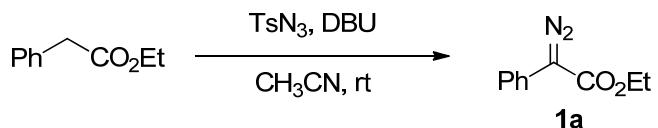


Supporting Information

Copper-Catalyzed *gem*-Difluoroolefination of Diazo Compounds with TMSCF_3 via C–F Bond Cleavage

*Mingyou Hu, Zhengbiao He, Bing Gao, Lingchun Li, Chuanfa Ni, and Jinbo Hu**

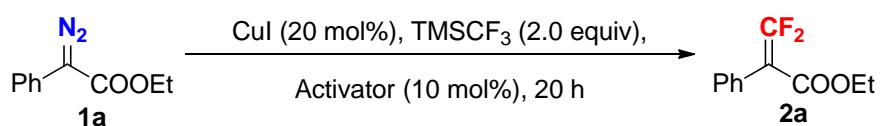
Key Laboratory of Organofluorine Chemistry
Shanghai Institute of Organic Chemistry
Chinese Academy of Sciences
345 Ling-Ling Road, Shanghai, 200032 (China)
Fax: (+86) 21-64166128
E-mail: jinbohu@sioc.ac.cn


Table of Contents

1. General Information.....	3
2. Preparation of α -Diazoo Ester 1a	3
3. Typical experimental procedure for the investigation of Cu-catalyzed <i>gem</i> -difluoroolefination of compound 1a	4
4. Typical experimental procedure for preparation of diaryldiazomethanes 3	5
5. Typical experimental procedure for reaction of compound 3a with pre-generated CuCF_3 (eq 2(a))	6
6. Typical experimental procedure for reaction of compound 3a with pre-generated CuCF_3 with H_2O as promoter (eq 2(b))	6
7. Typical experimental procedures for preparation of 2,2-diaryl-1,1-difluoroalkenes 4	7
8. Typical experimental procedure for reaction of compound 3a with $\text{TMSCF}_2\text{CF}_3$ with Cu as catalyst (eq 3).....	8
9. Typical experimental procedure for reaction of compound 3a with pre-generated CuCF_2CF_3 (eq 4)	9
10. References.....	20
11. ^1H , ^{19}F and ^{13}C NMR Spectra of New Products.	21

1. General Information.

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. The solvent NMP (*N*-methyl-2-pyrrolidone) and CH₂Cl₂ were distilled from CaH₂ and kept over activated 4Å MS; 1,4-dioxane, THF (Tetrahydrofuran), and toluene were distilled over sodium before being used. CuI and CuCl were purified according to reported procedures.¹ ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz or 300 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of the residual solvent peak: CHCl₃ in CDCl₃: δ 7.26. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. For the isolated compounds, ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.0. Data for ¹H, ¹³C and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Coupling constants are reported in hertz (Hz). Mass spectra were obtained on a mass spectrometer in the EI mode. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI mode.


2. Preparation of α -Diazoo Ester **1a**:²

At room temperature, a solution of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) (2.28 g, 15 mmol) in anhydrous CH₃CN (20 mL) was added dropwise to a solution of ethyl phenyl acetate (1.64 g, 10 mmol) and *p*-toluenesulfonyl azide (TsN₃) (2.37 g, 12 mmol) in anhydrous CH₃CN (30 mL). Then the reaction mixture was stirred at room temperature for 15 hours. After water (20 mL) was added, the resulting mixture was extracted with diethyl ether (3 \times 40 mL). The combined organic layer was washed with brine (20 mL) and dried over anhydrous MgSO₄.

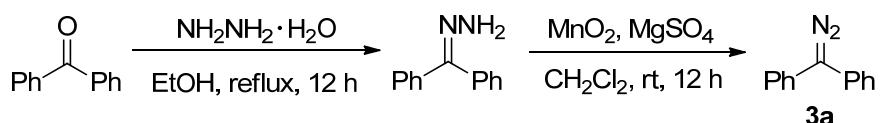
After the removal of the solvent under reduced pressure, the residual was purified by a silica gel column chromatography with petroleum ether (PE)/ethyl acetate (EA) (30:1) as the eluent to give **1a** as a red oil (1.73 g, 91% yield).

3. Typical experimental procedure for the investigation of Cu-catalyzed *gem*-difluoroolefination of compound **1a**:

In a glovebox, to an oven-dried 10-mL vial equipped with a stir bar and a Teflon-lined screw cap were added CuI (19 mg, 0.1 mmol) and activator (e.g. CsF (7.6 mg, 0.05 mmol)). Then the vial was sealed and brought to the bench. Under N_2 atmosphere, TMSCF₃ (142 mg, 1.0 mmol) and ethyl 2-diazo-2-phenylacetate (**1a**) (95 mg, 0.5 mmol) in solvent (if mixed solvents were used, e.g. NMP/1,4-dioxane (10:1), first added NMP (0.5 mL), then 1,4-dioxane (5 mL)) were added via syringe. Then the vial was sealed again. The resulting mixture was stirred over 20 hours. The reaction was monitored by ¹⁹F NMR with PhCF₃ as an internal standard (or monitored by GC-MS) and results are summarized in Table S1.

Table S1: Cu-catalyzed *gem*-Difluoroolefination of compound **1a.**

Entry	Activator	Solvent	Temp (°C)	Yield (%) ^b	
				rt	7
1	CsF	NMP		0	
2	CsF	NMP	40		7
3	CsF	NMP	60		3


4	CsF	NMP	80	0
5	KF	NMP	rt	0
6	<i>t</i> BuOK	NMP	rt	0
7	CsF	DCM/NMP (4:1)	rt	7
8	CsF	THF/NMP (4:1)	rt	0
9	CsF	1,4-dioxane/NMP (4:1)	rt	31
10	CsF	1,4-dioxane/NMP (10:1)	rt	33
11	CsF	1,4-dioxane	rt	30
12	CsF	1,4-dioxane/NMP (10:1)	rt	33 ^c
13	CsF	1,4-dioxane/NMP (10:1)	rt	2 ^d
14	CsF	1,4-dioxane/NMP (10:1)	40	0 ^e

^a All reactions were carried out as followed: 0.1 mmol CuI, 0.05 mmol Activator, 1.0 mmol TMSCF₃ and 0.5 mmol **1a**, about 5 mL solvent were used.

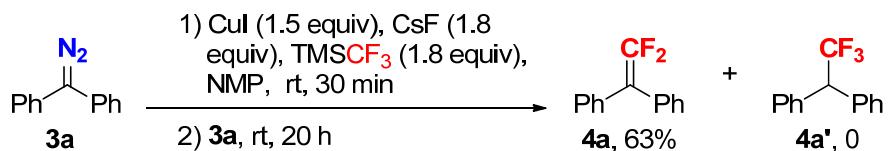
^b Yields were determined by ¹⁹F NMR with PhCF₃ as an internal standard. ^c 4 equivalents of TMSCF₃ were used. ^d 20 mol% CsF was used.

^e 40 mol% CsF was used.

