Supporting Information

Transformation of Biocides Irgarol and Terbutryn in the Biological Wastewater Treatment

Agnessa Luft † , Manfred Wagner ‡ and Thomas A. Ternes *,†

† Federal Institute of Hydrology (BfG), Koblenz, Germany †Max Planck Institute for Polymer Research, Mainz, Germany

* Corresponding author phone: +49 261-1306 5560; fax: +49 261-1306 5363; e-mail: ternes@bafg.de

Content	
Chemicals and Standards	2
Information about WWTPs	2
Streams and Rivers Sampling	
HR-MS analysis via LTQ Orbitrap Velos	
Isolation of Irgarol TP (Sulfoxide) via semipreparative HPLC-UV	
NMR analysis	
Identification by NMR	
Analysis of Batch Samples and Environmental Samples from WWTPs as well as Streams and Rive	
Mass Balances	
Sorption ^{1,2} Environmental Occurrence of Transformation Products	14
References	
Pages: 16 Tables: 7 Figures: 4	
Tables	
TABLE S1. Overview of sampling locations in the Hessian Ried region (June 2012)	
TABLE S3. Overview of the accurate mass measurements of irgarol, terbutryn, and their TPs per	
by HR-MS (LTQ Orbitrap Velos) electrospray ionization in positive ion mode	5
TABLE S4. Retention time, precursor ion, product ions and MS parameters used for LC-MS/MS	
detection of irgarol, terbutryn and their respective TPs	
TABLE S5. Linearity of calibration curves, limit of quantification and recoveries in the investigate	
matrices with 95% confidence intervals after subtracting the background concentration	
TABLE S6. Background concentration of irgarol, terbutryn and their TPs in non-spiked batch sai	
consisting of activated sludge diluted with effluent from WWTP 5 (Oct. 2012)	
TABLE S7. Concentrations of irgarol, terbutryn and their TPs in streams and small rivers grab sa $(LOO = 1 \text{ ng L}^{-1})$	
(LOQ = 1 lig L)	13
Figures	
Figures FIGURE S1. ¹ H-NMR spectra of irgarol (A) and irgarol sulfoxide (B). Samples were measured at 1	208 3 K
in DMSO-d ₆	
FIGURE S2. ¹³ C-NMR spectra of irgarol (A) and irgarol sulfoxide (B). Samples were measured at	
in DMSO-d ₆	
FIGURE S3. Mass balance [%] of irgarol (A) and terbutryn (B) in batch systems using diluted acti	
sludge (1:10 with effluent, 0.40 g _{SS} L ⁻¹)	11
FIGURE S4. Batch experiment of irgarol sulfoxide (A) and terbutryn sulfoxide (B) in batch systen	ns using
diluted activated sludge (1:10 with effluent, 0.40 g _{SS} L ⁻¹)	12

Chemicals and Standards

Stock solutions of analytes (1 mg mL⁻¹) were prepared in methanol. Stock solutions of internal standards (0.1 mg mL⁻¹) were dissolved in the same solvents as respective analytes. A standard solution of all target analytes was prepared in methanol at a concentration of 10, 1, 0.1, and 0.01 µg mL⁻¹. A standard solution of all surrogate standards was also prepared in methanol at a concentration of 1 µg mL⁻¹. The stock solutions were stored in the freezer at -20°C. The diluted standard solutions of analytes and surrogates were stored in the dark at 4°C and renewed at least very 3 months.

Information about WWTPs

The five sampled WWTPs (WWTP 1-5) are conventional plants equipped with a mechanical treatment (screen, grit removal, primary clarifier) followed by an activated sludge treatment with denitrification and nitrification as well as phosphate removal and a secondary sedimentation. WWTP 1 is equipped with a unit for biological phosphate removal located behind the primary clarifier. The parameters such as population equivalents (PE), daily flow rate, hydraulic retention time (HRT), and sludge retention time (SRT) of the activated sludge treatment of the WWTPs were as follows: WWTP 1: 20,000 PE, 8,000 m³ d⁻¹, 3.5 d, and 10.3 d; WWTP 2: 34,800 PE, 10,100 m³ d⁻¹, 1.8 d, and 12 d; WWTP 3: 37,000 PE, 7,500 m³ d⁻¹, 2.9 d, and 19 d; WWTP 4: 60,400 PE, 13,000 m³ d⁻¹, 1.6 d, and 12-14 d; WWTP 5: 320,000 PE, 61,000 m³ d⁻¹, 6 h, and 12 d.

Streams and Rivers Sampling

TABLE S1. Overview of sampling locations in the Hessian Ried region (June 2012).

