Tunable asymmetric catalysis through ligand stacking in chiral rigid rods.

Matthieu Raynal,* François Portier, Piet W. N. M. van Leeuwen and Laurent Bouteiller.

SUPPORTING INFORMATION

General Procedures.

All manipulations for the synthesis and reactions were performed under argon using standard Schlenk-techniques unless otherwise stated. Solvents were obtained from commercial suppliers and dried with a solvent purification system (SPS) of IT–Inc. Triethylamine was distilled over CaH₂ and stored over 4Å molecular sieves. All other chemical were used as received from commercial suppliers. 3-diphenylphosphino aniline¹ and *N*-(ethyl)-1-(*S*)-methyl-heptylamine², [Rh(cod)₂]BF₄,³ [Rh(cod)₂]BAr_F⁴ and ^HBTA(*S*)⁵ were prepared according to published procedures. Dimethyl itaconate (1) and [Rh(nbd)₂]BF₄ were provided by Aldrich and Alfa Aesar respectively and used as received for the hydrogenation reactions. (*S*)-2-aminooctane and (*R*)-2-aminooctane were provided by Aldrich and Alfa Aesar respectively (ee>99% in both cases). The preparation and characterization of ^HBTA^{PPh2}(*S*) will be described elsewhere.

All NMR spectra were obtained on a Bruker AVANCE 400 (¹H, 400 MHz; ¹³C, 100.60 MHz; ³¹P, 161.92 MHz) spectrometer and a Bruker AVANCE 300 (¹H, 300 MHz; ¹³C, 75.43 MHz; ³¹P, 121.44 MHz) spectrometer. Proton spectra are referenced to internal Si(CH₃)₄ (0 ppm) or residual CHCl₃ (7.27 ppm). ¹³C{¹H} spectra are referenced to CDCl₃ (77.0 ppm). ³¹P{¹H} spectra are referenced to 85 % H₃PO₄ as external standard. Assignments are based on DEPT135, COSY, HMQC, HMBC and ¹H{³¹P} experiments. The aromatic protons are referred to as: (i) "BTA ring" (aromatic protons which belong to the benzene-1,3,5-tricarboxamide moiety), (ii) "CH arom." (protons belonging to the aryl amide moiety), and (iii) "PPh₂" (the aromatic protons which are not encompassed by the first two categories).

Mass spectra and high resolution mass spectra were obtained on a Bruker Autoflex MALDI-TOF Mass Spectrometer.

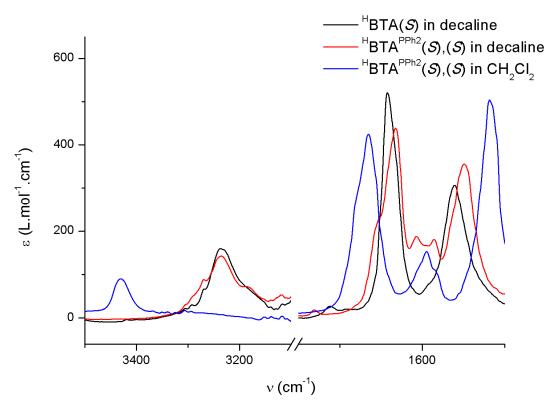
IR spectra were recorded on a Nicolet iS10 apparatus. For IR analysis performed in solution, cells with an optical pathlength of 0.3 cm were employed and spectroscopic grade solvents were employed. For IR analysis of solids, a small amount of the compound dissolved in CH_2Cl_2 was dropped and let evaporated on a KBr lens (s = strong, m = medium, br = broad, w = weak; only the more characteristic bands are reported).

Circular dichroism measurements were performed on a Jasco J-815 spectropolarimeter at 20 °C where the sensitivity, time constant and scan rate were chosen appropriately. Cells with an optimal path length of 0.1 cm or 0.5 cm were employed depending on the compound analyzed and spectroscopic grade solvents were employed. Solutions in decaline were prepared at room temperature under stirring at least 1 day prior to use. UV/Vis spectra were from a Varian UV/Vis spectrophotometer Cary-300 at 20 °C. Cells with an optimal path length of 0.5 cm and spectroscopic grade solvents were employed.

Small-angle neutron scattering measurements were made at the LLB (Saclay, France) on the Pace instrument, at two distance-wavelength combinations to cover the 4×10^{-3} to 0.2Å^{-1} q-range, where the Scattering vector q is defined as usual, assuming elastic scattering, as $q=(4\pi/\lambda)\sin(\theta/2)$, where θ is the angle between incident and scattered beam. Data were corrected for the empty cell signal and the solute and solvent incoherent background. A light water standard was used to normalize the scattered intensities to cm⁻¹ units.

Catalytic experiments.

General procedure for the asymmetric hydrogenation of dimethyl itaconate (1): All the solvents have been dried with a SPS of IT-Inc and stored over 4Å molecular sieves. All the stock solutions were prepared in CH₂Cl₂ since all the compounds investigated in this study are readily soluble in this solvent. The hydrogenation experiments were carried out in a HEL autoclave charged with an insert suitable for 24 reactions in glass vessels (including Teflon stirring bars) for conducting parallel reactions. In a typical experiment, the self-assembled precatalysts were prepared in situ in a glass tube mixing 2 equivalents of the phosphine-functionalized BTA (0.1 mL, 40 mM in CH₂Cl₂) and 1 equivalent of [Rh(cod)₂]BAr_F (0.1 mL, 20 mM in CH₂Cl₂). The solution was stirred approximately for 5 minutes before mixing it with dimethyl itaconate (0.2 mL, 1 M in CH₂Cl₂). Alternatively, dimethyl itaconate can be added as a solid with no effect on the catalytic performance. For catalytic reactions performed in CH₂Cl₂: The glass tubes were transferred in a HEL autoclave, the H₂ pressure was adjusted to 3 bar without incubation. The mixtures were stirred for 12 h at room temperature. For catalytic reactions performed in other solvents: The CH₂Cl₂ catalytic solutions were stirred overnight and then evaporated under vacuum. 0.5 mL of the desired solvent was added and the glass tubes were put in an ultrasonic bath for 15 min. The glass tubes were transferred in a HEL autoclave, the H₂ pressure was adjusted to 3 bar without incubation. The mixtures were stirred for 12 h at room temperature. For catalytic reactions performed with HBTA(S) as additive: The precatalysts were prepared by mixing 2 equivalents of the phosphine-functionalized BTA (0.1 mL, 40 mM in CH₂Cl₂), 2.5 equivalents of ^HBTA(S) (0.25 mL, 20mM in CH₂Cl₂), 1 equivalent of [Rh(cod)₂]BAr_F (0.1 mL, 20 mM in CH₂Cl₂), the solution was stirred approximately for 5 minutes before mixing it with dimethyl itaconate (0.2 mL, 1 M in CH₂Cl₂). The CH₂Cl₂ catalytic solutions were stirred overnight and then evaporated under vacuum. 0.5 mL of hexane was added and the glass tubes were put in an ultrasonic bath for 15 min. The glass tubes were transferred in a HEL autoclave, the H₂ pressure was adjusted to 3 bar without incubation. The mixtures were stirred for 12 h at room temperature. Determination of the conversion and the enantiomeric excess: The conversion was determined by ¹H NMR after evaporation of the catalytic solutions under vacuum. Ee were measured by chiral GC (Betadex 225, capillary $30.0mx250\mu mx0.25\mu m$, Flow = 1.5mL/min, P_{He} = 17.6 psi, isotherm at $70^{\circ}C$ (10 min) then 2° C/min until 95°C, $t_r(R) = 24.1$ min, $t_r(S) = 24.7$ min). Attribution of enantiomer was made according to published data.⁶ Experiments were performed at least in triplicate except for the control experiments which gave low ee.


