# Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas Atmosphere

Javier Castro-Jiménez\*, Naiara Berrojalbiz, Mariana Pizarro, Jordi Dachs

Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain. \*Corresponding author. Phone: +34 934 006169; E-mail-1: javier.castro-jimenez@idaea.csic.es, E-mail-2: jvcastrojm@gmail.com

#### SUPPORTING INFORMATION

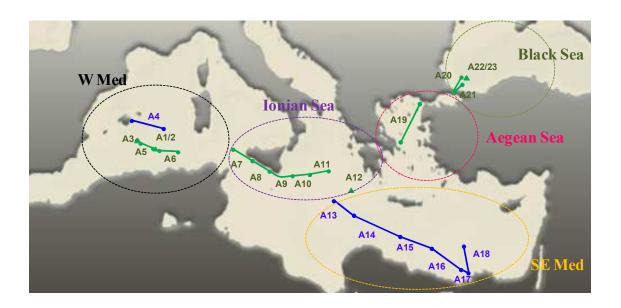
List of contents of the supporting information:

### Information regarding sampling, analysis and QA/QC

- **Figure S1.** General overview of the atmospheric aerosol phase samples collected during the two oceanographic campaigns.
- Text S1: Air sampling strategy and materials
- **Table S1**. Aerosol phase sampling details
- **Text S2:** Extraction and instrumental method details
- Text S3: Quality assurance /Quality control details
- **Table S2**. Blank levels in aerosol samples
- **Table S3**. Instrumental limits of detections (LODs)

# Information regarding atmospheric levels, occurrence and spatial distribution

- **Table S4.** Atmospheric aerosol concentrations of OPEs (pg m<sup>-3</sup>), median, mean and range) in the different Mediterranean sub-basins and in the SW Black Sea
- **Table S5**. Atmospheric aerosol concentrations of OPEs (pg m<sup>-3</sup>) in all samples across de Mediterranean and in the SW Black Sea
- **Figure S2.** Relative predominance of OPE in the studied basins
- Figure S3. Spatial distribution of selected OPEs
- **Figure S4**. Location of samples presenting the highest and the lowest  $\Sigma$ OPE aerosol phase concentrations and corresponding air mass back trajectories


## Information regarding deposition fluxes to the Mediterranean Sea

**Table S6.** Dry deposition fluxes of OPEs in the different Mediterranean sub-basins and in the SW Black Sea

**Table S7.** Dry deposition fluxes of OPEs in all samples across de Mediterranean and in the SW Black Sea

# Information regarding sampling, analysis and QA/QC

**Figure S1.** General overview of the atmospheric aerosol phase samples collected during the two oceanographic campaigns (Green: 2006 cruise; Blue: 2007 cruise) and the studied areas/ sub-basins. Sampling details are presented in Table S1.



Text S1: Air sampling strategy and materials

Two high volume air samplers (MCV, Barcelona, Spain) were installed on the upper deck of the boat (around 6-7 m above the sea level) close to the bow and were operated simultaneously at a flow rate of 40 m<sup>3</sup> h<sup>-1</sup>. The samplers were automatically stopped when wind was blowing from the poop of the vessel to avoid potential contamination of the samples by the ship exhausts. Additionally, the samplers were manually switch off when the boat was stopped under no wind conditions. Samples were generally collected within twelve hours. The air was drawn through a precombusted Quartz fiber filter (QM-A; Whatman, 8x10 inches) to collect aerosol (TSP) bound compounds and then circulated through a polyurethane foam (PUF) to collect chemicals present in the gas phase. All the

samples were stored in freezers at -20 °C until analysis. All meteorological parameters (wind speeds, water and air temperatures, etc.) were measured routinely during both cruises using the Meteo station on board of RV García del Cid and the systems that records continually the characteristics of surface seawater (salinity, chlorophyll, etc).