4. Typical experimental procedure for preparation of diaryldiazomethanes **3** (Taking **3a** for example):³

Step 1. Preparation of benzophenone hydrazone:^{3a,c}

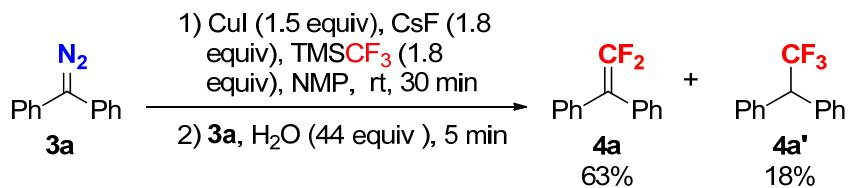
Hydrazine monohydrate (80% purity, 18.2 mL, 300 mmol) was added to benzophenone (5.46 g, 30 mmol) in ethanol (60 mL). Then HOAc (0.5 mL) was added and the mixture was heated to reflux for 20 hours. After cooling to room temperature, benzophenone hydrazone precipitated as white needle-shaped crystals. Filtration of the crude mixture gave pure benzophenone hydrazone (4.7 g, 80%) as a white solid.


(Note: When unsymmetrical ketones were used, an inseparable mixture of two isomers of ketone hydrazone was obtained, which was used in the next step without further purification.)

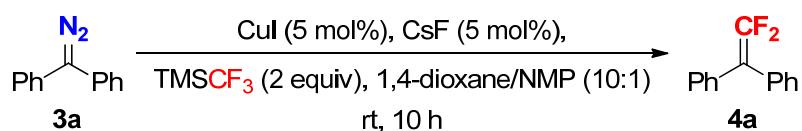
Step 2. Preparation of diphenylmethane diazonium salt:^{3b,c}

A mixture of benzophenone hydrazone (4.5 g, 23 mmol), anhydrous MgSO_4 (2 g), and 60 mL CH_2Cl_2 was cooled to 0 °C. To this rapidly stirring mixture was added activated MnO_2 ⁴ (7.0 g, 80.5 mmol) in one portion. The reaction mixture was warmed to room temperature and kept stirring for 8 hours, then the solid was filtered off and washed with CH_2Cl_2 . After removal of the solvent under reduced pressure, the residual was purified by silica gel with PE/Et₃N (20:1) as eluent to give **3a** as a purple oil or solid (3.8 g, 85% yield), which was fast used in next reaction.

(Note: The silica gel must be pretreated with Et₃N and PE (Et₃N / PE = 1:10. Compounds **3a**-**3x** could be purified by pretreated silica gel, **3y** was used without chromatography purification. Et₃N, which was poisonous to Cu-catalyst, must be removed before used in next reaction. The purity of compounds **3a**-**3y** were determined by ¹H NMR, which was generally 85%~100%. The impurity was identified as $\text{Ar}^1\text{--N=N--Ar}^2$, which was also confirmed by GC-MS.)

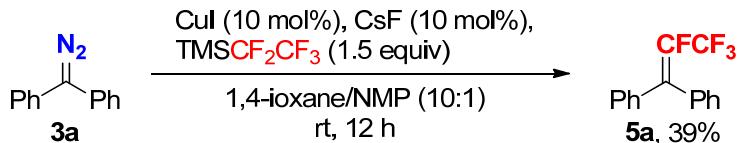

5. Typical experimental procedure for reaction of compound **3a** with pre-generated CuCF₃ (eq 2(a))⁵

In a glovebox, to an oven-dried 25-mL Schlenk tube equipped with a stir bar were added CuI (143 mg, 0.75 mmol) and CsF (137 mg, 0.9 mmol). Then the Schlenk tube was sealed with a septum and brought to the bench. TMSCF₃ (128 mg, 0.9 mmol) in NMP (3 mL) was added via syringe. After stirring at room temperature for 30 minutes, diphenyldiazomethane (**3a**) (97 mg, 0.5 mmol) in NMP (3 mL) was added. The reaction mixture was stirred at room

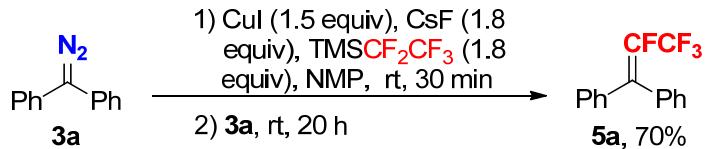

temperature for 20 hours. After the addition of PhCF_3 (42 mg) as an internal standard, the reaction was monitored by ^{19}F NMR.

6. Typical experimental procedure for reaction of compound **3a with pre-generated CuCF_3 with H_2O as promoter (eq 2(b)):**⁵

In a glovebox, to an oven-dried 25-mL Schlenk tube equipped with a stir bar were added CuI (143 mg, 0.75 mmol) and CsF (137 mg, 0.9 mmol). Then the Schlenk tube was sealed with a septum and brought to the bench. TMSCF_3 (128 mg, 0.9 mmol) in NMP (3 mL) was added via syringe. After stirring at room temperature for 30 minutes, diphenyldiazomethane (**3a**) (97 mg, 0.5 mmol) in NMP (3 mL) was added, then H_2O (0.4 mL, 22 mmol) was added. After the addition of H_2O , the color of reaction mixture was changed from purple to light yellow during 5 minutes, which indicated that **3a** was exhausted. Then PhCF_3 (44 mg) was added as an internal standard, the reaction was monitored by ^{19}F NMR.


7. Typical experimental procedures for preparation of 2,2-diaryl-1,1-difluoroalkenes **4 (Taking **4a** for example):**

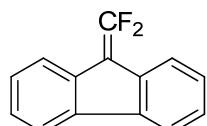
In a glovebox, to an oven-dried 10-mL vial equipped with a stir bar and a Teflon-lined screw cap were added CuI (9.5 mg, 0.05 mmol) and CsF (7.6 mg, 0.05 mmol). Then the vial


was sealed and brought to the bench. Under N_2 atmosphere, TMSCF_3 (142 mg, 1.0 mmol) in NMP (0.5 mL) was added, then diphenyldiazomethane (**3a**) (194 mg, 1.0 mmol) in 1,4-dioxane (5 mL) was added. Then the vial was sealed again. The resulting mixture was stirred for 10 hours at room temperature. After addition of H_2O (15 mL), the mixture was extracted with Et_2O (3×20 mL). The combined organic extracts were washed with H_2O (2×20 mL), then brine (20 mL), dried over MgSO_4 and concentrated *in vacuo*. The residual was purified by chromatography on silica gel with petroleum ether as eluent to afford **4a** (163 mg, 75% yield) as a colorless oil.

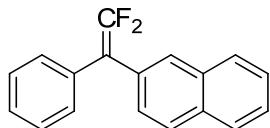
8. Typical experimental procedure for reaction of compound **3a** with $\text{TMSCF}_2\text{CF}_3$ with CuI as catalyst (eq 3):


In a glovebox, to an oven-dried 10-mL vial equipped with a stir bar and a Teflon-lined screw cap were added CuI (9.5 mg, 0.05 mmol) and CsF (7.6 mg, 0.05 mmol). Then the vial was sealed and brought to the bench. Under N_2 atmosphere, $\text{TMSCF}_2\text{CF}_3$ (144 mg, 0.75 mmol) in NMP (0.5 mL) was added, then diphenyldiazomethane (**3a**) (97 mg, 0.5 mmol) in 1,4-dioxane (5 mL) was added. Then the vial was sealed again. The resulting mixture was stirred for 12 hours at room temperature. After addition of H_2O (15 mL), the mixture was extracted with Et_2O (3×20 mL). The combined organic extracts were washed with H_2O (2×20 mL), then brine (20 mL), dried over MgSO_4 and concentrated *in vacuo*. The residual was purified by chromatography on silica gel with petroleum ether as eluent to afford **5a** (52 mg, 39% yield) as a colorless oil.