Table S.1. Screening of the catalytic conditions with ${}^{\rm H}{\rm BTA}^{\rm PPh2}(S)$,(S)

entry	solvent	ligand:rhodium	BTA ligand	Rh precursor	conversion (%)	ee (%)
1	CH ₂ Cl ₂	2:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	0
2	toluene	2:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	28
3	hexane	2:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	82
4	hexane	1:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	13
5	hexane	1.8:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	83
6	hexane	2.2:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BArF	100	82
7	hexane	1:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(nbd) ₂]BF ₄	98	8
8	hexane	1:1	$^{H}BTA^{PPh2}(S),(S)$	[Rh(cod) ₂]BF ₄	90	32

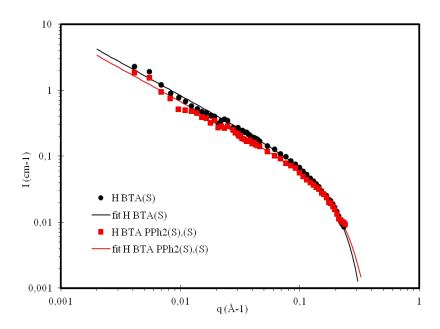

$$[Rh(cod)_2]BAr_F / ligand 1:2 (1\% mol) \\ MeO_2C \begin{tabular}{ll} CO_2Me & n_{catal} = 2 \ \mu mol, [catal] = 4 \ mM, V_T = 0.5 \ mL \\ & solvent, P_{H2} = 3 \ bars, r.t., 12 \ h \\ \begin{tabular}{ll} MeO_2C \begin{tabular}{ll} CO_2Me \\ \hline & solvent, P_{H2} = 3 \ bars, r.t., 12 \ h \\ \begin{tabular}{ll} 2 \\ \hline & 100\% \ conversion \\ \end{tabular}$$

Table S.2. Influence of the solvent on the catalytic performance

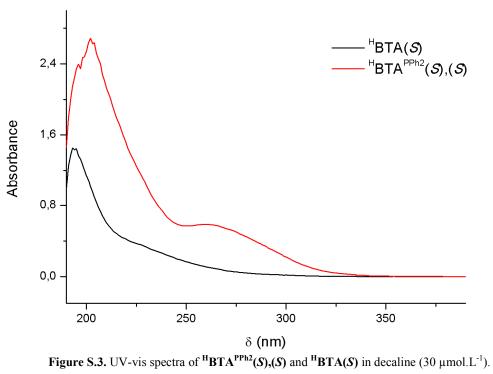

entry	solvent	BTA ligand	ee (%)
1	CH ₂ Cl ₂	$^{H}BTA^{PPh2}(S),(S)$	0
2	toluene	$^{H}BTA^{PPh2}(S),(S)$	28
3	toluene:hexane 1:1	$^{H}BTA^{PPh2}(S),(S)$	46
4	hexane	$^{H}BTA^{PPh2}(S),(S)$	82
5	CH ₂ Cl ₂	$^{H}BTA^{PPh2}(R),(R)$	0
6	toluene	$^{H}BTA^{PPh2}(R),(R)$	-29
7	toluene:hexane 1:1	$^{H}BTA^{PPh2}(R),(R)$	-47
8	hexane	$^{H}BTA^{PPh2}(R),(R)$	-81
9	CH ₂ Cl ₂	HBTA PPh2 (S)	0
10	toluene	HBTA PPh2 (S)	39
11	toluene:hexane 1:1	HBTA PPh2 (S)	64
12	hexane	HBTA ^{PPh2} (S)	67

Figure S.1. IR spectra recorded in the N-H stretching region and the C=O stretching and amide II regions for ${}^{\rm H}BTA(S)$ in decaline and ${}^{\rm H}BTA(S)$, in decaline and ${}^{\rm H}BTA(S)$, in decaline and ${}^{\rm H}BTA(S)$.

Figure S.2. SANS intensity versus scattering vector for solutions of ^HBTA(*S*) (4 mmol.L⁻¹) and ^HBTA^{PPh2}(*S*),(*S*) (3 mmol.L⁻¹) in deuterated cyclohexane. The curves are fitted according to a model for rigid and infinitely long cylindrical objects.⁷

The UV-Vis spectrum of ^HBTA(S) is in accordance with the one reported previously by Nakano et al. ⁸

Synthesis and characterization of the BTA derivatives.

Structure and nomenclature of the BTA derivatives studied in this paper.

Synthesis of HBTAPPh2(S),(S):