Table S1. Aerosol phase sampling details

| Sample           |                          |                |              |               |              |               |           |
|------------------|--------------------------|----------------|--------------|---------------|--------------|---------------|-----------|
| Sample           |                          |                | S            | tart          | F            | End           |           |
| Sample           | Volume (m <sup>3</sup> ) | Period         | Latitude (N) | Longitude (E) | Latitude (N) | Longitude (E) | Air T (℃) |
| A1 <sup>b</sup>  | 330                      | 2 Jul 2006     | 37.965       | 5.110         | 37.965       | 5.110         | 24.0      |
| A2 <sup>b</sup>  | 353                      | 3-4 Jul 2006   | 37.965       | 5.110         | 37.965       | 5.110         | n.d.a     |
| A3 <sup>b</sup>  | 300                      | 4 -5 Jul 2006  | 38.400       | 3.610         | 38.430       | 3.640         | n.d.a     |
| A4               | 441                      | 4-5 Jun 2007   | 39.061       | 5.755         | 39.500       | 3.200         | n.d.a     |
| A5               | 490                      | 4 Jul 2006     | 38.140       | 4.540         | 38.400       | 3.610         | 24.0      |
| A6               | 379                      | 2 Jun 2006     | 37.778       | 6.910         | 37.850       | 5.420         | n.d.a     |
| A7               | 305                      | 6 Jun 2006     | 37.916       | 11.334        | 37.288       | 12.875        | 18.5      |
| A8               | 262                      | 6-7 Jun 2006   | 37.288       | 12.875        | 36.707       | 14.246        | 19.7      |
| A9               | 230                      | 7 Jun 2006     | 36.707       | 14.246        | 36.457       | 16.096        | n.d.a     |
| A10              | 359                      | 7-8 Jun 2006   | 36.457       | 16.096        | 36.530       | 17.476        | 18.4      |
| A11              | 447                      | 8 Jun 2006     | 36.530       | 17.476        | 36.729       | 18.990        | 18.9      |
| A12 <sup>b</sup> | 448                      | 25 Jun 2006    | 35.722       | 20.739        | 35.722       | 20.739        | n.d.a     |
| A13              | 947                      | 13-14 May 2007 | 35.081       | 19.401        | 34.280       | 21.020        | 20.9      |
| A14              | 950                      | 14-15 May 2007 | 34.280       | 21.020        | 33.111       | 24.727        | 34.3      |
| A15              | 814                      | 15-16 May 2007 | 33.111       | 24.727        | 32.460       | 27.260        | n.d.a     |
| A16              | 414                      | 16-17 May 2007 | 32.460       | 27.260        | 31.290       | 30.010        | 19.7      |
| A17              | 139                      | 17 May 2007    | 31.290       | 30.010        | 32.585       | 30.236        | 20.5      |
| A18              | 307                      | 19 May 2007    | 31.441       | 29.736        | 32.585       | 29.436        | n.d.a     |
| A19              | 679                      | 13-14 Jun 2006 | 38.220       | 24.830        | 40.080       | 26.340        | 19.9      |
| A20              | 371                      | 20-Jun-06      | 41.897       | 29.609        | 41.128       | 29.075        | n.d.a     |
| A21              | 373                      | 16 Jun 2006    | 41.490       | 29.710        | 41.040       | 29.020        | n.d.a     |
| A22 <sup>b</sup> | 277                      | 19 Jun 2006    | 41.872       | 30.073        | 41.872       | 30.073        | 20.3      |
| A23 <sup>b</sup> | 294                      | 19 Jun 2006    | 41.885       | 30.032        | 41.885       | 30.032        | 17.9      |

**Text S2**: Extraction and instrumental method details

Prior to extraction, all samples were spiked with Phenanthrene-d10 and Chrysene-d12 (Sigma-Aldrich) which were used as surrogate standards (50  $\mu$ l at 1 ng  $\mu$ l<sup>-1</sup>). QFFs were weighed and Soxhlet extracted with dichloromethane:methanol (2:1, v/v) for 24 h. The extracts were rotary evaporated to 2 ml and purified on a 3% Milli-Q water deactivated alumina column (3 g) with a top layer of anhydrous sodium sulfate. Each column was eluted first with 5 ml of hexane (not containing target OPEs), a second fraction with 12 ml of dichloromethane:hexane (2:1; v:v) and a thrid fraction with 12ml of dichloromethane. The second and thrid fractions selected for OPE analysis were concentrated to 0.5 ml by vacuum rotary evaporation, transferred to a 1.7 ml amber vial, with the corresponding hexane washings, and evaporated to 150  $\mu$ l under a nitrogen stream. At this step, 300 ng of each internal standards (Tri-n-propyl-d21 phosphate and malathion-d7) were added to the extract.