Sampling	CDS on	ordinates	Comment to sampling location	ъU	T	σ	O_2	
location	Grad	orumates	Comment to sampling location	pН	[°C]	[μS cm ⁻¹]	[mg L ⁻¹]	%
HR_01	N 49° 58.628'	E 08° 30.438'	Geräthsbach before mouth	7.8	18.2	830	8.8	98
HR_02.1	N 49° 58.246'	E 08° 32.991'	Geräthsbach before WWTP 3	7.8	18.5	850	7.2	80
HR_02.2	N 49° 58.711'	E 08° 30.452'	Geräthsbach after WWTP 3	7.4	19.2	852	8.7	97
HR_03	N 49° 58.493'	E 08° 30.064'	Gundbach before mouth Schwarzbach	7.7	17.8	883	8.9	96
HR_04	N 49° 58.212'	E 08° 33.434'	Schwarzbach after mouth	7.7	18.1	835	8.4	90
HR_05	N 50° 1.622'	E 08° 39.755'	Hengstbach before WWTP 2	8.5	20.7	662	8.5	98
HR_06	N 50° 6.932'	E 08° 50.093'	Bieber	8.1	22.9	801	8.0	97
HR_07	N 50° 6.961'	E 08° 50.08'	Rodau after Bieber	8.1	22.0	1050	8.0	96
HR_08	N 50° 6.903'	E 08° 50.132'	Rodau before Bieber	8.0	21.1	1291	8.2	96
HR_09	N 49° 41.199'	E 08° 24.766'	Weschnitz before mouth Halbmaasgraben	9.0	25.8	655	8.0	100
HR_10	N 49° 41.762'	E 08° 25.133'	Halbmaasgraben after WWTP 1	7.8	27.9	975	7.6	99
HR_11	N 49° 41.932'	E 08° 24.603'	Weschnitz after mouth Halbmaasgraben	8.7	26.5	657	*	*
HR_12	N 50° 1.753'	E 08° 39.457'	Schwarzbach after WWTP 2	7.4	21.0	1150	7.3	84
HR_13	N 49° 45.1'	E 08° 28.34'	Winkelbach before Rhine	8.8	25.4	696	*	*
HR_14	N 49° 47.772'	E 08° 28.185'	Modau	9.1	23.8	741	*	*

T = temperature, $\sigma = electrical$ conductivity, * sonde was defect

TABLE S2. Proportion of treated wastewater of the mean discharge in the Hessian Ried region.

GPS co	oordinates	Name of the measuring points					
N 49° 58.634'	E 08° 30.385'	Schwarzbach, Mörfelden-Walldorf-Mörfelden, Gundbach	29				
N 50° 6.932'	E 08° 50.092'	Bieber, Mühlheim am Main	65				
N 50° 7.837'	E 08° 49.650'	Rodau, Mühlheim am Main, mouth Rodau	58				
N 50° 6.939'	E 08° 50.104'	Rodau, Mühlheim am Main-Brückfeld, before Bieber	65				
N 49° 41.205'	E 08° 24.753'	Weschnitz, Biblis-Wattenheim, bridge L3261 before Wattenheim	9				
N 49° 41.757'	E 08° 25.134'	Halbmaasgraben, Biblis, after WWTP 1	24				
N 49° 41.925'	E 08° 24.601'	Weschnitz, Biblis-Wattenheim, after mouth Halbmaasgraben	9				
N 49° 45.094'	E 08° 28.341'	Winkelbach, Gernsheim, before Rhine	25				
N 49° 47.771'	E 08° 28.181'	Modau, Stockstadt am Rhein, bridge B44, before mouth Fanggraben	22				

data from P.Seel, Hessian Agency for the Environment and Geology

HR-MS analysis via LTQ Orbitrap Velos

10 mM ammonium formate was used as mobile phase A and acetonitrile as mobile phase B. The gradient of mobile phase A was as follows: start with 100%, after 6 min decrease to 70% within 1 min, decrease to 20% within 17 min, kept isocratic for 6 min, return to the initial conditions (100%) within 2 min which were hold for the last 5 min. The total run time was 37 min. The flow rate was adjusted to 400 μ l min⁻¹ and the column oven temperature on 40°C.

The injection volume of the sample was 10 µL. A Fusion-RP 80Å column (150 x 3 mm, 4 µm; Phenomenex, Aschaffenburg, Germany) was used for chromatographic separation.