3-diphenylphosphinoaniline (0.744 g, 2.68 mmol, 0.95 equiv.) and NEt₃ (2 mL, 14.8 mmol, 5.23 equiv.) in 50 mL of CH₂Cl₂ were added dropwise to a cold solution (ice-water-salt bath) of benzene-1,3,5tricarbonyl trichloride (0.73 g, 2.83 mmol, 1.00 equiv.) in 10 mL of dry CH₂Cl₂. The reaction mixture was stirred overnight. Then (S)-octan-2-amine (1.14 mL, 6.92 mmol, 2.45 equiv.) was added and the mixture was stirred further 12 h. Volatiles were removed and the resulting crude mixture was dissolved in CH₂Cl₂, washed with brine. Evaporation of the solvent led to a crude product which was purified twice by column chromatography (silica, CH₂Cl₂) yielding ^HBTA^{PPh2}(S)₂(S) as a sticky colorless solid (0.180 g, 0.26 mmol, 9%). ${}^{31}P{}^{1}H{}$ -NMR (CDCl₃): δ (ppm) = -1.75 (s). ${}^{1}H$ -NMR (CDCl₃): δ (ppm) = 0.87 (t, 6H, CH_3 , $J_{H-H} = 7.3$ Hz), 1.23 (d, 6H, $CHCH_3$, $J_{H-H} = 6.6$ Hz), 1.24-1.39 (m, 16H, CH_2), 1.49-1.57 (m, 4H, CHC H_2), 4.13-4.22 (m, 2H, CH), 6.17 (d, 2H, NHCH, J_{H-H} = 8.5 Hz), 7.15 (tt, 1H, CH arom., J_{H-H} = 7.9, 1.2 Hz, $J_{H-P} = 7.2$ Hz), 7.30-7.36 (m, 10H, PPh₂), 7.37-7.41 (m, 2H, CH arom.), 7.84 (dd, 1H, CH arom.) J_{H-H} = 8.5, 1.8 Hz), 8.21 (s, 1H, NHAr), 8.33 (t, 1H, BTA ring, J_{H-H} = 1.5 Hz), 8.38 (d, 2H, BTA ring, J_{H-H} $_{\rm H}$ = 8.5, 1.9 Hz). 13 C{ 1 H}-NMR (CDCl₃): δ (ppm) = 14.2 (CH₂CH₃), 20.9 (CHCH₃), 22.7 (CH₂), 26.3 (CH₂), 29.3 (CH₂), 31.9 (CH₂), 37.0 (NHCHCH₂), 46.5 (NHCH), 121.1 (CH arom. ortho-NH), 125.3 (d, CH arom. ortho-NH, $J_{\text{C-P}} = 21.1 \text{ Hz}$), 128.1 (CH BTA ring), 128.2 (CH BTA ring), 128.7 (d, PPh₂ meta, $J_{\text{C-P}} = 7.0 \text{ Hz}$), 129.0 (PPh₂ para), 129.4 (d, CH arom. meta-NH, $J_{\text{C-P}} = 7.5 \text{ Hz}$), 130.2 (d, CH arom. para-NH, $J_{C-P} = 20.5$ Hz), 134.0 (d, PPh₂ ortho, $J_{C-P} = 19.5$ Hz), 135.8 (C BTA ring), 137.0 (d, PPh₂ ipso, J_{C-P} = 10.8 Hz), 138.3 (d, C arom. *ipso*-NH, J_{C-P} = 8.1 Hz), 138.8 (d, C arom. *meta*-NH, J_{C-P} = 12.5 Hz), 164.8 (CO), 165.4 (CO). MS: (ESI, MeOH) m/z 692.4 $[M + H]^+$ corresponds to $C_{43}H_{55}N_3O_3P$; 714.4 $[M + Na]^+$ corresponds to C₄₃H₅₄N₃O₃PNa; 746.4 [M + Na + CH₃OH]⁺ corresponds to C₄₄H₅₈N₃O₄PNa. HRMS (ESI, m/z): $714.3790 \text{ [M + Na]}^+$, $714.3795 \text{ calcd for } C_{43}H_{54}N_3O_3PNa$. IR (film layer, cm⁻¹): 1546 (s, C- N), 1586 (m, C-N), 1606 (m, C-N), 1632 (s, C=O), 3234 (m br, N-H stretch). Enantiomeric excess > 99% (determined by chiral HPLC).

Synthesis of ${}^{H}BTA^{PPh2}(R),(R)$:

3-diphenylphosphinoaniline (0.957 g, 3.45 mmol, 1.22 equiv.) and NEt₃ (2.56 mL, 19.0 mmol, 6.70 equiv.) in 50 mL of CH₂Cl₂ were added dropwise to a cold solution (ice-water-salt bath) of benzene-1,3,5-tricarbonyl trichloride (0.73 g, 2.83 mmol, 1.00 equiv.) in 10 mL of dry CH₂Cl₂. The reaction mixture was stirred overnight. Then (R)-octan-2-amine (1.30 mL, 7.60 mmol, 2.70 equiv.) was added and the mixture was stirred further 12 h. Volatiles were removed and the resulting crude mixture was dissolved in CH₂Cl₂, washed with brine. Evaporation of the solvent led to a crude product which was purified two times by column chromatography (silica, CH₂Cl₂) yielding ${}^{\rm H}BTA^{\rm PPh2}(R)$,(R) as a sticky colorless solid (0.160 g, 0.23 mmol, 8%). Analytical data are identical to ${}^{\rm H}BTA^{\rm PPh2}(S)$,(S). HRMS (ESI, m/z): 714.3797 [M + Na]⁺, 714.3795 calcd for C₄₃H₅₄N₃O₃PNa. Enantiomeric excess > 99% (determined by chiral HPLC).

Synthesis of HBTA PPh2 (rac),(rac):

3-diphenylphosphinoaniline (0.957 g, 3.45 mmol, 1.22 equiv.) and NEt₃ (2.56 mL, 19.0 mmol, 6.70 equiv.) in 50 mL of CH₂Cl₂ were added dropwise to a cold solution (ice-water-salt bath) of benzene-1,3,5-tricarbonyl trichloride (0.73 g, 2.83 mmol, 1.00 equiv.) in 10 mL of dry CH₂Cl₂. The reaction mixture was stirred overnight. Then octan-2-amine (1.30 mL, 7.60 mmol, 2.70 equiv.) was added and the mixture was stirred further 12 h. Volatiles were removed and the resulting crude mixture was dissolved in CH₂Cl₂, washed with brine. Evaporation of the solvent led to a crude product which was purified two times by column chromatography (silica, CH₂Cl₂) yielding ^HBTA^{PPh2}(*rac*),(*rac*) as a sticky colorless solid (0.210 g, 0.23 mmol, 11%). Analytical data are identical to ^HBTA^{PPh2}(S),(S). ^HBTA^{PPh2}(*rac*),(*rac*) has been prepared for the purpose of determining the optical purity of ^HBTA^{PPh2}(S),(S) and ^HBTA^{PPh2}(R),(R).

Synthesis of $^{\text{Et}}BTA^{\text{PPh2}}(S)$,(S):

