Supporting Information

Synthesis and evaluation of the multi-target-directed ligands against

 Alzheimer's disease based on the fusion of donepezil and ebselenZonghua Luo, Jianfei Sheng, Yang Sun, Chuanjun Lu, Jun Yan, Anqiu Liu, Hai-bin Luo, Ling Huang*, Xingshu Li*
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China

Contents

S2-S4 Experimental procedures for the synthesis of amine intermediates amine (4a-4e)

S4-S17 HPLC and FT-IR spectrum of the target compounds

S18-S24 Coupled Reductase Assay
S25-S26 Tables of results for the PAMPA
S27 References

1. Experimental procedures for the synthesis of amine intermediates amine(4a-4e). First, the reaction of 1-benzylpiperidin-4-one s1 with hydroxylamine hydrochloride, in the presence of potassium carbonate, produced oxime $\mathbf{s 2}$, which was reduced with LiAlH_{4} to produce amine 4a. Separately, s1 reacted with diethyl cyanomethylphosphonate in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to produce unsaturated nitrile $\mathbf{s 3}$. The hydrogenation of compound $\mathbf{s} 3$ catalysed by Pt / C yielded nitrile $\mathbf{s} 4$, which was reduced with LiAlH_{4} in THF at $0^{\circ} \mathrm{C}$ to produce amine $\mathbf{4 c}$. The synthesis of amine $4 \mathbf{e}$ was similar to that of amine $\mathbf{4 c}$. The Wittig reaction of $\mathbf{s 1}$ with triethyl phosphonoacetate produced unsaturated ester $\mathbf{~ 5 5}$, which underwent hydrogenation, reduction by LiAlH_{4} and oxidation to make aldehyde s6, successively. Following the same procedure used to prepare amine $\mathbf{4 c}$, compound $\mathbf{s 6}$ was converted to amine $\mathbf{4 e}$, which has four carbon spacers between the piperidine ring and the amino group. Using 1-benzylpiperidine-4-carbaldehyde as the starting material, amine $\mathbf{4 d}$ was obtained by the above method. Amine 4b was obtained by benzylation of piperidine-4-carboxamide and subsequent reduction with LiAlH_{4}.

Scheme S1. Synthesis of amine intermediates 4a-4e. Reagents and conditions: (a) Hydroxylamine hydrochloride, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$; (b) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux; (c) Diethyl cyanomethylphosphonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF; (d) $\mathrm{Pt} / \mathrm{C}, \mathrm{H}_{2}$; (e) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (f) Triethyl phosphonoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF; (g) Oxalyl chloride, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}$; (j) $\mathrm{BnBr}, \mathrm{NaHCO}_{3}$, toluene.

1-benzylpiperidin-4-one oxime (s2). ${ }^{1}$ 1-Benzyl-4-piperidone ($4 \mathrm{~g}, 21.2 \mathrm{mmol}$) in dry $\mathrm{EtOH}(4 \mathrm{~mL})$ was added to a mixture of hydroxylamine hydrochloride $(2.95 \mathrm{~g}$, $42.4 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.85 \mathrm{~g}, 42.4 \mathrm{mmol})$ in $\mathrm{EtOH}(16 \mathrm{~mL})$. The reaction mixture was refluxed for 1 h and was filtered after cooling. The residue was washed with EtOH , and the filtrate was evaporated to yield oxime ($\mathbf{s} 2$) $(3.81 \mathrm{~g}, 88 \%)$ as a solid, which was used without further purification.

4-benzylcyclohexanamine (4a). 1-Benzylpiperidin-4-one oxime (s2) (2.04 g, 10
mmol) in dry THF (5 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(1.0 \mathrm{~g}, 26.3 \mathrm{mmol})$ in dry THF (20 mL) at $0{ }^{\circ} \mathrm{C}$, and the mixture was refluxed for 16 h . After cooling to room temperature, 1.0 mL of water was added slowly, and the solution was stirred for 15 min at $0^{\circ} \mathrm{C}$. One millilitre of $15 \% \mathrm{NaOH}$ was added, the solution was stirred for another 15 min and 3.0 mL water was added. The mixture was filtered and washed with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, resulting in a colourless oil (4a) ($1.42 \mathrm{~g}, 75 \%$) that was used without further purification.