The ESI source parameters for the LC-LTQ-Orbitrap-MS measurements were set as follows: capillary temperature, 275°C; capillary voltage, 3.0 kV; heater temperature, 380°C; sheath gas flow rate, 45 arbitrary units (AU); aux gas flow rate, 15 AU; S-lens RF level, 69%. Data dependent acquisition was used to prepare MS spectra as follows: a full scan (50 – 450 m/z; positive mode) was performed followed by MS² and MS³ scans for the two most intense ions with an intensity of > 10,000 counts per second (cps) and > 1000 cps, respectively. CID (collision induced dissociation) and HCD (high-energy collision dissociation) with normalized collision energies of 35% and 80% were used for fragmentation. In addition, dynamic exclusion was applied (exclusion of masses for which three MS¹ experiments have been performed, exclusion duration, 30 s) enabling also MS¹ experiments for less abundant ions, e.g. during co-elution of different substances. External calibration was performed prior to the analysis of each batch to ensure accurate mass determinations with a resolution of 60,000.

TABLE S3. Overview of the accurate mass measurements of irgarol, terbutryn, and their TPs performed by HR-MS (LTQ Orbitrap Velos) electrospray ionization in positive ion mode.

substance	(proposed) substance structure	[M+H] ⁺	molecular formula	measd./calc. mass	mass error [ppm]	RDB	loss
	s ^{_ CH} 3						
		m/z 254	$C_{11}H_{20}N_5S$	254.1433/ 254.1434	-0.4	4.5	-
Irgarol	H ₂ C ₂ CH ₃ N N N	m/z 198	$C_7H_{12}N_5S$	198.0808/ 198.0808	-0.1	4.5	C_4H_8
	H ₃ C NH NH NH	m/z 83	$C_4H_7N_2$	83.06080/ 83.0604	5.3	2.5	$C_7H_{13}N_3S$
	о∾ _{\$} _сн ₃	m/z 270	C ₁₁ H ₂₀ ON ₅ S	270.1381/ 270.1383	-0.8	4.5	-
Irgarol		m/z 214	C ₇ H ₁₂ ON ₅ S	214.0756/ 214.0757	-0.3	4.5	C_4H_8
sulfoxide	H ₃ C VCH ₃ N N	m/z 196	$C_7H_{10}N_5S$	196.0650/ 196.0651	-0.6	5.5	H_2O , C_4H_8
suitoxide	H ₃ C NH N NH	m/z 168	$C_6H_{10}ON_5$	168.0879/ 168.0880	-0.8	4.5	CH_2S , C_4H_8
	9 ^{-H}	m/z 224	C ₁₀ H ₁₈ ON ₅	224.1509/ 224.1506	1.3	4.5	_
2-hydroxy		m/z 168	$C_6H_{10}ON_5$	168.0882/ 168.0880	1.5	4.5	C_4H_8
	HC CH3 N N	m/z 126	$C_5H_8ON_3$	126.0664/ 126.0662	1.5	3.5	C_4H_8 , CH_2N_2
Irgarol	H ₃ C NH N NH	m/z 86	$C_2H_4ON_3$	86.0348/ 86.0349	-0.6	2.5	C_4H_8 , CH_2N_2 , C_3H_4
	s´ ^{CH} 3				0.0		
		m/z 242	$C_{10}H_{20}N_5S$	242.1433/ 242.1434	-0.2	3.5	- C II
Terbutryn	H ₃ C VCH ₃ II II	m/z 186	$C_6H_{12}N_5S$	186.0807/ 186.0808	-0.6	3.5 0.5	C_4H_8
	H ₃ C NH N NH CH ₃	m/z 91	$C_2H_7N_2S$	91.0322/ 91.0325	-3.2	0.3	C_4H_8 , $C_4H_5N_3$
	°, S CH3	m/z 258	C ₁₀ H ₂₀ ON ₅ S	258.1381/ 258.1383	-0.9	3.5	-
Terbutryn		m/z 240	$C_{10}H_{18}N_5S$	240.1277/ 240.1277	-0.3	4.5	H_2O
sulfoxide	H ₃ C VCH ₃	m/z 202	$C_6H_{12}ON_5S$	202.0757/ 202.0757	0.1	3.5	C_4H_8
Sulloziuc	H ₃ C NH N NH CH ₃	m/z 184	$C_6H_{10}N_5S$	184.0651/ 184.0651	-0.2	4.5	H_2O , C_4H_8
	9′ ^H	m/z 212	C ₉ H ₁₈ ON ₅	212.1510/ 212.1506	2	3.5	-
2-hydroxy		m/z 156	$C_5H_{10}ON_5$	156.0882/ 156.0880	1.4	3.5	C_4H_8
Terbutryn	н ₃ с√ ^{сн₃}	m/z 114	$C_4H_8ON_3$	114.0663/ 114.0662	0.8	2.5	C_4H_8 , CH_2N_2
rei buti yii	H ₃ C NH N NH CH ₃	m/z 86	$C_5H_{12}N$	86.0347/ 86.0349	-2.2	2.5	C_4H_8 , CH_2N_2 , C_2H_4
	.						