5-Methoxycarbonyl-benzene-1,3-dicarboxylic acid⁹ (0.590 g, 2.92 mmol, 1.00 equiv.) was dissolved in dry THF (20 mL) under an argon atmosphere and two droplets of DMF was added. Oxalyl chloride (0.75 mL, 7.88 mmol, 2.70 equiv.) in THF (10 mL) was added dropwise to the solution and the reaction mixture was stirred for 2 h. The THF was removed in vacuo and a yellowish suspension was obtained. The excess of oxalyl chloride was removed by co-evaporation with toluene. The NMR analysis of the intermediate acyl chloride was consistent with published data. The acyl chloride was dissolved in dry CH₂Cl₂ (20 mL) and a solution of N-ethyl-1-(S)-methyl-heptylamine (1.000 g, 6.37 mmol, 2.18 equiv.) and NEt₃ (1.57 mL, 11.60 mmol, 3.98 equiv.) in CH₂Cl₂ (20 mL) was added dropwise. The progress of the reaction was monitored by TLC (CH2Cl2/AcOEt 8:2). After 48 h, CH2Cl2 was removed under vacuum, THF (40 mL) was added and the reaction mixture was warmed at 45 °C for 30 min. The solution was cooled to room temperature and the solvent was evaporated under vacuum. The crude product was purified by column chromatography (silica, CH₂Cl₂/AcOEt 8:2) yielding I₁ as a colorless oil (0.250 g, 0.50 mmol, 17%). $^{1}\text{H-NMR}$ (CDCl₃): 0.85 (t, 6H, CH₃, $J_{\text{H-H}} = 7.0 \text{ Hz}$), 0.97 - 1.41 (m, $28\text{H}, 8 \times \text{CH}_2 + 4 \times 1.4 \times$ CH_3), 1.42-1.55 (m, 4H, $CHCH_2$), 3.08-3.38 (m, 3H, $CH_3CH_2N + NCH$), 3.39-3.77 (m, 2H, CH_3CH_2N), 3.93 (s, 3H, OCH₃), 4.30-4.57 (br s, 1H, NCH), 7.48 (br s, 1H, CH BTA ring), 8.04 (br s, 2H, CH BTA ring). ${}^{13}\text{C}{}^{1}\text{H}$ -NMR (CDCl₃): δ (ppm) = 14.1 (CH₃), 14.6 (CH₃), 16.5 (CH₃), 19.3 (CH₃), 20.1 (CH₃), 22.7 (CH₂), 26.6 (CH₂), 27.0 (CH₂), 29.3 (CH₂), 31.8 (CH₂), 32.0 (CH₂), 34.7 (CH₂), 35.2 (CH₂), 35.8 (CH₂), 40.5 (CH₂), 51.5 (CH), 52.6 (CH), 55.3 (CH), 128.1 (CH BTA ring), 128.3 (CH BTA ring), 128.6 (CH BTA ring), 130.9 (C BTA ring), 138.5 (C BTA ring), 165.8 (CO), 170.0 (CO).

 I_1 (0.225 g, 0.45 mmol, 1.00 equiv.) was dissolved in MeOH (10 mL). LiOH (0.021 g, 0.92 mmol, 2.00 equiv.) and a few drops of water were added to the solution. The solution was stirred at room temperature for 12 h and then warmed to 40 °C for 48 h. The solution was cooled to room temperature and HCl 4M in

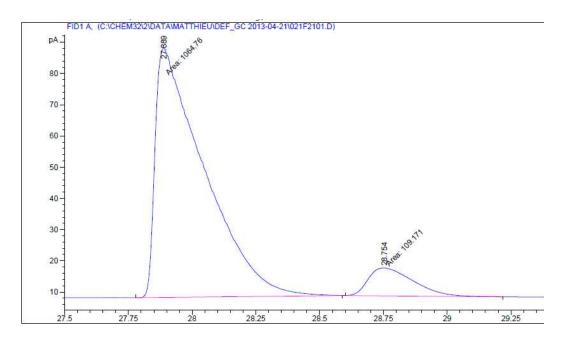
dioxane (0.24 mL, 0.97 mmol, 2.12 equiv.) was added and the solution was stirred for 1 h. MeOH was removed in vacuo yielding a colorless oil that was dried under vacuum overnight. This oil corresponded to the expected mono-acid product with LiCl as a by-product. It was used for the next step without further purification. A round-bottom flask was charged with the mono-acid, DMAP (0.093 g, 0.77 mmol, 1.70 equiv.) and 3-diphenylphosphinoaniline (0.221 g, 0.77 mmol, 1.70 equiv.) and THF (20 mL). The solution was cooled with an ice-water-salt bath and 1-(3-dimethylpropyl)-3-ethylcarbodiimide hydrochloride (EDC, 0.13 mL, 0.77 mmol, 1.70 equiv.) in THF (10 mL) was quickly added to the solution. The mixture was refluxed and the progress of the reaction was monitored by TLC. After 48 h, the reaction mixture was cooled to room temperature and the THF was removed in vacuo. CH₂Cl₂ (50 mL) was added and the organic phase was washed with water (2 × 50 mL), dried over MgSO₄, filtered and evaporated in vacuo. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/AcOEt 8:2) yielding EtBTA PPh₂(S)₂(S) (0.075 g, 0.10 mmol, 22%) as a colorless oil that crystallized upon standing. NMR analysis in CDCl₃ at room temperature indicated the presence of a mixture of isomers in a quite slow exchange. 10 H-NMR analysis in d₈-toluene at 374 K is described since a single set of signals is present at this temperature. $^{31}P\{^{1}H\}$ -NMR (d_{8} -toluene, 374 K): δ (ppm) = 0.35 (s). 1 H-NMR (d₈-toluene 374 K): δ (ppm) = 0.85 (t, 6H, CH₃, $J_{\text{H-H}}$ = 7.0 Hz), 1.01 (d, 6H, CHC H_3 , $J_{\text{H-H}}$ = 6.5 Hz), 1.09 (t, 6H, CH_3CH_2N , $J_{H-H} = 6.8$ Hz), 1.12-1.35 (m, 20H, CH_2), 3.02-3.10 (m, 2H, CH_3CH_2N), 3.17-3.25 (m, 2H, CH₃CH₂N), 3.84 (br s, 2H, NCH), 6.95 (br s, 1H, CH arom.), 7.02-7.13 (m, 7H, PPh₂+ 1 CH arom.), 7.34-7.41 (m, 4H, PPh₂), 7.53 (t, 1H, BTA ring, J_{H-H} = 1.5 Hz), 7.83 (dt, 1H, CH arom., J_{H-H} = 9.0, 1.5 Hz), 7.88 (d, 1H, CH arom., J_{H-H} = 8.0 Hz), 7.98 (d, 2H, BTA ring, J_{H-H} = 1.0 Hz), 8.62 (br s, 1H, NHAr). ${}^{13}C{}^{1}H}$ -NMR (CDCl₃, 298 K): δ (ppm) = 14.1 (CH₃), 14.6 (CH₃), 16.4 (CH₃), 19.1 (CH₃), 20.1 (CH₃), 22.7 (CH₂), 26.6 (CH₂), 27.1 (CH₂), 29.2 (CH₂), 29.8 (CH₂), 31.8 (CH₂), 34.7 (CH₂), 35.2 (CH₂), 35.9 (CH₂), 40.6 (CH₂), 51.7 (CH), 55.3 (CH), 121.0 (CH arom. ortho-NH), 125.2 (d, CH arom. ortho-NH, $J_{\text{C-P}} = 22.4 \text{ Hz}$), 126.1 (CH BTA ring), 127.1 (CH BTA ring), 127.2 (CH BTA ring), 128.7 (d, PPh₂ meta, $J_{C-P} = 6.8$ Hz), 129.0 (PPh₂ para), 129.3 (d, CH arom. meta-NH, $J_{C-P} = 7.0$ Hz), 130.1 (d, CH arom. para-NH, $J_{C-P} = 18.7$ Hz), 133.9 (d, PPh₂ ortho, $J_{C-P} = 19.7$ Hz), 135.8 (C BTA ring), 137.0 (d, PPh₂ ipso, $J_{C-P} = 11.7$ Hz), 138.3 (d, C arom. ipso-NH, $J_{C-P} = 8.5$ Hz), 138.5 (C BTA ring), 138.7 (d, C arom. meta-NH, J_{C-P} = 12.9 Hz), 139.1 (C BTA ring), 164.4 (CO), 170.0 (CO). HRMS (ESI, m/z): $770.4418 \text{ [M + Na]}^+$, $770.4421 \text{ calcd for } C_{47}H_{62}N_3O_3PNa. \text{ IR (film layer, cm}^{-1})$: 1541 (m, C-N), 1603 (s, C-N), 1633 (s, C=O), 3295 (w br, N-H stretch).