OPE analysis was conducted by gas chromatography coupled to a mass spectrometer (Thermo Electron, San Jose, CA, USA) and compounds were quantified by the internal standard procedure. The GC was operated in electron impact mode (EI, 70eV). The injector temperature was set at 280 °C and the splitless mode was used. The separation was achieved in a 30m x 0.25mm i.d. x 0.25μm HP-5MS capillary column (Agilent J&W). The oven temperature was programmed from 90°C (holding time 1min) to 170°C at 8°C/min, to 250°C at 4°C/min, then to 300°C at 10°C/min (holding time 9min). The injection volume was of 2μl and the helium carrier gas flow was 1 ml min<sup>-1</sup>. The temperatures of the MS transfer line and the ion source were set at 280 °C and 230 °C.

respectively. The detection and quantification of OPEs was performed in the selective ion monitoring (SIM) mode.

#### Chemicals

Tris-(2-chloroethyl)phosphate (TCEP), Tris[2-chloro-1-(chloromethyl)ethyl]phosphate (TDCP), Tris- (1-chloro-2-propyl)phosphate (TCPPs, mix of isomers), Tri-iso-buthyl phosphate (TiBP), Tri-n-buthyl phosphate (TnBP), Triphenyl phosphate (TPhP), 2-Ethylhexyl diphenyl phosphate (EHDPP), Tri(2-ethylhexyl) phosphate (TEHP) and Tricresyl phosphate (TCrP, mix of isomers) and the surrogate Phenanthrene-d10 and Chrysene-d12 were obtained from Sigma-Aldrich. The internal standards Tri-n-propyl-d21 phosphate and malathion-d7 were form C/D/N Isotopes Inc, Canada. All solvents used were GC pesticide residue analysis grade and were pruchasd in Sigma-Aldrich.

**Text S3:** Quality assurance /Quality control details

## Pre-cleaning of material

QFF were individually wrapped in (n-hexane cleaned) aluminum foil, baked at 450 °C for 8 h and then stored at -18 °C in a sealed plastic bag until used.

#### Blanks

Aerosol field blanks, consisting on cleaned QFFs, were collected. The materials were transported to the sampling area, mounted in the sampler, dismounted and transported back to the ship laboratory and then processed together with the samples. Procedural

blanks (sampling) consisting on clean filters (packed in the lab and untouched until analysis) were employed in order to evaluate the potential contamination of samples due to handling during the cruises. Procedural blanks (analysis) consisting on only extracting solvent (Soxhlet extracted and cleaned-up as for the samples) were also processed for each batch of fourteen samples.

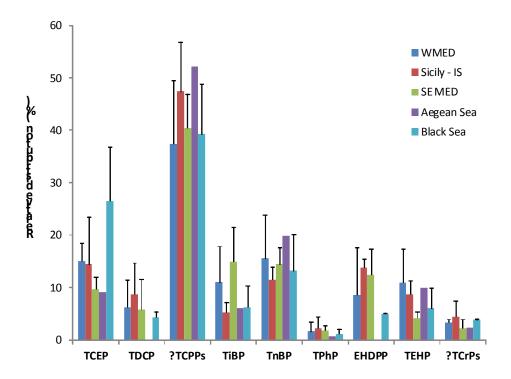
**Table S2**. OPE blank levels (ng) in the aerosol samples (mean  $\pm$  SD, N=6)

| TCEP                | $0.7 \pm 1.6$ |
|---------------------|---------------|
| TDCP                | n.d.          |
| TCPP-1              | $8.4 \pm 9.7$ |
| TCPP-2              | $1.7 \pm 42$  |
| TCPP-3              | n.d.          |
| TiBP                | $4.8 \pm 7.0$ |
| TnBP                | $2.5 \pm 6.2$ |
| TPhP                | $2.5 \pm 3.1$ |
| EHDPP               | $1.3 \pm 3.3$ |
| TEHP                | n.d.          |
| TCrP-1              | n.d.          |
| TCrP-2              | n.d.          |
| TCrP-3              | n.d.          |
| TCrP-4              | n.d.          |
| n.d. = not detected |               |