1-benzylpiperidine-4-carboxamide (s10). ${ }^{2}$ Benzyl bromide ($13.0 \mathrm{~mL}, 110$ mmol) was added slowly to a mixture of commercial piperidine-4-carboxamide (s9) $(12.8 \mathrm{~g}, 100 \mathrm{mmol}), \mathrm{NaHCO}_{3}(15.12 \mathrm{~g}, 180 \mathrm{mmol})$ and toluene $(200 \mathrm{~mL})$. The reaction mixture was refluxed for 2 h and filtered after cooling. The residue was dissolved in MeOH and filtered, and the filtrate was evaporated to yield the crude product. The brown solid was crystallised from acetone and MeOH to produce pure product (s10) ($16.3 \mathrm{~g}, 75 \%$).
(1-benzylpiperidin-4-yl)methanamine (4b) 1-Benzylpiperidine-4-carboxamide ($\mathbf{(1 0)}$) $(3.27 \mathrm{~g}, 15 \mathrm{mmol})$ in dry THF (10 mL) was added to a suspension of LiAlH_{4} $(1.0 \mathrm{~g}, 26.3 \mathrm{mmol})$ in dry THF at $0^{\circ} \mathrm{C}$. The mixture was refluxed for 5 h . In a procedure similar to the production of compound $\mathbf{4 a}$, compound $\mathbf{4 b}$ was produced as a colourless oil ($0.624 \mathrm{~g}, 67 \%$) that was used without further purification.

General procedure for the synthesis of amine (4c, 4d, 4e) from an aldehyde or ketone. ${ }^{2}$
(1) A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{eq})$ and diethyl cyanomethylphosphonate (1.2 eq) in dry THF was stirred at room temperature for 15 min and refluxed for 20 min . After cooling, the aldehyde or ketone (1 eq) was added, and the mixture was refluxed for 12 h. After cooling, a $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution was added, and the mixture was extracted with EtOAc. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was purified by flash chromatography, and a white solid was obtained.
(2) To a solution of the above product in $\mathrm{MeOH}, 10 \% \mathrm{Pt} / \mathrm{C}$ was added, filling the hydrogen to 300 psi . The reaction was stirred at room temperature for 10 h . The solution was then filtered, and the filtrate was concentrated to produce a colourless oil, which was used without further purification.
(3) The product from step 2 in dry THF was added to a suspension of LiAlH_{4} at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . In a process similar to the production of compound $\mathbf{3}$, the amines were obtained and used without further purification.

2-(1-benzylpiperidin-4-yl)ethanamine (4c) Commercial 1-benzyl-4-piperidone was used as the starting reactant to make oil 2-(1-benzylpiperidin-4-yl) ethanamine (4c), yield: 61%.

3-(1-benzylpiperidin-4-yl)propan-1-amine (4d) Commercial 1-benzyl-4-formylpiperidine was used as the starting reactant to make 3-(1-benzylpiperidin-4-yl)propan-1-amine,yield: 64\%.

4-(1-benzylpiperidin-4-yl)butan-1-amine (4e) 2-(1-Benzylpiperidin-4-yl) acetaldehyde ${ }^{3}$ was used as the starting reactant to make

4-(1-benzylpiperidin-4-yl)butan-1-amine, yield: 56\%.

