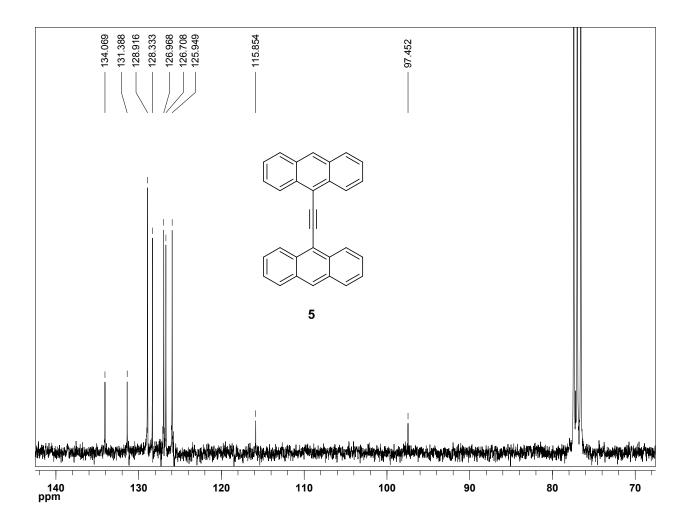
1,2-di(anthracen-9-yl)ethyne (5)⁷⁻¹⁰

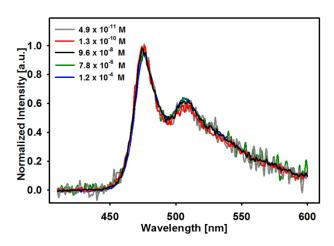

9-Bromoanthracene (3.0 g, 11.6 mmol) was dissolved in dry THF (250 mL). To the solution $Pd(PPh_3)_2Cl_2$ (0.2 g), CuI (0.1 mg) and 10-Ethynylanthracene (2.1 g, 10.6 mmol) were added and the mixture was thoroughly degassed with highly-pure N_2 three times. Then, a solution of piperidine (10 mL) in 150 mL of THF was injected in one portion. The reaction mixture was

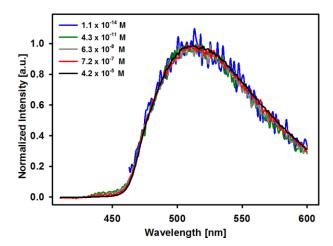

heated at 70 °C for 48 h. The solvent was removed under reduced pressureand the residue was subjected to chromatography on silica gel with petroleum ether/ethyl acetate 95:5. Upon crystallization of the solid from toluene the 1,2-di(anthracen-9-yl)ethyne **5** was obtained as redorange crystals (2.7 g, 68%). Mp >300 °C; 1 H NMR (300 MHz, CDCl₃): δ 8.92 (d, J=8.5 Hz, 2H), 8.71 (d, J=8.7 Hz, 2H), 8.51 (d, J=6.5 Hz, 2H), 8.07 (m, 4H), 7.70–7.64 (m, 4H), 7.59–7.52 (m, 4H); 13 C NMR (75 MHz, CDCl₃): δ 134.1, 131.4, 128.9, 128.3, 127.0, 126.7, 125.9, 115.9, 97.4; MS (EI) m/z 378.14


¹H NMR (CDCl₃) of 4-(anthracen-10-yl)-2-methylbut-3-yn-2-ol (3).


 ^{13}C NMR (CDCl₃) of 4-(anthracen-10-yl)-2-methylbut-3-yn-2-ol (3).




¹H NMR (CDCl₃) of 1,2-di(anthracen-9-yl)ethyne (**5**).


¹³C NMR (CDCl₃) of 1,2-di(anthracen-9-yl)ethyne (5).

2) Steady-state emission spectra of BisAA at different concentrations.

Figure S1. Steady-state emission spectra of 1,2-bis(9-anthryl)acetylene in cyclohexane at several concentrations.

Figure S2. Steady-state emission spectra of 1,2-bis(9-anthryl)acetylene in acetonitrile at several concentrations.

3) Full Reference 27:

(25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009

SUPPORTING INFORMATION REFERENCES

- 1. Vyas, P. V.; Bhatt, A. K.; Ramachandraiah, G.; Bedekar, A. V. Environmentally benign chlorination and bromination of aromatic amines, hydrocarbons and naphthols. *Tetrahedron Lett.* **2003**, *44*, 4085-4088
- 2. Xiao, Q.; Ranasinghe, R. T.; Tang, A. M. P.; Brown, T. Naphthalenyl- and anthracenylethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. *Tetrahedron.* **2007**, *63*, 3483-3490
- 3. Dang, H.; Garcia-Garibay, M. A. Palladium-Catalyzed Formation of Aceanthrylenes: A Simple Method for Peri-Cyclopentenelation of Aromatic Compounds. *J. Am. Chem. Soc.* **2001**, *123*, 355-356
- 4. Schmieder, K.; Levitus, M.; Dang, H.; Garcia-Garibay, M. A. Photophysical Properties of Coplanar and Twisted 1,4-Bis(9-ethynylanthracenyl)benzene. Rotational Equilibration in the Excited States of Diaryalkynes. *J. Phys. Chem. A.* **2002**, *106*, 1551-1556
- 5. Ezoe, M.; Minami, T.; Ogawa, Y.; Yagi, S.; Nakazumi, H.; Matsuyama, T.; Wada, K.; Horinaka, H. Intramolecular excitation energy transfer in diarylurea-linked zinc porphyrinanthracene dyads. *Photochem. Photobiol. Sci.* **2005**, *4*, 641-646
- 6. Bylinska, I.; Sikorski, A.; Wiczk, W. 4-(9-Anthryl)-2-methylbutyn-2-ol. *Acta Crystallogr., Sect. E: Struct. Rep. Online.* **2008**, *E64*, o484-o485, o484/1-o484/11
- 7. Jiang, L.; Gao, J.; Wang, E.; Li, H.; Wang, Z.; Hu, W.; Jiang, L. Organic single-crystalline ribbons of a rigid "H"-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an "organic ribbon mask" technique. *Adv. Mater.* **2008**, *20*, 2735-2740
- 8. Becker, H. D.; Skelton, B. W.; White, A. H. Molecular geometry of 1,2-bis(9-anthryl)acetylene. *Aust. J. Chem.* **1985**, *38*, 1567-70
- 9. Toyota, S.; Azami, R.; Iwanaga, T.; Matsuo, D.; Orita, A.; Otera, J. Chemistry of anthracene-acetylene oligomers. XIV. Convenient synthesis of anthrylethynes by double elimination reaction from aldehydes and sulfones. *Bull. Chem. Soc. Jpn.* **2009**, *82*, 1287-1291
- 10. Pschirer, N. G.; Bunz, U. H. F. Alkyne metathesis with simple catalyst systems: high yield dimerization of propynylated aromatics; scope and limitations. *Tetrahedron Lett.* **1999**, *40*, 2481-2484