Synthesis of HBTAPPh2:

3-diphenylphosphinoaniline (0.957 g, 3.45 mmol, 1.22 equiv.) and NEt₃ (2.56 mL, 19.0 mmol, 6.70 equiv.) in 50 mL of CH₂Cl₂ were added dropwise to a cold solution (ice-water-salt bath) of benzene-1,3,5-

tricarbonyl trichloride (0.73 g, 2.83 mmol, 1.00 equiv.) in 10 mL of dry CH₂Cl₂. The reaction mixture was stirred overnight. Then octylamine (1.40 mL, 8.50 mmol, 3.35 equiv.) was added and the mixture was stirred further 12 h. Volatiles were removed and the resulting crude mixture was dissolved in CH₂Cl₂, washed with brine. Evaporation of the solvent led to a crude product which was purified two times by column chromatography (silica, CH₂Cl₂) yielding ^HBTA^{PPh2} as a sticky colorless solid (0.350 g, 0.51 mmol, 18%). ${}^{31}P{}^{1}H}-NMR (CDCl_3)$: $\delta (ppm) = -1.84 (s). {}^{1}H-NMR (CDCl_3)$: $\delta (ppm) = 0.87 (t, 6H, CH_3, 18.5)$ $J_{H-H} = 7.4 \text{ Hz}$), 1.20-1.40 (m, 20H, CH₂), 1.55 (quintet, 4H, NCH₂CH₂, $J_{H-H} = 7.3 \text{ Hz}$), 3.37 (q, 4H, NCH_2 , $J_{H-H} = 6.6 Hz$), 6.62 (br s, 2H, $NHCH_2$), 7.11 (tt, 1H, CH arom., $J_{H-H} = 7.6$, 1.3 Hz, $J_{H-P} = 7.2 Hz$), 7.29-7.35 (m, 11H, PPh₂ + 1 CH arom.), 7.43 (dt, 1H, CH arom., $J_{H-H} = 7.8$, 1.3 Hz), 7.83 (dd, 1H, CH arom., J_{H-H} = 8.2, 1.4 Hz), 8.20 (s, 1H, BTA ring), 8.27 (s, 2H, BTA ring), 8.75 (br s, 1H, NHAr). $^{13}C\{^{1}H\}$ -NMR (CDCl₃): δ (ppm) = 14.2 (CH₃), 22.8 (CH₂), 27.2 (CH₂), 29.4 (CH₂), 29.6 (CH₂), 32.0 (CH₂), 40.5 (NCH₂), 121.1 (CH arom. ortho-NH), 125.4 (d, CH arom. ortho-NH, J_{C-P} = 21.7 Hz), 128.2 (CH BTA ring), 128.3 (CH BTA ring), 128.7 (d, PPh₂ meta, $J_{C-P} = 7.0$ Hz), 129.0 (PPh₂ para), 129.3 (d, CH arom. *meta*-NH, $J_{C-P} = 7.0 \text{ Hz}$), 130.1 (d, CH arom. *para*-NH, $J_{C-P} = 19.5 \text{ Hz}$), 133.9 (d, PPh₂ ortho, $J_{\text{C-P}} = 19.5 \text{ Hz}$), 135.6 (C BTA ring), 135.9 (C BTA ring), 137.0 (d, PPh₂ ipso, $J_{\text{C-P}} = 10.8 \text{ Hz}$), 138.5 (m, C arom. ipso-NH and meta-NH), 165.2 (CO), 166.5 (CO). MS: (ESI, MeOH) m/z 692.4 [M + H]⁺ corresponds to $C_{43}H_{55}N_3O_3P$. HRMS (ESI, m/z): 714.3790 [M + Na]⁺, 714.3795 calcd for $C_{43}H_{54}N_3O_3PNa$. IR (film layer, cm⁻¹): 1548 (s, C-N), 1584 (m, C-N), 1607 (m, C-N), 1634 (s, C=O), 3244 (m br, N-H stretch).

Synthesis of MeBTAPPh2:


3-diphenylphosphinoaniline (1.270 g, 4.58 mmol, 1.22 equiv.) and NEt₃ (3.41 mL, 24.5 mmol, 6.50 equiv.) in 50 mL of CH₂Cl₂ were added dropwise to a cold solution (ice-water-salt bath) of benzene-1,3,5-tricarbonyl trichloride (1.000 g, 3.76 mmol, 1.00 equiv.) in 10 mL of dry CH₂Cl₂. The reaction mixture was stirred overnight. Then *N*-methyl-octylamine (2.28 mL, 12.60 mmol, 3.35 equiv.) was added and the mixture was stirred further 12 h. Volatiles were removed and the resulting crude mixture was dissolved in CH₂Cl₂, washed with brine. Evaporation of the solvent led to a crude product which was purified two times by column chromatography (silica, CH₂Cl₂) yielding $^{\text{Me}}$ BTA $^{\text{PPh2}}$ as a sticky colorless solid (0.210 g, 0.30 mmol, 8 %). NMR analysis in CDCl₃ at room temperature indicated the presence of a mixture of isomers in a quite slow exchange. $^{10 \text{ 31}}$ P{ $^{\text{1}}$ H}-NMR (CDCl₃): δ (ppm) = -2.55 (br s). $^{\text{1}}$ H-NMR (CDCl₃): δ (ppm) = 0.86 (t, 6H, CH₃, $J_{\text{H-H}}$ = 7.7 Hz), 1.15-1.40 (m, 20H, CH₂), 1.49-1.58 (m, 4H, NCH₂CH₂), 2.92 (br s, 3H, CH₃N, isomer 1), 3.06 (s, 3H, CH₃N, isomer 2), 3.21 (t, 2H, NCH₂, $J_{\text{H-H}}$ = 6.9 Hz, isomer 2), 3.51 (t, 2H, NCH₂, $J_{\text{H-H}}$ = 6.9 Hz, isomer 1), 7.13 (tt, 1H, CH arom., $J_{\text{H-H}}$ = 7.5, 1.3 Hz, $J_{\text{H-P}}$ = 7.2 Hz), 7.29-7.39 (m, 10H, PPh₂), 7.43-7.59 (m, 2H, CH arom.), 7.67 (dd, 1H, CH arom., $J_{\text{H-H}}$ = 12.0, 0.8 Hz),