Isolation of Irgarol TP (Sulfoxide) via semipreparative HPLC-UV

Milli-Q water was used as mobile phase A and acetonitrile as mobile phase B. For the separation of the analytes an eluent gradient was applied. The proportion of mobile phase A was changed as follows: start with 95%, after 2 min decrease to 10% within 18 min, kept isocratic for 6 min, return to the initial conditions (95%) within 1 min which were hold for the last 8 min. The total run time was 35 min. The flow rate was adjusted to 2 mL min⁻¹ and the column oven temperature on 40° C. The injection volume of the sample was $400 \, \mu$ L.

NMR analysis

¹H-NMR (700 MHz) and ¹³C-NMR (176 MHz) were performed on Bruker AVANCE III 700 NMR spectrometers with a 5 mm BBI probe equipped with a z-gradient. The spectra were obtained with π /2-pulse lengths of 9.3 μs (¹H) and 14.5 μs (¹³C) and a sweep width of 10330 Hz (20.6 ppm) for ¹H and 29700 Hz (236 ppm) for ¹³C, all nuclei with a relaxation delay of 2 s. Proton and carbon spectra were referenced using the remaining solvents signals (DMSO- d_5H_1 =2.49 ppm and ¹³C-DMSO- d_6 =39.5 ppm) as an internal standard. The nitrogen setup was done with CH₃¹⁵NO₂ with a value of 0 ppm in Aceton- d_6 . The temperature was kept at 298.3 K and calibrated with a standard ¹H methanol NMR sample. The control of the temperature was realized with a VTU (variable temperature unit) and an accuracy of +/- 0.1K, which was checked with the standard Bruker Topspin 2.1 software.

A standard ¹H NMR spectrum was measured with 64 transients. The carbon spectrum was kept with a J-modulated spin-echo for ¹³C-nuclei coupled to ¹H to determine number of attached protons with decoupling during acquisition. All ¹³C NMR measurements were done with 4096 number of scans.

All the 2D ¹H, ¹³C- heteronuclear single quantum correlations (HSQC via double inept transfer and phase sensitive using Echo/Antiecho-TPPI gradient selection with decoupling during acquisition) were run with 4096 points in f2 and 512 points in f1 dimension. Before Fourier transformation, the data were zero filled to 1024 points in f1 and multiplied by a window function (q-sine bell or sine bell) in both dimension. The following parameters were used to obtain optimal results: 1JCH=145Hz for optimizing observable intensities of cross peaks from one bond 1H-X correlation.

The assignment of the protons was accomplished by 2D-1H,1H COSY (correlated spectroscopy). The spectroscopic widths of the homo-nuclear 2D COSY experiments were typically 7000 Hz in both dimension (f1 and f2) and the relaxation delay 1.2 s.

Identification by NMR

The chemical structure of the synthesized irgarol sulfoxide was confirmed by NMR experiments (1 H NMR, 13 C NMR, 1 H, 1 H-COSY, and 1 H, 13 C-HSQC). The comparison between the 1 H NMR (Figure S1) and the 13 C NMR (Figure S2) spectra of irgarol and irgarol sulfoxide reveals no differences in the 1 H and 13 C chemical shifts of the tertiary butyl group as well as at the cyclopropyl group and the triazine ring. In contrast, the 1 H and 13 C chemical shifts of the methylthioether group are significantly increased from $\delta_{\rm H}$ 2.36 ppm (irgarol) to $\delta_{\rm H}$ 2.74 ppm (irgarol sulfoxide) and $\delta_{\rm C}$ 11.92 ppm (irgarol) to $\delta_{\rm C}$ 23.42 ppm (irgarol sulfoxide), respectively. This confirmed the oxidation of the methylthio group to the sulfoxide and thus the chemical identity of the synthesized irgarol sulfoxide.

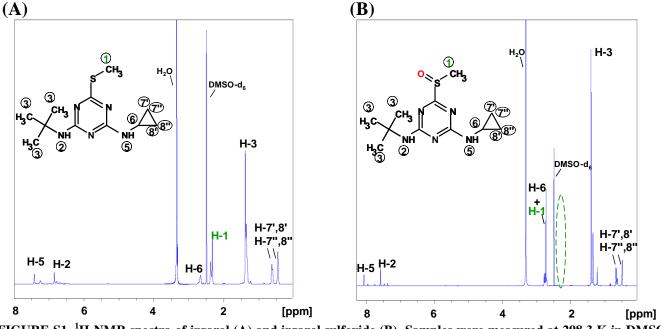


FIGURE S1. ¹H-NMR spectra of irgarol (A) and irgarol sulfoxide (B). Samples were measured at 298.3 K in DMSO- d_6 .