2. HPLC and FT-IR spectrum of the target compounds

2.1 HPLC spectrum

5a

5b
mV

peak\#	retention time	area	area \%
1	7.353	2527	0.016
2	10.446	28632	0.183
3	12.387	1552	0.010
4	14.186	15549616	99.582
5	17.091	3438	0.022
6	18.264	16570	0.106
7	20.559	12546	0.080
total		15614881	100.000

mV

peak\#	retention time	area	area $\%$
1	7.121	16464	0.147
2	13.811	7391	0.066
3	17.370	692	0.006
4	18.694	180496	1.615
5	20.391	10971566	98.165
total		11176609	100.000

5d
mV

mv

peak\#	retention time	area	area $\%$
1	7.501	2271	0.052
2	13.920	3006	0.068
3	17.407	3225	0.073
4	17.993	2294	0.052
5	25.818	4396982	99.755
total		4407777	100.000

peak\#	retention time	area	area $\%$
1	7.359	101580	1.025
2	8.466	35899	0.362
3	15.999	9776487	98.613
total		9913966	100.000

7d

8
mV

peak\#	retention time	area	area $\%$
1	15.058	166413	0.943
2	17.891	17442648	98.855
3	19.529	19136	0.108
4	39.898	16456	0.093
total		17644653	100.000

9

2.2. FT-IR spectrum

5a

Page 1/1
5b

| D:lluozonghual32-2.0 固体 | $28 / 03 / 2013$ |
| :--- | :--- | :--- |

Page 1/1

Page 1/1

5d

D：lluozonghual387－1．0	固体	$28 / 03 / 2013$

Page 1／1
$6 a$

D：lluozonghual378－2．0	固体	$28 / 03 / 2013$

Page 1／1

6b

Page 1/1
6c

Page 1/1

D:lluozonghual387-2.0	固体	$28 / 03 / 2013$

Page 1/1
$7 a$

Page 1/1

D：lluozonghual30．0	固体	$28 / 03 / 2013$

Page 1／1

D：lluozonghual36．0	固体	28／03／2013

Page 1／1

Page 1/1
8

Page 1/1

9

Page 1/1
10

Page 1/1

3. Coupled Reductase Assay

Procedure: Phosphate buffer solution of pH 7.5 was taken in 1 mL cuvette. GSH(2 $\mathrm{mM}), \mathrm{NADPH}(0.4 \mathrm{mM}), \operatorname{GR}(1.3 \mathrm{U} / \mathrm{mL})$ were added into cuvette contained buffer solution. Finally, $\mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ was added to initiate the reaction in a cuvette having mixture of all and immediately start the experiment for the control values in absence of any catalyst. For the test samples $(80 \mu \mathrm{M})$, solution was made in MeOH and added into cuvette containing the mixture of buffer solution, GSH, NADPH and GR. Now, $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to initiate the reaction.

Table S1. Control values (in the absence of the catalyst) in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 mM), GR ($1.3 \mathrm{unit} / \mathrm{mL}$), and $\mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.0583	0.318	51.1254	
2	0.053	0.289091	46.47764	49.5 ± 2.6
3	0.0579	0.315818	50.77463	

Table S2. Reduction rate (v_{0}) of $\mathbf{7 d}$ in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 $\mathrm{mM})$, $\mathrm{GR}(1.3 \mathrm{unit} / \mathrm{mL}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and $7 \mathrm{~d}(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.1270	0.6930	111.37	
2	0.1445	0.7882	126.7173	123.5 ± 10.9
3	0.1510	0.8236	132.4174	

Table S3. Reduction rate $\left(v_{0}\right)$ of $\mathbf{8}$ in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 $\mathrm{mM})$, $\mathrm{GR}(1.3 \mathrm{unit} / \mathrm{mL}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and $\mathbf{8}(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.0944	0.514909	82.78281	
2	0.1011	0.551455	88.65829	86.1 ± 3.0
3	0.0989	0.539455	86.72903	

Table S4. Reduction rate (v_{0}) of 9 in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 $\mathrm{mM})$, GR ($1.3 \mathrm{unit} / \mathrm{mL}$), $\mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and $\mathbf{9}(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Table S5. Reduction rate $\left(v_{0}\right)$ of $\mathbf{1 0}$ in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 mM), GR ($1.3 \mathrm{unit} / \mathrm{mL}$), $\mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and $\mathbf{1 0}(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.1055	0.575455	92.51681	
2	0.1115	0.608182	97.77843	97.1 ± 4.3
3	0.1152	0.628364	101.0231	