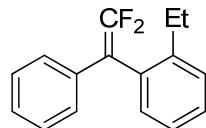
9. Typical experimental procedure for reaction of compound **3a with pre-generated **CuCF₂CF₃** (eq 4):⁵**


In a glovebox, to an oven-dried 25-mL Schlenk tube equipped with a stir bar were added CuI (143 mg, 0.75 mmol) and CsF (137 mg, 0.9 mmol). Then the Schlenk tube was sealed with a septum and brought to the bench. TMSCF₂CF₃ (173 mg, 0.9 mmol) in NMP (3 mL) was added via syringe. After stirring at room temperature for 30 minutes, diphenyldiazomethane (**3a**) (97 mg, 0.5 mmol) in NMP (3 mL) was added. The reaction mixture was stirred at room temperature for 20 hours. After the addition of PhCF₃ (50 mg) as an internal standard, the reaction was monitored by ¹⁹F NMR.

(2,2-Difluoroethene-1,1-diyl)dibenzene (4a**):⁶**

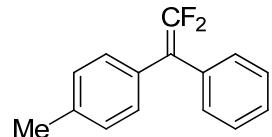

Colorless oil. ¹H NMR (400 MHz, CDCl₃/TMS): δ 7.39–7.28 (m, 9H); ¹⁹F NMR (376 MHz, CDCl₃/CFCl₃): δ -87.82 (s, 2F); MS (EI, *m/z*): 216 (M⁺, 100.00), 165 (84.69).

9-(Difluoromethylene)-9H-fluorene (4b**):⁷**

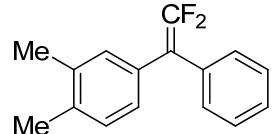

Yellow Solid. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.76 (d, $J = 6.7$ Hz, 2H), 7.71 (d, $J = 7.5$ Hz, 2H), 7.40–7.32 (m, 4H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –75.24 (s, 2F); MS (EI, m/z): 214 (M^+ , 100.00), 163 (13.78).

2-(2,2-Difluoro-1-phenylvinyl)naphthalene (4c):

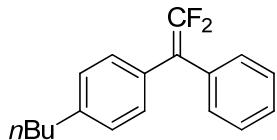
White solid. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.86–7.77 (m, 4H), 7.51–7.47 (m, 2H), 7.40–7.32 (m, 6H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –87.32 (d, $J = 31.4$ Hz, 1F), –87.54 (d, $J = 31.4$ Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 154.2 (t, $J = 293.7$ Hz), 134.6 (t, $J = 3.0$ Hz), 133.5, 132.8, 131.9 (t, $J = 3.9$ Hz), 129.9 (t, $J = 3.4$ Hz), 129.2 (t, $J = 3.0$ Hz), 128.7, 128.3, 128.2, 127.9, 127.8, 127.5 (t, $J = 3.0$ Hz), 126.6, 126.5, 96.7 (t, $J = 18.3$ Hz); IR (film): 3058, 1706, 1445, 1251, 1238, 993, 818, 760, 698 cm^{-1} ; MS (EI, m/z): 266 (M^+ , 100.00), 215 (56.49); HRMS (EI): exact mass calcd for $\text{C}_{18}\text{H}_{14}\text{F}_2(\text{M}^+)$: 266.0907, found: 266.0905.


1-(2,2-Difluoro-1-phenylvinyl)-2-ethylbenzene (4d):

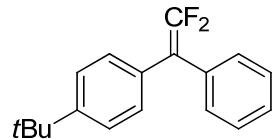
Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.37–7.18 (m, 9H), 2.47 (q, $J = 7.7$ Hz, 2H), 1.06 (t, $J = 7.7$ Hz, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –83.31 (d, $J = 32.0$ Hz, 1F), –88.50 (d, $J = 32.0$ Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 153.6 (dd, $J = 298.3$ Hz, $J = 287.2$ Hz), 143.7 (d, $J = 3.1$ Hz), 134.2 (m), 132.4 (d, $J = 4.8$ Hz), 131.3 (t, $J = 3.0$ Hz), 129.0, 128.8, 128.5, 128.3 (dd, $J = 5.3$ Hz, $J = 3.0$ Hz), 127.2, 126.1, 94.8 (dd, $J = 21.0$ Hz, $J = 14.6$ Hz), 26.2, 14.9; IR (film): 3061, 2969, 2875, 1709, 1446, 1247, 985, 761 cm^{-1} ; MS (EI, m/z):


244 (M^+ , 45.45), 178 (100.00); HRMS (EI): exact mass calcd for $C_{16}H_{14}F_2 (M^+)$: 244.1064, found: 244.1067.

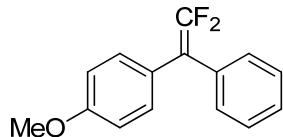
1-(2,2-Difluoro-1-phenylvinyl)-4-methylbenzene (4e):⁸


Colorless oil. 1H NMR (300 MHz, $CDCl_3$ /TMS): δ 7.37–7.23 (m, 5H), 7.15 (s, 4H), 2.35 (s, 3H); ^{19}F NMR (282 MHz, $CDCl_3$ /CFCl₃): δ –88.09 (d, J = 33.9 Hz, 1F), –88.30 (d, J = 34.1 Hz, 1F); MS (EI, m/z): 230 (M^+ , 100.00), 215 (33.02).

4-(2,2-Difluoro-1-phenylvinyl)-1,2-dimethylbenzene (4f):


Colorless oil. 1H NMR (300 MHz, $CDCl_3$ /TMS): δ 7.36–7.23 (m, 5H), 7.11 (d, J = 7.6 Hz, 1H), 7.03, (s, 1H), 6.99 (d, J = 7.9 Hz, 1H), 2.26 (s, 3H), 2.23 (s, 3H); ^{19}F NMR (282 MHz, $CDCl_3$ /CFCl₃): δ –88.05 (d, J = 34.2 Hz, 1F), –88.53 (d, J = 34.2 Hz, 1F); ^{13}C NMR (100 MHz, $CDCl_3$ /TMS): δ 153.7 (t, J = 292.1 Hz), 136.6, 136.1, 134.6 (t, J = 3.8 Hz), 131.8 (t, J = 3.1 Hz), 130.8 (t, J = 3.1 Hz), 129.7, 129.6 (t, J = 3.4 Hz), 128.4, 127.1 (t, J = 3.0 Hz), 96.1 (t, J = 18.4 Hz), 19.8, 19.5; IR (film): 3059, 2922, 1708, 1446, 1247, 984, 761 cm^{-1} ; MS (EI, m/z): 244 (M^+ , 100.00), 229 (39.48), 178 (20.74); HRMS (EI): exact mass calcd for $C_{16}H_{14}F_2 (M^+)$: 244.1064, found: 244.1063.