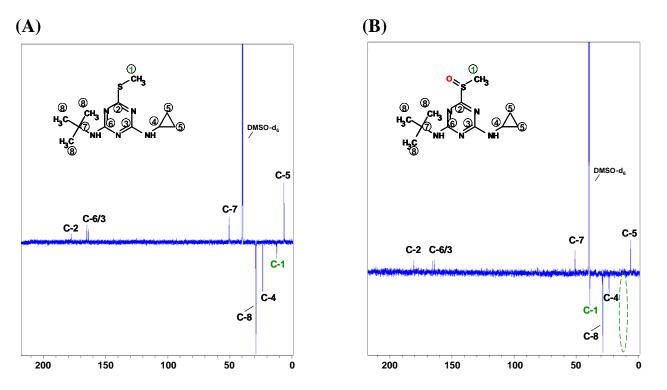


FIGURE S2. ¹³C-NMR spectra of irgarol (A) and irgarol sulfoxide (B). Samples were measured at 298.3 K in DMSO- d_6 .

Analysis of Batch Samples and Environmental Samples from WWTPs as well as Streams and Rivers

10 mM ammonium formate was used as mobile phase A and acetonitrile as mobile phase B. The gradient of mobile phase A was as follows: start with 90%, after 0.3 min decrease to 30% within 1 min, decrease to 0% within 7.7 min, kept isocratic for 3 min, return to the initial conditions (90%) within 0.1 min which were hold for the last 2.9 min. The total run time was 15 min. The flow rate was adjusted to 600 μ l min⁻¹ and the column oven temperature on 30°C. The injection volume of the sample was 10 μ L. A Fusion-RP 80Å column (150 x 3 mm, 4 μ m; Phenomenex, Aschaffenburg, Germany) was used for chromatographic separation. The detection was performed by multiple reaction monitoring (MRM), whereby two to three transitions (one for quantification and up to two for confirmation) were selected for the TPs. The MS/MS parameters (Table S4) were optimized for the individual compounds in

continuous flow mode via direct injection of standard solutions (1 μg mL⁻¹) with a syringe pump (10 μL min⁻¹).

The recovery of the target analytes (Table S5) was assessed within each sample series and for each matrix (surface water, WWTP effluent and influent) by spiking the analytes to a final concentration (25, 50 and 100 ng L⁻¹, at least n = 4). Absolute recoveries were determined by comparing the peak areas of spiked samples with the peak areas in an external standard containing the same amount of analytes. The relative recoveries were calculated by dividing the quantified concentrations with the spiked concentrations. The limit of quantification (LOQ) was defined as the lowest calibration point in the linear regression with a signal to noise ratio (S/N) of at least 10 for transition q1 and 3 for transition q2 and q3. For the quantification an external calibration with 11 calibration points (0-200 ng) was used by adding surrogate standards (irgarol- d_9 and terbutryn- d_5). Linear regression was applied with a weighting factor of 1/x.

Non-spiked sludge samples (blank batch samples) were used as reference samples e.g. for the kinetic experiments/mass balances (sludge was diluted with WWTP 5 effluent). The non-spiked batch samples were also measured as the spiked batch samples. The measured concentrations of non-spiked batch samples are shown in Table S6. In the calculations of kinetics and mass balances the analyte concentration of non-spiked batch samples were subtracted from the analyte concentration of spiked batch samples.

TABLE S4. Retention time, precursor ion, product ions and MS parameters used for LC-MS/MS detection of irgarol, terbutryn and their respective TPs.

Commound	$\mathbf{R}\mathbf{T}^{\mathbf{a}}$	$\mathbf{q_1}$	$\mathbf{q_2}$	\mathbf{q}_3	$\mathbf{DP^b}$	$CE^{c}\left(q_{1}/q_{2}/q_{3}\right)$	$CXP^d\ (q_1/q_2/q_3)$
Compound	[min]	transition	transition	transition	[V]	[eV]	[V]
Irgarol	5.92	254 → 198	254 → 83	-	70	26/41/-	6/6/-
Irgarol sulfoxide	4.45	270 → 196	270 → 168	270 → 214	56	27/27/23	14/10/20
Terbutryn	5.93	242 → 91	242 → 186	-	50	38/25/-	5/15/-
Terbutryn sulfoxide	4.40	258 → 184	258 → 202	258 → 240	21	27/25/19	16/16/12
M1	4.76	214 → 68	214 → 110	-	50	10/3/-	37/10/-
Irgarol- d_9	5.88	263 → 199	263 → 92	-	40	29/40/-	16/15/-
Terbutryn- d_5	5.91	247 → 191	247 → 91	-	50	24/41/-	12/5/-
and not the				d arm a			

^a RT = Retention time, ^b DP = Declustering potential, ^c CE = Collision energy, ^d CXP = Collision cell exit potential

TABLE S5. Linearity of calibration curves, limit of quantification and recoveries in the investigated matrices with 95% confidence intervals after subtracting the background concentration. For calculation of relative recoveries, different amounts (10 or 12.5 ng) of analytes were added depending on the sampled matrix.