Table S3. Instrumental limits of detections (LODs)

|                                     | [ng]                                 | [pg m <sup>-3</sup> ] <sup>b</sup> |
|-------------------------------------|--------------------------------------|------------------------------------|
| TCEP                                | 0.5                                  | 1.1                                |
| TDCP                                | 0.3                                  | 0.6                                |
| TCPP-1                              | 0.1                                  | 0.2                                |
| TCPP-2                              | 0.3                                  | 0.6                                |
| TCPP-3                              | 0.5                                  | 1.1                                |
| TiBP                                | 0.05                                 | 0.1                                |
| TnBP                                | 0.05                                 | 0.1                                |
| TPhP                                | 0.05                                 | 0.1                                |
| EHDPP                               | 0.05                                 | 0.1                                |
| TEHP                                | 0.05                                 | 0.1                                |
| TCrP-1                              | 0.1                                  | 0.2                                |
| TCrP-2                              | 0.1                                  | 0.2                                |
| TCrP-3                              | 0.1                                  | 0.2                                |
| TCrP-4                              | 0.5                                  | 1.1                                |
| <sup>a</sup> LODs calculated as S/N | 1>3                                  |                                    |
| <sup>b</sup> Average sampling volu  | time of campaign = $470 \text{ m}^3$ |                                    |

# Information regarding atmospheric levels, occurrence and spatial distribution


**Table S4.** Atmospheric aerosol concentrations of OPEs (pg m<sup>-3</sup>, median, mean and range) in the different Mediterranean sub-basins and in the SW Black Sea.

|                      | Wester        | rn Mediterr | anean [n=6]         | Ion          | ian Sea-Sio                                                                                           | ily [n=6]        | South-H | ast Medite | erranean [n=6]    | Aegean Sea | Black Sea [n=4] |        |                   |  |  |
|----------------------|---------------|-------------|---------------------|--------------|-------------------------------------------------------------------------------------------------------|------------------|---------|------------|-------------------|------------|-----------------|--------|-------------------|--|--|
| Compound             | Median        | Mean        | Range               | Median       | Mean                                                                                                  | Range            | Median  | Mean       | Range             | (n=1)      | Median          | Mean   | Range             |  |  |
| TCEP                 | 220.3         | 328.2       | (69.7 - 853.9)      | 159.6        | 366.5                                                                                                 | (102.8 - 841.0)  | 229.9   | 242.0      | (119.5 - 478.9)   | 86.5       | 492.4           | 868.5  | (308.0 - 2417.3)  |  |  |
| TDCP                 | 75.2          | 80.2        | (n.d 115.1)         | 156.6        | 230.6                                                                                                 | (n.d 459.6)      | 51.8    | 116.5      | (n.d 298.5)       | n.d        | 85.9            | 80.4   | (n.d 96.9)        |  |  |
| $\sum TCPPs^{a}$     | 844.5         | 849.6       | (126.4 - 1797.8)    | 959.8        | 1113.7                                                                                                | (301.2 - 2338.8) | 926.0   | 1003.6     | (560.1 - 1903.0)  | 499.7      | 819.8           | 1158.7 | (538.8 - 2722.4)  |  |  |
| TiBP                 | 240.0         | 247.3       | (4.2 - 532.1)       | 80.5         | 118.2                                                                                                 | (60.0 - 329.9)   | 377.3   | 375.8      | (95.6 - 643.6)    | 58.5       | 150.2           | 139.4  | (66.5 - 190.7)    |  |  |
| TnBP                 | 309.7         | 295.4       | (56.5 - 498.2)      | 265.4        | 263.0                                                                                                 | (77.5 - 508.4)   | 309.0   | 343.1      | (226.1 - 598.6)   | 189.9      | 310.5           | 298.1  | (202.4 - 369.0)   |  |  |
| TPhP                 | 20.9          | 22.2        | (2.7 - 44.0)        | 22.0         | 24.3                                                                                                  | (n.d 42.8)       | 35.6    | 40.5       | (20.4 - 79.5)     | 6.9        | 34.7            | 27.5   | (2.7 - 40.1)      |  |  |
| EHDPP                | 539.8         | 539.8       | (n.d 834.0)         | 433.2        | 433.2                                                                                                 | (n.d 762.5)      | 276.4   | 294.2      | (n.d 435.4)       | n.d.       | 183.5           | 183.5  | (n.d - 310.0)     |  |  |
| TEHP                 | 160.3         | 167.0       | (85.1 - 268.4)      | 194.9        | 189.5                                                                                                 | (55.8 - 307.4)   | 88.4    | 100.3      | (56.7 - 176.4)    | 95.4       | 174.8           | 144.1  | (36.3 - 190.7)    |  |  |
| $\sum TCrPs^{b}$     | 47.7          | 47.7        | (n.d 58.3)          | 77.2         | 78.1                                                                                                  | (n.d 99.0)       | 38.1    | 58.9       | (n.d 128.3)       | 22.7       | 70.2            | 70.2   | (n.d 72.9)        |  |  |
| ∑ <sub>14</sub> OPEs | 1728.0        | 2145.6      | (413.5 - 4672.5)    | 2172.8       | 2365.8                                                                                                | (812.9 - 5107.1) | 2087.7  | 2437.8     | (1620.2 - 4247.1) | 959.6      | 2006.9          | 2823.4 | (1717.0 - 6165.5) |  |  |
| a sum of three TC    | PP isomers; b | sum of four | TCrP isomers; n.d.= | not detected | (values <lc< td=""><td>DDs)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc<> | DDs)             |         |            |                   |            |                 |        |                   |  |  |