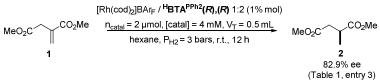
7.90 (s, 2H, BTA ring), 7.94 (d, 1H, CH BTA ring, $J_{\text{H-H}} = 1.5 \text{ Hz}$), 7.98 (br s, 1H, NHAr). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) = 14.2 (CH₃), 22.8 (CH₂), 26.5 (CH₂), 27.0 (CH₂), 28.4 (CH₂), 29.2 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 29.8 (CH₂), 31.8 (CH₂), 33.0 (CH₃N), 37.6 (CH₃N), 47.9 (NCH₂), 51.6 (NCH₂), 121.1 (CH arom.), 123.7 (d, CH arom., $J_{\text{C-P}} = 10.1 \text{ Hz}$), 124.3 (CH BTA ring), 125.4 (d, CH arom., $J_{\text{C-P}} = 23.6 \text{ Hz}$), 126.6 (CH BTA ring), 127.0 (CH BTA ring), 127.2 (CH BTA ring), 127.7 (d, CH arom., $J_{\text{C-P}} = 10.1 \text{ Hz}$), 128.7 (d, PPh₂, $J_{\text{C-P}} = 7.0 \text{ Hz}$), 128.9 (d, PPh₂, $J_{\text{C-P}} = 12.1 \text{ Hz}$),129.2 (d, CH arom., $J_{\text{C-P}} = 8.6 \text{ Hz}$), 129.8 (d, CH arom., $J_{\text{C-P}} = 17.6 \text{ Hz}$), 132.0 (PPh₂), 133.8 (d, PPh₂ *ortho*, $J_{\text{C-P}} = 20.0 \text{ Hz}$), 135.2 (C BTA ring), 135.5 (C BTA ring), 136.9 (d, PPh₂ *ipso*, $J_{\text{C-P}} = 10.8 \text{ Hz}$), 137.4 (C arom.), 138.4 (C arom.), 139.1 (C arom.), 164.5 (CO), 169.5 (CO), 170.0 (CO). HRMS (ESI, m/z): 742.4103 [M + Na]⁺, 742.4108 calcd for $C_{45}H_{58}N_3O_3PNa$. IR (film layer, cm⁻¹): 1542 (s, C-N), 1620 (s, C-N), 1638 (s, C=O), 3294 (w br, N-H stretch).

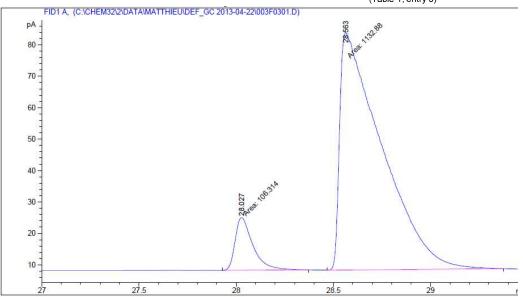
References.

- (1) van Leeuwen, P. W. N. M.; Rivillo, D.; Raynal, M.; Freixa, Z. J. Am. Chem. Soc. **2011**, 133, 18562.
- (2) Kabalka, G. W.; Mccollum, G. W.; Kunda, S. A. J. Org. Chem. 1984, 49, 1656.
- (3) Qiu, H. B.; Inoue, Y.; Che, S. N. Angew. Chem. Int. Ed. 2009, 48, 3069.
- (4) Neumann, E.; Pfaltz, A. Organometallics 2005, 24, 2008.
- (5) Stals, P. J. M.; Smulders, M. M. J.; Martín-Rapún, R.; Palmans, A. R. A.; Meijer, E. W. *Chem. Eur. J.* **2009**, *15*, 2071.
- (6) Fernandez-Perez, H.; Donald, S. M. A.; Munslow, I. J.; Benet-Buchholz, J.; Maseras, F.; Vidal-Ferran, A. *Chem. Eur. J.* **2010**, *16*, 6495.
- (7) Lortie, F.; Boileau, S.; Bouteiller, L.; Chassenieux, C.; Deme, B.; Ducouret, G.; Jalabert, M.; Laupretre, F.; Terech, P. *Langmuir* **2002**, *18*, 7218.
- (8) Nakano, Y.; Hirose, T.; Stals, P. J. M.; Meijer, E. W.; Palmans, A. R. A. *Chem. Sci.* **2012**, *3*, 148.
- (9) Roosma, J.; Mes, T.; Leclere, P.; Palmans, A. R. A.; Meijer, E. W. J. Am. Chem. Soc. 2008, 130, 1120.
- (10) Smulders, M. M. J.; Nieuwenhuizen, M. M. L.; Grossman, M.; Filot, I. A. W.; Lee, C. C.; de Greef, T. F. A.; Schenning, A. P. H. J.; Palmans, A. R. A.; Meijer, E. W. *Macromolecules* **2011**, *44*, 6581.

Determination of enantiomeric excesses by chiral GC

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000


Use Multiplier & Dilution Factor with ISTDs

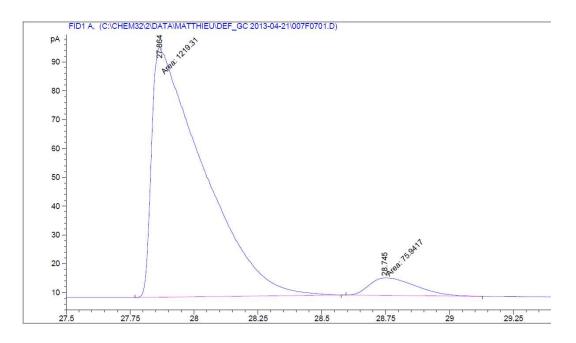
Signal 1: FID1 A,

Peak #	RetTime [min]		Width [min]	Area [pA*s]	Height [pA]	Area %	
1	27.889	MM	0.2218	1064.76013	80.01595	90.70036	
2	28.754	MM	0.2019	109.17145	9.01170	9.29964	