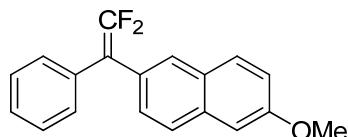
1-Butyl-4-(2,2-difluoro-1-phenylvinyl)benzene (4g):


Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.37–7.23 (m, 5H), 7.16 (s, 4H), 2.61 (t, J = 7.9 Hz, 2H), 1.61 (m, 2H), 1.38 (m, 2H), 0.93 (t, J = 7.1 Hz, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -88.16 (s, 2F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 153.7 (t, J = 293.5 Hz), 142.3, 134.5, 131.5, 129.6 (t, J = 3.1 Hz), 129.4 (t, J = 3.1 Hz), 128.4, 128.3, 127.5, 126.8 (d, J = 10.7 Hz), 96.1 (t, J = 18.4 Hz), 35.3, 33.5, 22.4, 13.9; IR (film): 3058, 2958, 2931, 2859, 1706, 1514, 1446, 1244, 988, 762, 698 cm^{-1} ; MS (EI, m/z): 272 (M^+ , 53.66), 229 (100.00); HRMS (EI): exact mass calcd for $\text{C}_{18}\text{H}_{18}\text{F}_2(\text{M}^+)$: 272.1377, found: 272.1378.

1-(*tert*-Butyl)-4-(2,2-difluoro-1-phenylvinyl)benzene (4h):

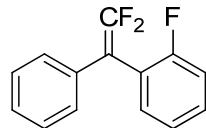

Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.37–7.23 (m, 7H), 7.18 (d, J = 8.4 Hz, 2H), 1.32 (s, 9H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -87.94 (d, J = 34.1 Hz, 1F), -88.14 (d, J = 34.0 Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 153.9 (t, J = 293.6 Hz), 150.6, 134.6 (t, J = 3.0 Hz), 131.4 (t, J = 2.8 Hz), 129.9 (t, J = 3.0 Hz), 129.3 (t, J = 3.8 Hz), 128.5, 127.6, 125.5, 96.2 (t, J = 18.4 Hz), 34.7, 31.4; IR (film): 3059, 2965, 1707, 1517, 1446, 1246, 989, 835, 763, 698 cm^{-1} ; MS (EI, m/z): 272 (M^+ , 38.81), 257 (100.00); HRMS (EI): exact mass calcd for $\text{C}_{18}\text{H}_{18}\text{F}_2(\text{M}^+)$: 272.1377, found: 272.1380.

1-(2,2-Difluoro-1-phenylvinyl)-4-methoxybenzene (4i):⁹


Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.36–7.22 (m, 5H), 7.18 (d, $J = 8.1$ Hz, 2H), 6.87 (d, $J = 8.8$ Hz, 2H), 3.80 (s, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –88.63 (d, $J = 35.0$ Hz, 1F), –88.83 (d, $J = 35.0$ Hz, 1F); MS (EI, m/z): 246 (M^+ , 100.00), 183 (39.70).

1-(2,2-Difluoro-1-phenylvinyl)-3-phenoxybenzene (4j):

White solid. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.37–7.23 (m, 8H), 7.09 (t, $J = 7.4$ Hz, 1H), 7.01–6.97 (m, 4H), 6.92 (d, $J = 8.1$ Hz, 1H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –86.841 (d, $J = 30.9$ Hz, 1F), –87.02 (d, $J = 31.1$ Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 157.2, 157.0, 153.8 (t, $J = 293.8$ Hz), 136.1 (m), 133.9 (t, $J = 3.2$ Hz), 129.8, 129.62, 129.58, 129.54, 128.4, 127.7, 124.5 (t, $J = 3.5$ Hz), 123.3, 120.3 (t, $J = 4.0$ Hz), 118.8, 117.9, 95.9 (t, $J = 18.1$ Hz); IR (film): 3063, 1706, 1489, 1253, 1002, 756, 696 cm^{-1} ; MS (EI, m/z): 308 (M^+ , 100.00), 165 (37.02); HRMS (EI): exact mass calcd for $\text{C}_{20}\text{H}_{14}\text{OF}_2$ (M^+): 308.1013, found: 308.1017.

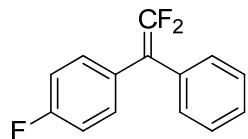

2-(2,2-Difluoro-1-phenylvinyl)-6-methoxynaphthalene (4k):

White solid. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.72–7.65 (m, 3H), 7.39–7.24 (m, 6H), 7.16–7.12 (m, 2H), 3.92 (s, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –87.79 (d, $J = 33.0$ Hz, 1F), –87.96 (d, $J = 33.0$ Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 158.3, 154.1 (t, $J =$

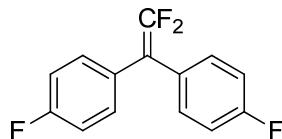
292.7 Hz), 134.7 (t, J = 2.9 Hz), 134.0, 129.9 (t, J = 3.9 Hz), 129.7, 129.5 (t, J = 3.0 Hz), 128.9 (m), 128.6, 127.9 (t, J = 3.1 Hz), 127.7, 127.1, 119.4, 105.7, 96.6 (t, J = 18.4 Hz), 55.3; IR (film): 3061, 2967, 1716, 1486, 1244, 1221, 1003, 856, 765, 696 cm^{-1} ; MS (EI, m/z): 296 (M^+ , 100.00), 202 (19.94); HRMS (EI): exact mass calcd for $\text{C}_{19}\text{H}_{14}\text{OF}_2(\text{M}^+)$: 296.1013, found: 296.1019.

1-(2,2-Difluoro-1-phenylvinyl)-2-fluorobenzene (4m):

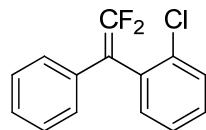
Colorless oil. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.37–7.10 (m, 9H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -83.31 (dd, J = 27.3 Hz, J = 13.6 Hz, 1F), -87.50 (d, J = 25.8 Hz, 1F), -113.3 (s, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 160.5 (d, J = 251.2 Hz), 153.7 (dd, J = 296.2 Hz, J = 291.9 Hz), 133.6 (t, J = 14.2 Hz), 132.3 (q, J = 1.6 Hz), 130.2, 130.1, 128.7 (t, J = 3.8 Hz), 128.5, 127.5, 124.2 (d, J = 3.9 Hz), 116.1, 115.9, 90.5 (dd, J = 20.6 Hz, J = 19.0 Hz); IR (film): 3062, 3037, 1717, 1493, 1448, 1255, 988, 758 cm^{-1} ; MS (EI, m/z): 234 (M^+ , 100.00), 183 (64.45), 165 (53.89); HRMS (EI): exact mass calcd for $\text{C}_{14}\text{H}_9\text{F}_3(\text{M}^+)$: 234.0656, found: 234.0654.


1-(2,2-Difluoro-1-phenylvinyl)-3-fluorobenzene (4n):

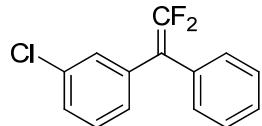
Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.44–7.23 (m, 6H), 7.06–6.96 (m, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -86.41 (d, J = 29.9 Hz, 1F), -86.63 (d, J = 29.9 Hz, 1F), -112.88–112.97 (m, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 162.68 (d, J = 245.6 Hz),


153.9 (dd, $J = 294.8$ Hz, $J = 293.2$ Hz), 136.4 (m), 133.6 (t, $J = 3.0$ Hz), 129.8 (d, $J = 8.4$ Hz), 129.6 (t, $J = 3.0$ Hz), 128.5, 127.8, 125.2 (q, $J = 3.0$ Hz), 116.6 (t, $J = 3.9$ Hz), 116.4 (t, $J = 3.9$ Hz), 114.6, 114.4, 95.4 (t, $J = 17.5$ Hz); IR (film): 3063, 1708, 1586, 1488, 1255, 1001, 836, 696 cm^{-1} ; MS (EI, m/z): 234 (M^+ , 100.00), 183 (84.15); HRMS (EI): exact mass calcd for $\text{C}_{14}\text{H}_9\text{F}_3$ (M^+): 234.0656, found: 234.0653.