Table S6. Reduction rate (v_{0}) of ebselen in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 $\mathrm{mM})$, GR ($1.3 \mathrm{unit} / \mathrm{mL}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and ebselen $(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.1372	0.748364	120.3157	
2	0.1397	0.762	122.508	121.3 ± 1.1
3	0.1382	0.753818	121.1926	

Table S7. Reduction rate (v_{0}) of donepezil in the coupled reductase assay in the coupled reductase assay. Catalyzed reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ by GSH: GSH (2 mM), NADPH (0.4 mM), GR ($1.3 \mathrm{unit} / \mathrm{mL}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{mM})$ and donepezil $(80 \mu \mathrm{M})$, at pH 7.5 in MeOH .

Sr. No.	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \mathrm{min}$	$v_{0}\left(\mu \mathrm{M} \cdot \min ^{-1}\right)$	$v_{0}\left(\mu \mathrm{M} \cdot \mathrm{min}^{-1}\right)$
1	0.054	0.294545	47.35457	
2	0.0484	0.264	42.44373	46.1 ± 3.2
3	0.0553	0.301636	48.49459	

4. Tables of results for the PAMPA

Table S8 Permeability $\left(P_{\mathrm{e}} \times 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)$ in the PAMPA-BBB assay for 13 commercial drugs, used in the Experiment Validation.

Commercial drugs	$\mathrm{Bibl}^{\mathrm{a}}$	PBS : EtOH $(70: 30)^{\mathrm{b}}$
testosterone	17	22.3 ± 1.4
verapamil	16	21.2 ± 1.9
desipramine	12	16.4 ± 1.2
progesterone	9.3	17.7 ± 1.2
promazine	8.8	14.3 ± 0.5
chlorpromazine	6.5	6.0 ± 0.3
clonidine	2.5	5.1 ± 0.3
piroxicam	1.9	0.24 ± 0.01
hydrocortisone	1.1	0.65 ± 0.01
lomefloxacin	0.8	0.37 ± 0.02
atnolol	0.8	0.78 ± 0.02
ofloxacin	0.1	0.37 ± 0.02
theophylline	0.26 ± 0.01	

${ }^{\mathrm{a}}$ Taken from reference $4 .{ }^{\mathrm{b}}$ Data are the mean $\pm \mathrm{SD}$ of three independent experiments

Figure S1. Lineal correlation between experimental and reported permeability of commercial drugs using the PAMPA-BBB assay. P_{e} (exp.) $=1.4574 P \mathrm{e}$ (bibl.) -1.0773 ($\mathrm{R}^{2}=0.9427$)

Table S9. Ranges of Permeability of PAMPA-BBB Assays ($P_{\mathrm{e}}, 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$)
Compounds of high BBB permeation (CNS +) $\quad P_{\mathrm{e}}>4.7$
Compounds of uncertain BBB permeation (CNS+/-) $\quad 4.7>P_{\mathrm{e}}>1.8$

Compounds of low BBB permeation (CNS-) $\quad P_{\mathrm{e}}<1.8$

References

1. Diez, A.; Voldoire, A.; López, I.; Rubiralta, M.; Segarra, V.; Pagès, L.; Palacios, J. Synthetic applications of 2-aryl-4-piperidones. X Synthesis of 3-aminopiperidines, potential substance P antagonists. Tetrahedron 1995, 51, 5143-5156.
2. Contreras, J.-M.; Rival, Y. M.; Chayer, S.; Bourguignon, J.-J.; Wermuth, C. G. Aminopyridazines as Acetylcholinesterase Inhibitors. J. Med Chem. 1999, 42, 730-741.
3. Rodríguez-Franco, M. I.; Fernández-Bachiller, M. I.; Pérez, C.; Castro, A.; Martínez, A. Design and synthesis of N-benzylpiperidine-purine derivatives as new dual inhibitors of acetyl- and butyrylcholinesterase. Bioorg. Med. Chem. 2005, 13, 6795-6802.
4. Di, L.; Kerns, E. H.; Fan, K.; McConnell, O. J.; Carter, G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223-232.