Table S5. Atmospheric aerosol concentrations of OPEs (pg m<sup>-3</sup>) in all samples across de Mediterranean and in the SW Black Sea

| G 1                 |                                                                                                                                                                                                                                                                    |        | Western Me | editerranean |       |        |        |        | Ionian S | ea / sicily |       |        |        | S      | outh-East M | editerranea | n      |        | Aegean Sea | Aegean Sea Black Sea |        |        |        |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|--------------|-------|--------|--------|--------|----------|-------------|-------|--------|--------|--------|-------------|-------------|--------|--------|------------|----------------------|--------|--------|--------|--|
| Compound            | A1                                                                                                                                                                                                                                                                 | A2     | A3         | A4           | A5    | A6     | A7     | A8     | A9       | A10         | A11   | A12    | A13    | A14    | A15         | A16         | A17    | A18    | A19        | A20                  | A21    | A22    | A23    |  |
| TCEP                | 180.8                                                                                                                                                                                                                                                              | 853.9  | 210.4      | 424.1        | 69.7  | 230.2  | 186.1  | 825.1  | 102.8    | 110.8       | 133.2 | 841.0  | 122.6  | 119.5  | 224.7       | 478.9       | 270.9  | 235.1  | 86.5       | 611.8                | 308.0  | 2417.3 | 373.0  |  |
| TDCP                | 75.2                                                                                                                                                                                                                                                               | 115.1  | n.d.       | n.d.         | 50.4  | n.d.   | 459.6  | 156.6  | n.d.     | 75.5        | n.d.  | n.d.   | 40.4   | 44.0   | 51.8        | n.d.        | 147.8  | 298.5  | n.d.       | 58.3                 | 85.9   | n.d.   | 96.9   |  |
| ∑TCPPs <sup>a</sup> | 1003.7                                                                                                                                                                                                                                                             | 1797.8 | 685.3      | 1258.2       | 126.4 | 226.2  | 1593.2 | 966.3  | 529.7    | 953.3       | 301.2 | 2338.8 | 636.1  | 972.7  | 879.3       | 1903.0      | 1070.6 | 560.1  | 499.7      | 627.1                | 538.8  | 2722.4 | 1012.5 |  |
| TiBP                | 232.4                                                                                                                                                                                                                                                              | 333.4  | 133.9      | 532.1        | 4.2   | 247.7  | 85.0   | 92.5   | 60.0     | 76.0        | 65.9  | 329.9  | 95.6   | 171.4  | 406.7       | 589.2       | 643.6  | 348.0  | 58.5       | 156.7                | 190.7  | 159.3  | 66.5   |  |
| TnBP                | 179.1                                                                                                                                                                                                                                                              | 498.2  | 212.0      | 419.0        | 56.5  | 407.4  | 321.0  | 340.0  | 77.5     | 209.8       | 121.0 | 508.4  | 314.4  | 303.6  | 226.1       | 598.6       | 327.1  | 288.8  | 189.9      | 317.3                | 369.0  | 336.7  | 202.4  |  |
| TPhP                | 36.0                                                                                                                                                                                                                                                               | 20.6   | 2.7        | 44.0         | 21.2  | 8.9    | 10.5   | 12.2   | 42.8     | n.d.        | 31.9  | n.d.   | 20.4   | 47.5   | 27.8        | 24.2        | 79.5   | 43.5   | 6.9        | 37.7                 | 33.4   | 40.1   | 2.7    |  |
| EHDPP               | n.d.                                                                                                                                                                                                                                                               | 834.0  | n.d.       | 245.7        | n.d.  | n.d.   | n.d.   | n.d.   | n.d.     | n.d.        | 103.9 | 762.5  | 320.2  | 188.6  | 232.7       | 435.4       | n.d.   | n.d.   | n.d.       | n.d.                 | 87.4   | 310.0  | n.d.   |  |
| TEHP                | 177.8                                                                                                                                                                                                                                                              | 219.6  | 268.4      | 142.9        | 85.1  | 108.2  | 288.8  | 307.4  | 95.0     | 162.2       | 55.8  | 227.6  | 70.6   | 91.3   | 121.4       | 176.4       | 56.7   | 85.5   | 95.4       | 190.7                | 36.3   | 179.7  | 187.4  |  |
| ∑TCrPs <sup>b</sup> | n.d.                                                                                                                                                                                                                                                               | n.d.   | 58.3       | n.d.         | n.d.  | 37.1   | n.d.   | n.d.   | 77.2     | 58.1        | n.d.  | 99.0   | n.d.   | 31.3   | 34.8        | 41.3        | 128.3  | n.d.   | 22.7       | n.d.                 | 67.5   | n.d.   | 72.9   |  |
| ∑ <sub>14</sub> OPE | 1885.0                                                                                                                                                                                                                                                             | 4672.5 | 1571.1     | 3065.9       | 413.5 | 1265.8 | 2944.2 | 2700.1 | 985.0    | 1645.5      | 812.9 | 5107.1 | 1620.2 | 1970.0 | 2205.4      | 4247.1      | 2724.5 | 1859.5 | 959.6      | 1999.6               | 1717.0 | 6165.5 | 2014.2 |  |
| a sum of three T    | sum of three TCPP isomers; b sum of four TCrP isomers; n.d.= not detected (values <lods)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lods)<> |        |            |              |       |        |        |        |          |             |       |        |        |        |             |             |        |        |            |                      |        |        |        |  |