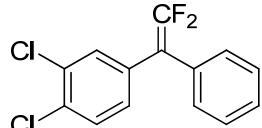
1-(2,2-Difluoro-1-phenylvinyl)-4-fluorobenzene (4o):⁹


Colorless oil. ^1H NMR (400 MHz, CDCl_3 /TMS): δ 7.36–7.21 (m, 7H), 7.03 (t, $J = 8.6$ Hz, 2H); ^{19}F NMR (376 MHz, CDCl_3 /CFCl₃): δ –87.90 (s, 1F), –87.92 (s, 1F), –114.21 (m, 1F); MS (EI, m/z): 234 (M^+ , 100.00), 183 (91.20).

4,4'-(2,2-Difluoroethene-1,1-diy)bis(fluorobenzene) (4p):¹⁰

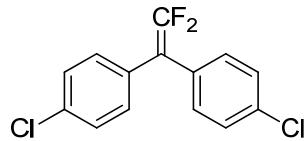

Colorless oil. ^1H NMR (400 MHz, CDCl_3 /TMS): δ 7.24–7.18 (m, 4H), 7.06–7.01 (m, 4H); ^{19}F NMR (376 MHz, CDCl_3 /CFCl₃): δ –87.97 (s, 2F), –113.92 (m, 2F); MS (EI, m/z): 252 (M^+ , 76.59), 201 (100.00).

1-Chloro-2-(2,2-difluoro-1-phenylvinyl)benzene (4q):

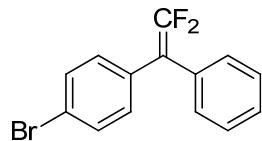

Colorless oil. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.49–7.46 (m, 1H), 7.35–7.31 (m, 5H), 7.28–7.23 (m, 3H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –82.61 (d, J = 27.3 Hz, 1F), –88.37 (d, J = 28.7 Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 153.9 (dd, J = 297.6 Hz, J = 289.1 Hz), 135.1 (m), 133.3 (dd, J = 5.3 Hz, J = 3.0 Hz), 132.8 (dd, J = 5.3 Hz, J = 2.3 Hz), 132.5 (dd, J = 3.0 Hz, J = 1.5 Hz), 130.1, 129.8, 128.6, 128.4 (dd, J = 5.4 Hz, J = 3.0 Hz), 127.5, 127.1, 94.0 (dd, J = 22.1 Hz, J = 18.3 Hz); IR (film): 3060, 1716, 1497, 1249, 985, 757 cm^{-1} ; MS (EI, m/z): 250 (M^+ , 61.93), 165 (100.00); HRMS (EI): exact mass calcd for $\text{C}_{14}\text{H}_9\text{F}_2\text{Cl}$ (M^+): 250.0361, found: 250.0365.

1-Chloro-3-(2,2-difluoro-1-phenylvinyl)benzene (4r):

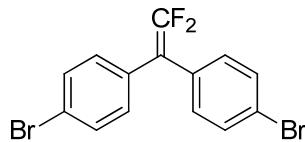
Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.39–7.23 (m, 8H), 7.16–7.12 (m, 1H), 7.28–7.23 (m, 3H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –86.41 (d, J = 28.6 Hz, 1F), –86.59 (d, J = 30.0 Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 153.9 (t, J = 294.7 Hz), 136.1 (t, J = 3.1 Hz), 134.3, 133.5 (t, J = 3.2 Hz), 129.61, 129.56, 129.53, 128.5, 127.8, 127.7, 95.5 (m); IR (film): 3064, 1709, 1493, 1248, 996, 787, 695 cm^{-1} ; MS (EI, m/z): 250 (M^+ , 100.00), 165 (84.77); HRMS (EI): exact mass calcd for $\text{C}_{14}\text{H}_9\text{F}_2\text{Cl}$ (M^+): 250.0361, found: 250.0363.


1,2-Dichloro-4-(2,2-difluoro-1-phenylvinyl)benzene (4s):

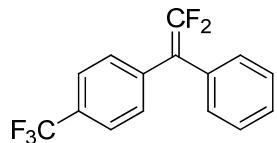
White solid. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.42–7.32 (m, 5H), 7.23 (d, J = 8.9 Hz, 2H), 7.10 (d, J = 8.4 Hz, 1H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –85.71 (d, J = 27.9 Hz, 1F),


–86.07 (d, J = 27.8 Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3 /TMS): δ 153.9 (t, J = 294.6 Hz), 134.4 (t, J = 3.8 Hz), 133.2 (t, J = 3.0 Hz), 132.7, 131.8, 131.4 (t, J = 3.1 Hz), 130.4, 129.6 (t, J = 2.9 Hz), 128.9 (t, J = 3.8 Hz), 128.7, 128.1, 95.0 (dd, J = 19.8 Hz, J = 17.5 Hz); IR (film): 3062, 1708, 1474, 1246, 996, 760, 698 cm^{-1} ; MS (EI, m/z): 284 (M^+ , 92.47), 214 (100.00); HRMS (EI): exact mass calcd for $\text{C}_{14}\text{H}_8\text{F}_2\text{Cl}_2$ (M^+): 283.9971, found: 283.9972.

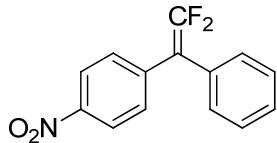
4,4'-(2,2-Difluoroethene-1,1-diyl)bis(chlorobenzene) (4t):¹⁰


Colorless oil. ^1H NMR (400 MHz, CDCl_3 /TMS): δ 7.32 (d, J = 8.2 Hz, 4H), 7.16 (d, J = 8.3 Hz, 4H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –86.41 (s, 2F); MS (EI, m/z): 284 (M^+ , 100.00), 214 (97.48).

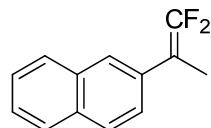
1-Bromo-4-(2,2-difluoro-1-phenylvinyl)benzene (4u):⁸


White solid. ^1H NMR (300 MHz, CDCl_3 /TMS): δ 7.46 (d, J = 8.5 Hz, 2H), 7.38–7.22 (m, 5H), 7.12 (d, J = 8.3 Hz, 2H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –86.75 (d, J = 31.0 Hz, 1F), –87.03 (d, J = 30.9 Hz, 1F); MS (EI, m/z): 294 (M^+ , 25.66), 296 ($[\text{M}+2]^+$, 24.67), 84 (100.00).

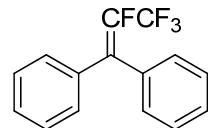
4,4'-(2,2-Difluoroethene-1,1-diyl)bis(bromobenzene) (4v):¹⁰


Yellow solid. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.47 (d, $J = 8.2$ Hz, 4H), 7.10 (d, $J = 8.2$ Hz, 4H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -86.14 (s, 2F); MS (EI, m/z): 372 (M^+ , 26.93), 374 ($[\text{M}+2]^+$, 55.58), 376 ($[\text{M}+4]^+$, 33.58), 214 (100.00).