			WTP influent	-	WWTP effluent				surface water				
Analyte	correlation coefficient (r)	LOQ [ng L ⁻¹]	n	absolute recovery ^a [%]	relative recovery ^b [%]	LOQ [ng L ⁻¹]	n	absolute recovery ^a [%]	relative recovery ^b [%]	LOQ [ng L ⁻¹]	n	absolute recovery ^a [%]	relative recovery ^b [%]
Irgarol	0.9960	2	36	35 ± 4	112 ± 6	1	36	73 ± 2	93 ± 3	1	15	59 ± 4	103 ± 5
Irgarol sulfoxide	0.9982	5	36	17 ± 1	58 ± 5	1	36	41 ± 2	56 ± 2	1	15	34 ± 4	63 ± 5
Terbutryn	0.9919	3	36	28 ± 3	82 ± 4	1	36	57 ± 2	81 ± 4	1	15	41 ± 8	84 ± 11
Terbutryn sulfoxide	0.9993	4	4	53 ± 5	79 ± 5	1	4	44 ± 4	61 ± 3	1	4	37 ± 5	70 ± 6
M1	0.9990	4	36	10 ± 2	49 ± 5	1	36	40 ± 2	56 ± 3	1	15	30 ± 4	65 ± 5
M I a Calculated in comparis				1.		I my of the enilsed			36 ± 3	1	15	30 ± 4	65 ± 5

TABLE S6. Background concentration of irgarol, terbutryn and their TPs in non-spiked batch samples consisting of activated sludge diluted with effluent from WWTP 5 (Oct. 2012).

Irgarol	Irgarol sulfoxide	Terbutryn	Terbutryn sulfoxide	M1
		[ng L ⁻¹]		
7.5	2.1	23.3	7.9	2.7

Mass Balances

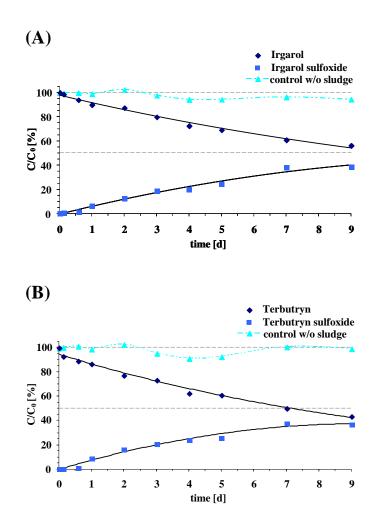
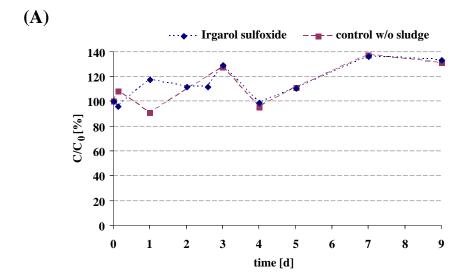



FIGURE S3. Mass balance [%] of irgarol (A) and terbutryn (B) in batch systems using diluted activated sludge (1:10 with effluent, 0.40 g_{SS} L⁻¹). Irgarol and terbutryn were spiked at a concentration of 0.5 μ g L⁻¹. Filtered effluent without sludge was used as negative control to examine the influence of abiotic transformation processes. Calculations were done on a molar basis (mol L⁻¹).

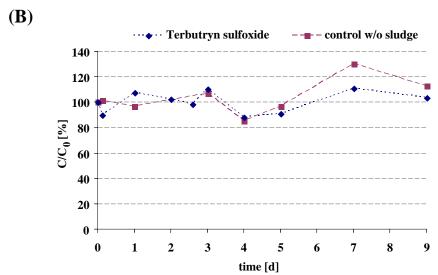


FIGURE S4. Batch experiment of irgarol sulfoxide (A) and terbutryn sulfoxide (B) in batch systems using diluted activated sludge (1:10 with effluent, 0.40 g_{SS} L⁻¹). The TPs were spiked with concentrations of 0.2 μ g L⁻¹. Filtered effluent without sludge was used as negative control to examine the influence of abiotic transformation processes.