**Figure S2.** Relative predominance of OPE in the studied basins. Error bars represent the standard deviation (%).



**Figure S3**. Spatial distribution of selected OPEs and  $\sum_{14}$ OPEs

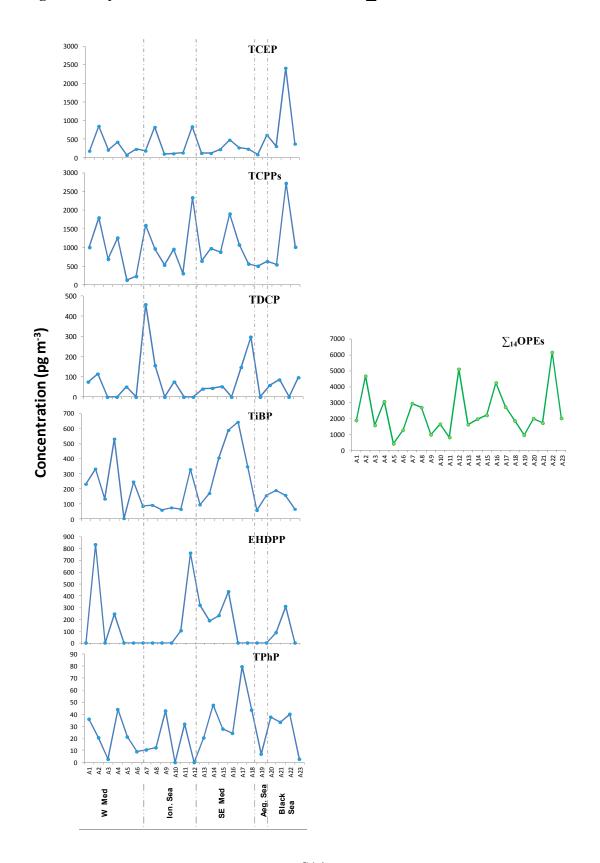
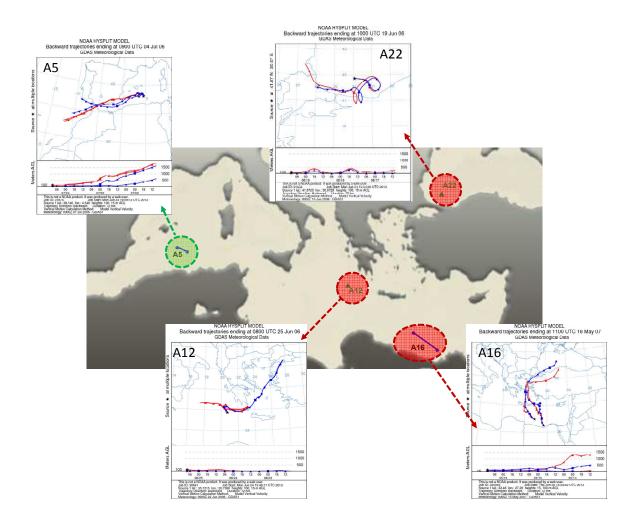




Figure S4. Location of samples presenting the highest and the lowest  $\Sigma$ OPE aerosol phase concentrations and corresponding air mass back trajectories



# Information regarding deposition fluxes to the Mediterranean Sea

**Table S6.** Dry deposition fluxes (median, mean and range) of OPEs (ng m<sup>-2</sup> d<sup>-1</sup>) in the different Mediterranean sub-basins and in the SW Black Sea.

|                      | Wester           | n Mediterra    | anean [n=6]               | Ioni                | ian Sea-Sic     | ily [n=6]       | South-Ea | ast Medite | rranean [n=6]   | Aegean Sea | Black Sea [n=4] |       |                  |  |  |
|----------------------|------------------|----------------|---------------------------|---------------------|-----------------|-----------------|----------|------------|-----------------|------------|-----------------|-------|------------------|--|--|
| Compound             | Median           | Mean           | Range                     | Median              | Mean            | Range           | Median   | Mean       | Range           | (n=1)      | Median          | Mean  | Range            |  |  |