1-(2,2-Difluoro-1-phenylvinyl)-4-(trifluoromethyl)benzene (4w):⁸


Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.60 (d, $J = 8.3$ Hz, 2H), 7.39–7.29 (m, 5H), 7.26–7.22 (m, 2H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -62.65 (s, 3F), -85.63 (d, $J = 28.9$ Hz, 1F), -88.36 (d, $J = 28.9$ Hz, 1F); MS (EI, m/z): 284 (M^+ , 100.00), 165 (46.21).

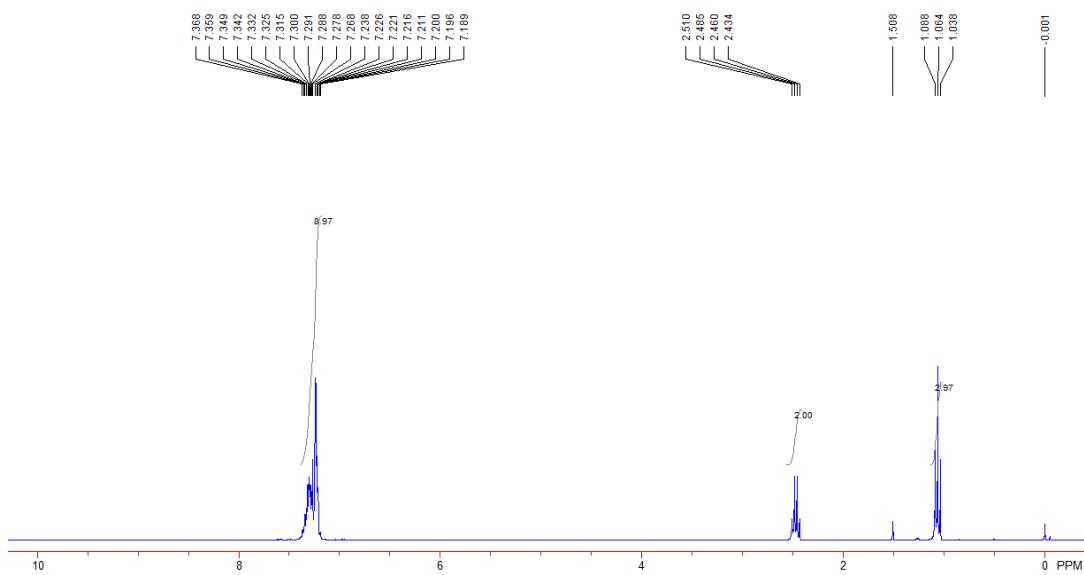
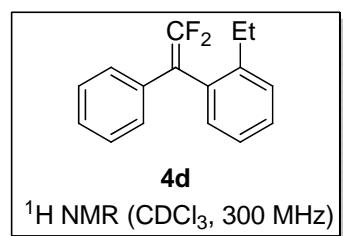
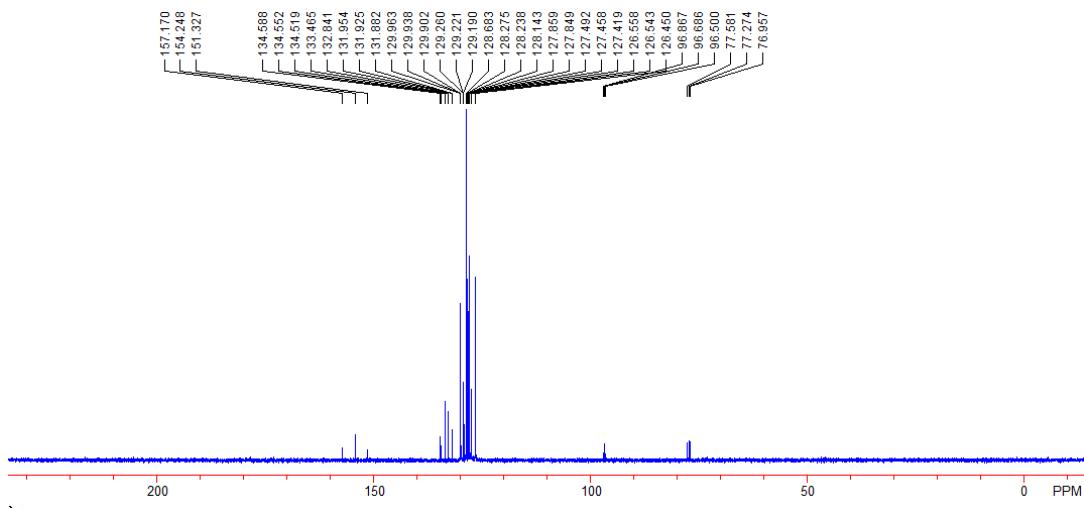
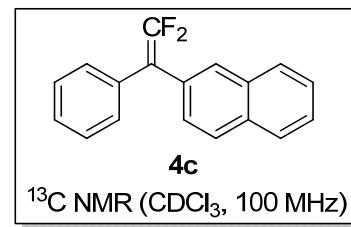
1-(2,2-Difluoro-1-phenylvinyl)-4-nitrobenzene (4x):⁸

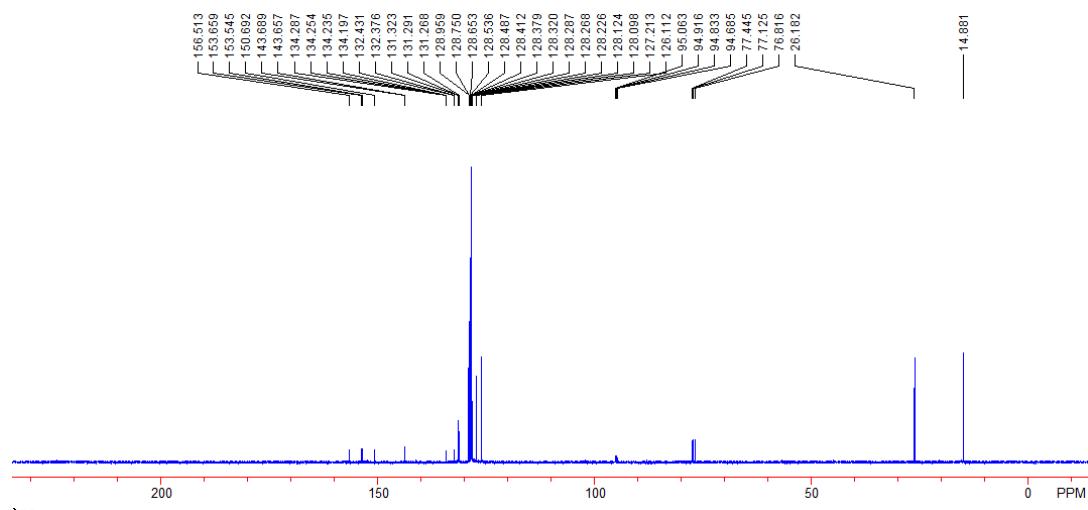
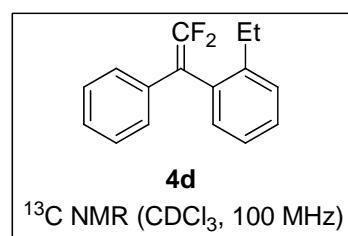
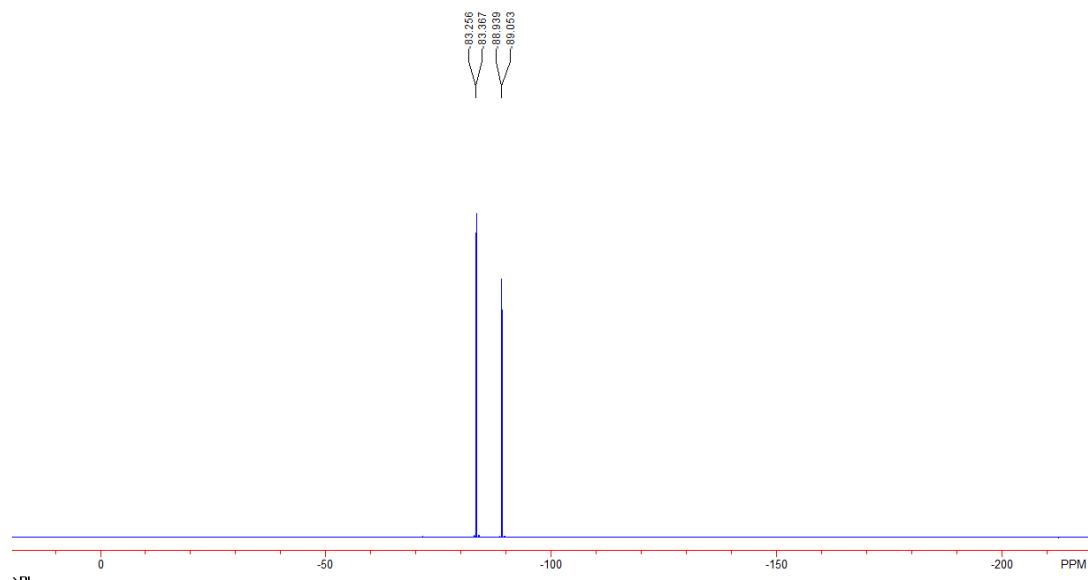
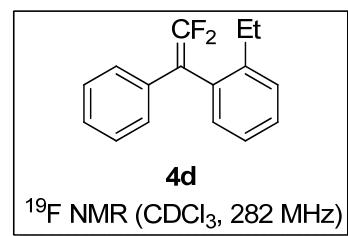