Totals: 1173.93158 89.02766

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000


Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

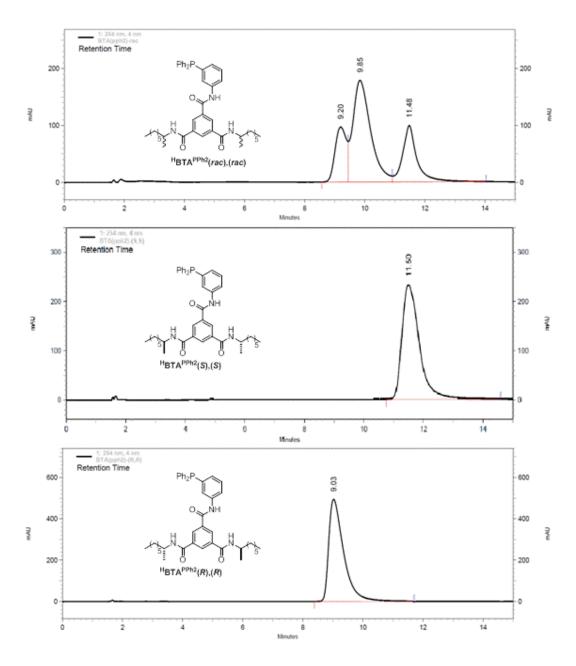
Peak RetTime # [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1 28.027	MM	0.1060	106.31420	16.72118	8.57928
2 28.563	MM	0.2499	1132.88245	75.54771	91.42072

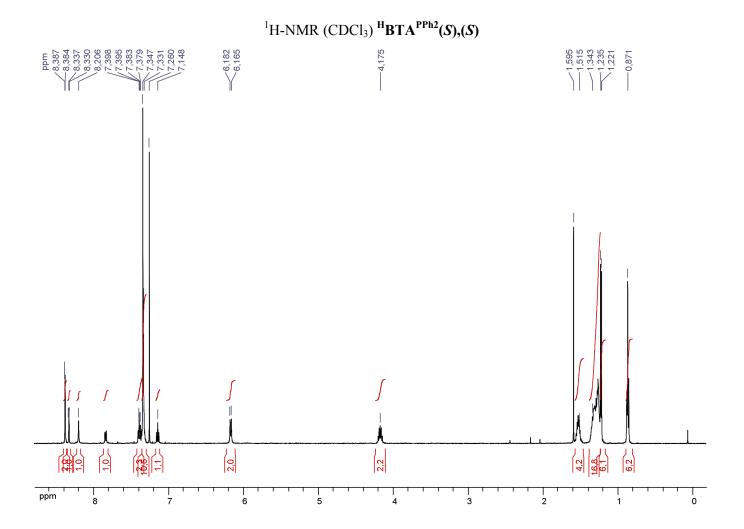
Totals: 1239.19665 92.26889

Area Percent Report

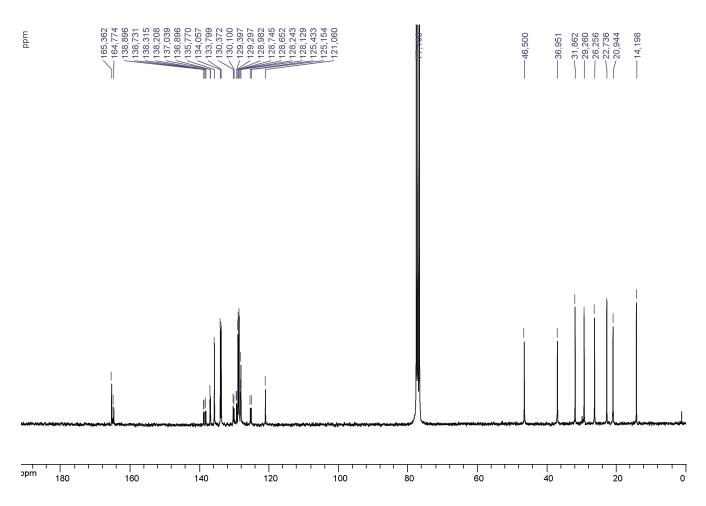
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Use Multiplier & Dilution Factor with ISTDs

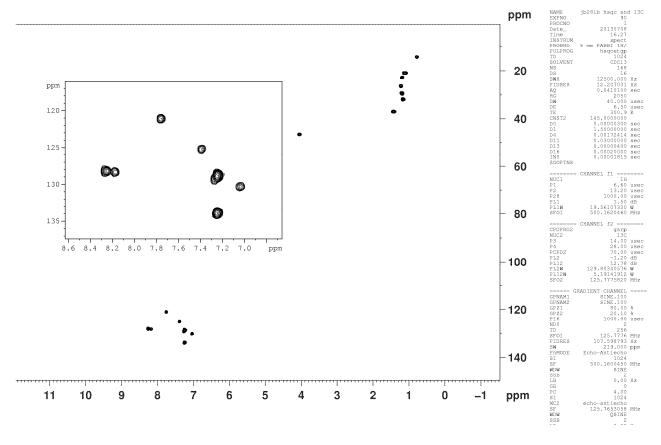

Signal 1: FID1 A,


Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
1	27.864	MM	0.2340	1219.30627	86.82724	94.13690
2	28.745	MM	0.2079	75.94173	6.08656	5.86310

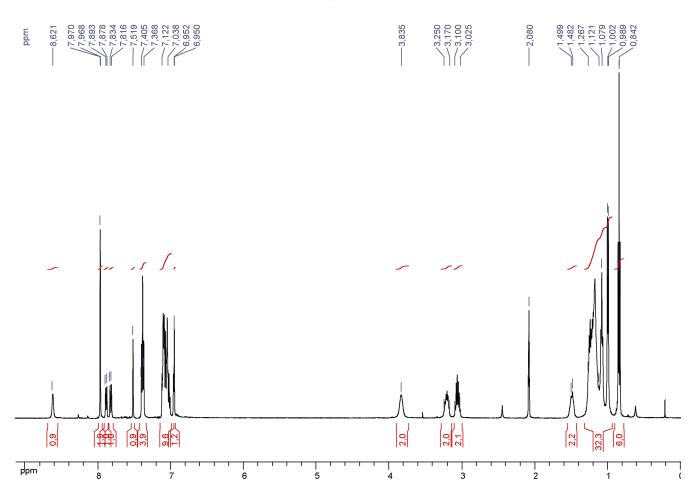
Totals: 1295.24801 92.91380


Determination of the optical purity of ${}^{\rm H}{\rm BTA}^{\rm PPh2}(S)$,(S) and ${}^{\rm H}{\rm BTA}^{\rm PPh2}(R)$,(R) by chiral HPLC

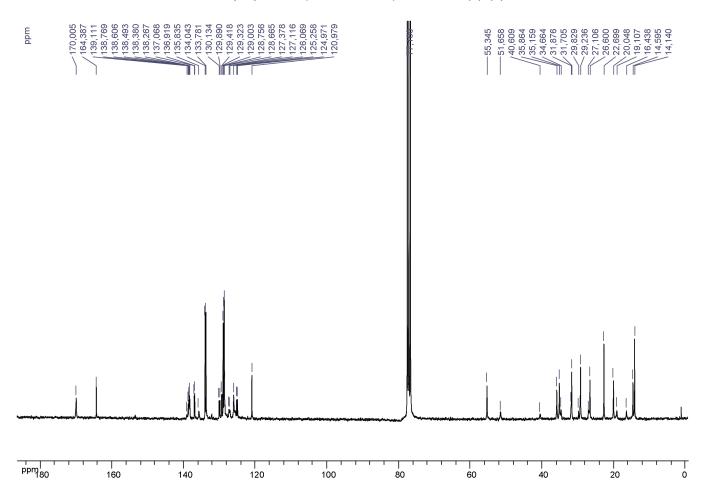
Method description: column = Chiralpak ID, hexane/ethanol 98/2, flow = 2 mL/min, detection at 254 nm.