Sorption^{1,2}

Batch experiments

Sorbed proportion onto sludge/suspended solids in wastewater can be estimated as follows:

The sludge-water distribution coefficient $K_{d,sec}$ (L $kg_{dw \, sludge}^{-1}$) for irgarol ($K_{d,sec} = 140 \pm 10 \, L \, kg_{TSS}^{-1}$) and terbutryn ($K_{d,sec} = 160 \pm 10 \, L \, kg_{TSS}^{-1}$) are reported by Wick et al.¹

$$K_{d,sec} = \frac{C_s}{C_w}$$
 \rightarrow $C_s = K_{d,sec} \cdot C_w$

where C_s (µg kg_{dw sludge}⁻¹) is the sorbed concentration and C_w (µg L⁻¹) is the soluble concentration.

Percent sorption =
$$\frac{100 \cdot K_{d,sec} \cdot X_{SS}}{1 + K_{d,sec} \cdot X_{SS}}$$

where X_{SS} is the concentration of total suspended solids (TSS).²

The measured concentration of TSS in the activated sludge used for the batch experiments was $4 \, g_{SS} \, L^{-1}$. Due to a dilution of 1:10, the final TSS concentration in the batch reactors was $0.4 \, g_{SS} \, L^{-1}$. The following values were used: $K_{d,sec} = 0.160 \, L \, g_{TSS}^{-1}$ (160 $L \, kg_{TSS}^{-1}$) and $X_{SS} = 0.4 \, g_{SS} \, L^{-1}$.

Percent sorption =
$$\frac{100 \cdot 0.160 \cdot 0.4}{1 + 0.160 \cdot 0.4} = \frac{6\%}{1}$$

Thus, it can be estimated that about 6% of irgarol and terbutryn are sorbed onto sludge, while about 94% remains dissolved.

WWTPs

Removal in WWTPs by sorption and withdrawal of excess sludge can be predicted as follows:

$$Percent sorption = \frac{100 \cdot K_{d,sec} \cdot X_{SP}}{1 + K_{d,sec} \cdot X_{SP}}$$

where X_{SP} is the sludge production (quantity of sludge generated per unit of wastewater treated).³

Assuming the typically sludge production of 0.2 g L^{-1 4} and the used $K_{d,sec} = 0.160$ L g_{TSS}^{-1} (160 L kg_{TSS}^{-1}):

Percent sorption =
$$\frac{100 \cdot 0.160 \cdot 0.2}{1 + 0.160 \cdot 0.2} = 3\%$$

Hence, removal by sorption during wastewater treatment can be estimated to be about 3%.

The amount sorbed to suspended solids in the influent was calculated to assess possible losses by filtration of samples. The TSS concentration of the raw wastewater was $0.3~g_{SS}~L^{-1}$ at a maximum.

Percent sorption =
$$\frac{100 \cdot K_{d,sec} \cdot X_{SS}}{1 + K_{d,sec} \cdot X_{SS}}$$

where X_{SS} is the concentration of TSS.² The following values were used:

$$K_{d,sec} = 0.160 \; L \; g_{TSS}^{-1} \; (160 \; L \; kg_{TSS}^{-1}) \; \text{and} \; X_{SS} = 0.3 \; g_{SS} \; L^{-1}.$$

Percent sorption =
$$\frac{100 \cdot 0.160 \cdot 0.3}{1 + 0.160 \cdot 0.3} = \underline{4.6\%}$$

Thus, it can be estimated that less than 5% of irgarol and terbutryn were sorbed to suspended solids in the influent and losses by filtration were negligible.

Suspended solids in streams

Sorbed proportion onto suspended solids can be estimated as follows:

 $K_{d,sec}$ values were normalized for comparison with literature data to the fraction of total organic carbon f_{OC} (kg_{OC} kg_{dw} sludge⁻¹) resulting in the K_{OC} (L kg_{OC} ⁻¹):

$$K_{OC} = \frac{K_{d,sec}}{f_{OC}} \rightarrow C_s = K_{Oc} \cdot C_w \cdot f_{OC}$$

The organic carbon normalized soil-water distribution coefficient (K_{OC}) value is for irgarol $\log K_{OC} = 3.0 \; (\text{sediment})^5 \; \text{and for terbutryn log} \; K_{OC} = 2.9 \; (\text{soil})^6.$

Percent sorption =
$$\frac{100 \cdot K_{OC} \cdot X_{SS}}{1 + K_{OC} \cdot X_{SS}}$$

The following values were used: K_{OC} = 1 L g_{OC}^{-1} and X_{SS} = 0.03 $g_{SS} \; L^{-1}.$

Percent sorption =
$$\frac{100 \cdot 1 \cdot 0.03}{1 + 1 \cdot 0.03} = \underline{2.9\%}$$

It can be estimated that at maximum about 3% of irgarol and terbutryn are sorbed onto suspended solids, while about 97% remain dissolved. Thus, it can be expected that sorption of

irgarol and terbutryn are negligible also for suspended solids in rivers as already mentioned for sludge.