Yellow solid. ^1H NMR (400 MHz, CDCl_3/TMS): δ 8.18 (d, $J = 8.6$ Hz, 2H), 7.44–7.33 (m, 5H), 7.23 (d, $J = 7.4$ Hz, 2H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ -83.53 (d, $J = 23.8$ Hz, 1F), -84.81 (d, $J = 23.2$ Hz, 1F); MS (EI, m/z): 261 (M^+ , 100.00), 165 (56.48), 214 (49.73).

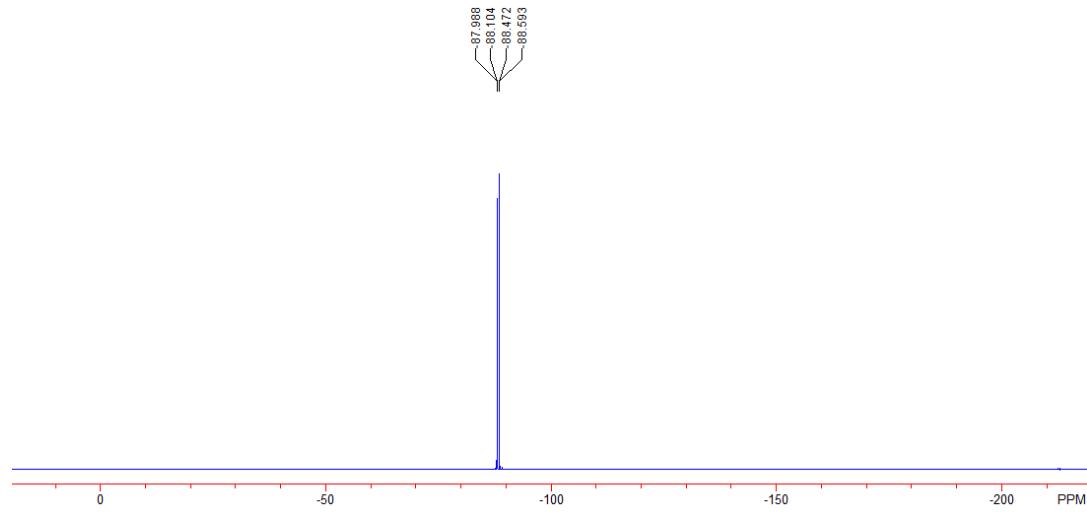
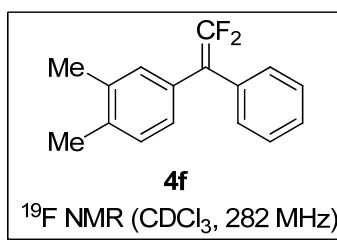
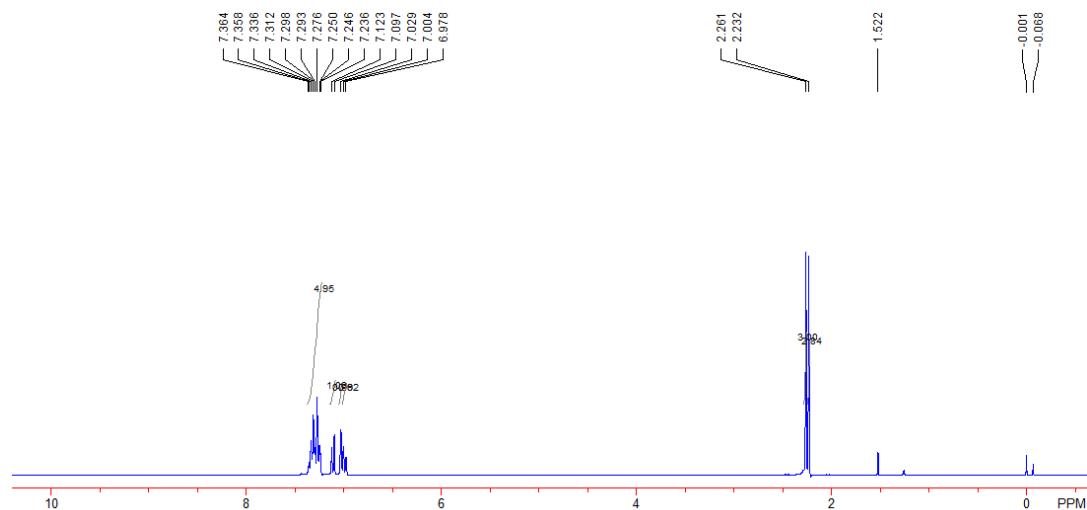
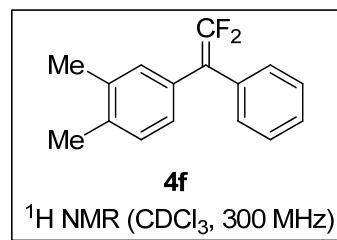
2-(1,1-Difluoroprop-1-en-2-yl)naphthalene (4y):¹¹