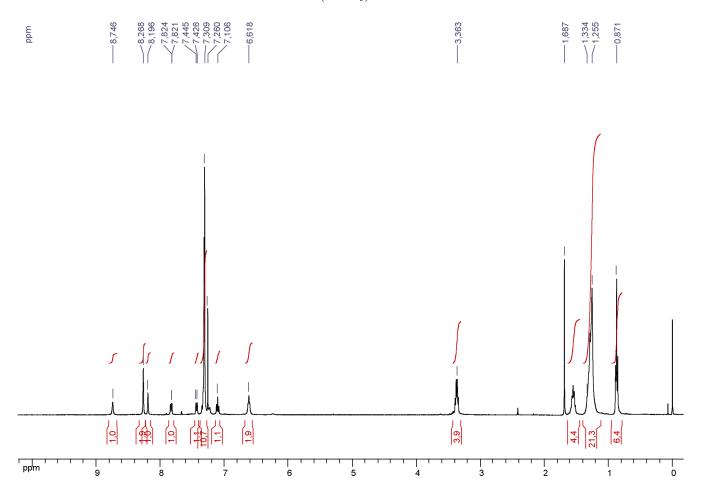


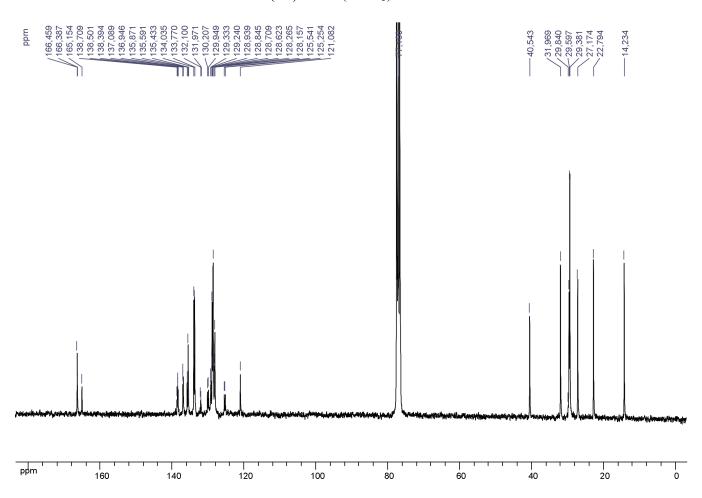
13 C $\{^{1}$ H $\}$ -NMR $(CDCl_{3})$ H BTA PPh2 (S),(S)

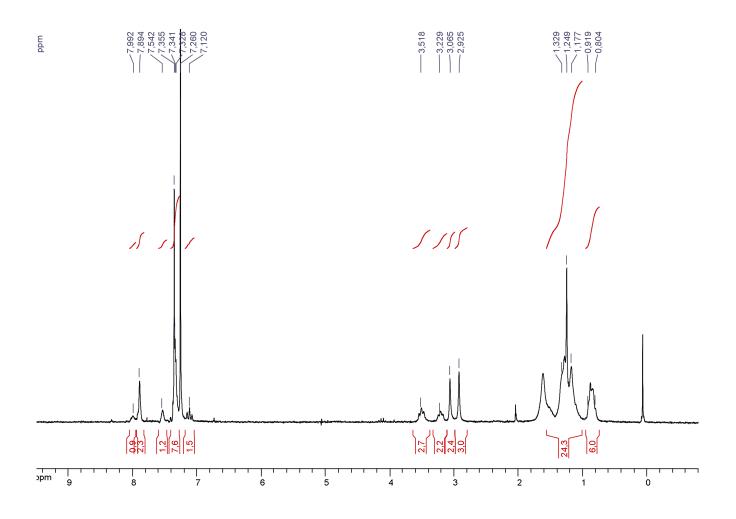


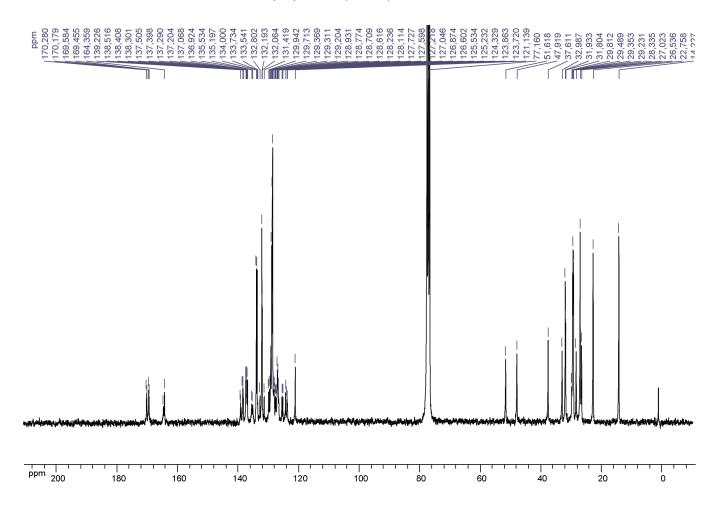
$HSQC (CDCl_3) HBTA^{PPh2}(S),(S)$




 1 H-NMR (d₈-toluene, 374 K) Et BTA PPh2 (S),(S)


13 C $\{^{1}$ H $\}$ -NMR (CDCl₃, 298 K) Et BTA PPh2 (S),(S)


1 H-NMR (CDCl₃) $^{\mathbf{H}}$ **BTA** $^{\mathbf{PPh2}}$


$^{13}\mathrm{C}\{^{1}\mathrm{H}\}\text{-NMR}\;(\mathrm{CDCl_{3}})\;^{\mathbf{H}}\mathbf{BTA}^{\mathbf{PPh2}}$

1 H-NMR (CDCl₃) $^{\mathbf{Me}}$ **BTA** $^{\mathbf{PPh2}}$

$^{13}C\{^{1}H\}$ -NMR (CDCl₃) $^{Me}BTA^{PPh2}$