Environmental Occurrence of Transformation Products

Streams and Rivers.

TABLE S7. Concentrations of irgarol, terbutryn and their TPs in stream and small river grab samples (LOQ = 1 ng L^{-1}).

Sampling location	0		U	arol oxide	Sum		Terbutryn		Terbutryn sulfoxide		Sum		M1	
	Concentration of sampling (1st ^a /2nd ^b)													
$[\operatorname{ng} \operatorname{L}^{\cdot \overline{1}}]$														
HR_01	10	9.6	15	9.5	25	19	34	38	24	28	58	66	3.3	3.4
HR_02.1	11	10	17	10	28	20	21	34	21	29	42	63	3.4	3.1
HR_02.2	n.d.	9.0	n.d.	8.2	n.d.	17	n.d.	47	n.d.	26	n.d.	73	n.d.	2.9
HR_03	5.8	3.9	4.3	3.6	10	8	24	24	16	23	40	47	6.3	4.9
HR_04	8.5	7.7	12	8.2	21	16	33	32	22	26	55	58	4.6	4.3
HR_05	1.8	1.3	14	8.2	15	9.5	11	11	5.9	4	16.9	15	1.9	1.6
HR_06	15	15	15	14	30	29	50	60	25	31	75	91	5.2	5.9
HR_07	12	11	8.6	8.7	21	20	51	58	21	25	72	83	4.2	5.8
HR_08	5.4	7.1	4.3	4.1	10	11	46	55	16	19	62	74	3.1	4.7
HR_09	20	22	2.2	1.8	22	24	98	100	8.2	9	106	109	7.7	6.7
HR_10	3.2	2.4	<loq< td=""><td><loq< td=""><td>3.2</td><td>2.4</td><td>90</td><td>88</td><td>5.0</td><td>5</td><td>95</td><td>93</td><td>2.7</td><td>3.7</td></loq<></td></loq<>	<loq< td=""><td>3.2</td><td>2.4</td><td>90</td><td>88</td><td>5.0</td><td>5</td><td>95</td><td>93</td><td>2.7</td><td>3.7</td></loq<>	3.2	2.4	90	88	5.0	5	95	93	2.7	3.7
HR_11	19	21	2.3	2.0	21	23	102	99	9.0	10	111	109	6.5	6.3
HR_12	nd	4.8	nd	5.6	nd	10	nd	41	nd	34	nd	75	nd	7.4
HR_13	nd	2.7	nd	1.2	nd	3.9	nd	40	nd	10	nd	50	nd	2.1
HR_14	nd	3.1	nd	1.9	nd	5.0	nd	36	nd	13	nd	49	nd	2.3
AA-EQS ^c	2.5 n	ng L ⁻¹		65 ng L ⁻¹										

^a sampling during wet weather periods (11.06.2012), ^b sampling during dry weather periods (28.06.2012),

References

- (1) Wick, A.; Marincas, O.; Moldovan, Z.; Ternes, T. A. Sorption of biocides, triazine and phenylurea herbicides, and UV-filters onto secondary sludge. *Water Res.* **2011**, *45*, 3638-3652.
- (2) Ternes, T. A.; Joss, A.; Siegrist, H. Peer Reviewed: Scrutinizing Pharmaceuticals and Personal Care Products in Wastewater Treatment. *Environ. Sci. Technol.* **2004**, *38*, 392A-399A.
- (3) Ternes, T. A.; Herrmann, N.; Bonerz, M.; Knacker, T.; Siegrist, H.; Joss, A. A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. *Water Res.* **2004**, *38*, 4075-4084.
- (4) Ternes, T. A.; Joss, A. E.; Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management.; IWA Publishing, London, UK., **2007**.

^c this parameter is the EQS expressed as an annual average value (AA-EQS) for inland surface waters (12.08.2013) nd: not determined

- Tolosa, I.; Readman, J. W.; Blaevoet, A.; Ghilini, S.; Bartocci, J.; Horvat, M. (5) Contamination of Mediterranean (CÃ te d'Azur) coastal waters by organotins and irgarol 1051 used in antifouling paints. *Mar. Pollut. Bull.* 1996, *32*, 335-341.
 (6) Liu, J.; Qian, C. Hydrophobic coefficients of s-triazine and phenylurea herbicides.
- (6) Chemosphere **1995**, 31, 3951-3959.