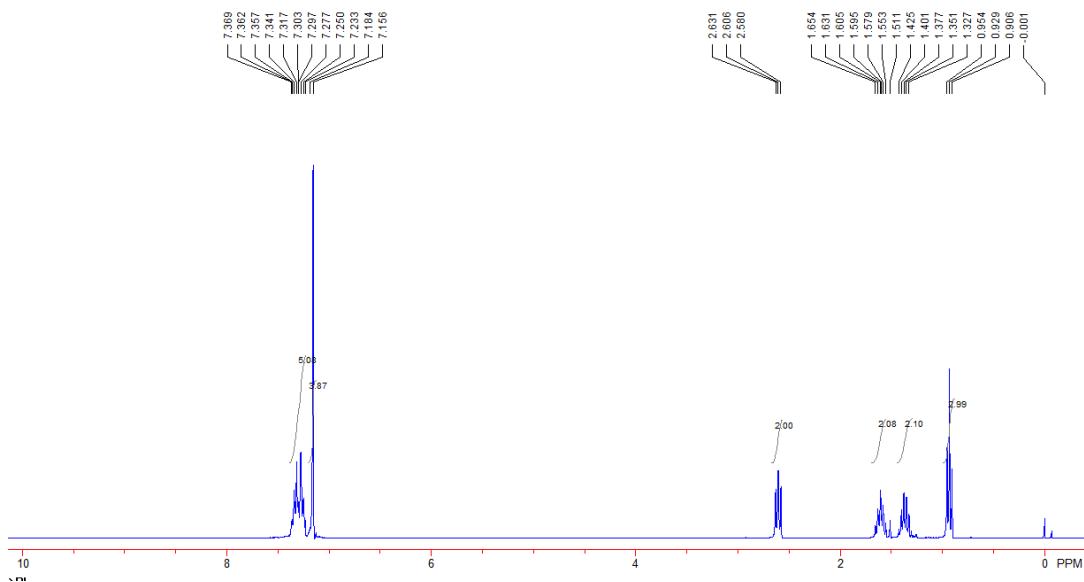
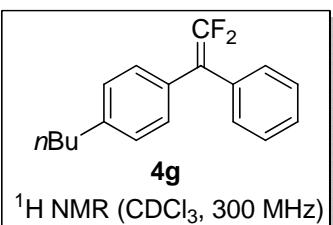
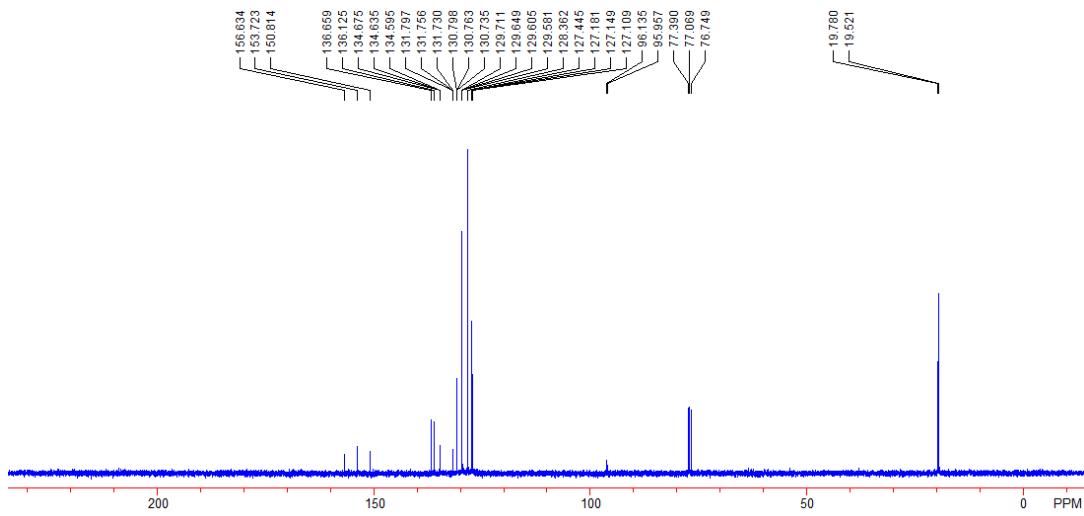
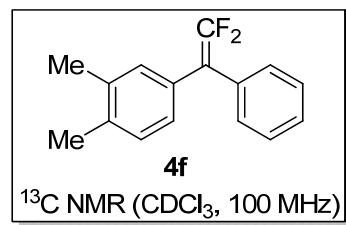
White solid. ^1H NMR (400 MHz, CDCl_3/TMS): δ 7.82–7.78 (m, 4H), 7.51–7.45 (m, 3H), 2.07 (t, J = 3.1 Hz, 3H); ^{19}F NMR (376 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –89.72 (dq, J = 43.5 Hz, J = 2.9 Hz, 1F), –90.37 (d, J = 42.3 Hz, 1F); MS (EI, m/z): 204 (M^+ , 100.00), 128 (55.66).

(Perfluoroprop-1-ene-1,1-diyl)dibenzene (5a):¹²





Colorless oil. ^1H NMR (300 MHz, CDCl_3/TMS): δ 7.42–7.27 (m, 10H); ^{19}F NMR (282 MHz, $\text{CDCl}_3/\text{CFCl}_3$): δ –64.3 (d, J = 9.6 Hz, 3F), –128.8 (d, J = 9.5 Hz, 1F); ^{13}C NMR (100 MHz, CDCl_3/TMS): δ 142.0 (dq, J = 36.7 Hz, J = 261.7 Hz), 135.2, 134.43, 134.39, 129.6, 129.5, 129.0, 128.7, 128.3, 119.4 (qd, J = 273.3 Hz, J = 42.1 Hz); IR (film): 3061, 3030, 1667, 1447, 1345, 1194, 1137, 1099, 762, 699 cm^{-1} ; MS (EI, m/z): 266 (M^+ , 100.00), 196 (72.03); HRMS (EI): exact mass calcd for $\text{C}_{15}\text{H}_{10}\text{F}_4(\text{M}^+)$: 266.0719, found: 266.0722.





10. References





1. Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*, 5th ed.; Butterworth Heinemann: Oxford, **2003**.
2. Bélanger, D.; Tong, X.; Soumaré, S.; Dory, Y. L.; Zhao, Y. *Chem. Eur. J.* **2009**, *15*, 4428.
3. (a) Miller, J. B. *J. Org. Chem.* **1959**, *24*, 560. (b) Reimlinger, H. *Ber.* **1954**, *97*, 3493. (c) Kumar, S.; Murray, R. W. *J. Am. Chem. Soc.* **1984**, *106*, 1040.
4. (a) Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; Jansen, A. B. A.; Walker, T. *J. Chem. Soc.* **1952**, 1094. (b) See 3c.
5. Hu, M.; Ni, C.; Hu, J. *J. Am. Chem. Soc.* **2012**, *134*, 15257.
6. Nowak, I.; Robins, M. *J. Org. Lett.* **2005**, *7*, 721.
7. Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. *Org. Lett.* **2010**, *12*, 1444.
8. Choi, J. H.; Jeong, I. H. *Tetrahedron Lett.* **2008**, *49*, 952.
9. Raghavanpillai, A.; Burton, D. J. *J. Org. Chem.* **2006**, *71*, 194.
10. Han, S. Y.; Lee, H. Y.; Jeon, J. H.; Jeong, I. H. *Tetrahedron Lett.* **2012**, *53*, 1833.
11. Nowak, I.; Robins, M. *J. Org. Lett.* **2005**, *7*, 721.
12. Jeong, I. H.; Park, Y. S.; Kim, M. S.; Song, Y. S. *J. Fluorine Chem.* **2003**, *120*, 195.





11. ^1H , ^{19}F and ^{13}C NMR Spectra of New Products.