| TCEP                 | 38.1             | 56.7           | (12.1 - 147.5)            | 27.6                | 63.3            | (17.8 - 145.3)  | 39.7     | 41.8       | (20.7 - 82.8)   | 14.9       | 85.1            | 160.3 | (53.2 - 417.7)   |  |  |
| TDCP                 | 13.0             | 13.9           | (8.7 - 19.9)              | 27.1                | 39.8            | (13.0 - 79.4)   | 8.9      | 20.1       | (7.0 - 51.6)    | n.c        | 14.8            | 13.9  | (10.1- 16.7)     |  |  |
| $\Sigma TCPPs^{a}$   | 145.9            | 145.8          | (21.8 - 310.7)            | 165.8               | 192.5           | (52.0 - 404.1)  | 160.0    | 173.4      | (96.8 - 328.8)  | 86.3       | 141.7           | 211.7 | (93.1 - 470.4)   |  |  |
| TiBP                 | 41.5             | 42.7           | (0.7 - 92.0)              | 13.9                | 20.4            | (10.4 - 57.0)   | 65.2     | 64.9       | (16.5 - 111.2)  | 10.1       | 27.3            | 24.8  | (11.5 - 33.0)    |  |  |
| TnBP                 | 53.5             | 51.0           | (9.8 - 86.1)              | 45.9                | 45.4            | (13.4 -87.9)    | 53.4     | 59.3       | (39.1 - 103.4)  | 32.8       | 56.5            | 52.9  | (35.0 - 63.8)    |  |  |
| TPhP                 | 3.6              | 3.8            | (0.5 - 7.6)               | 3.8                 | 4.2             | (1.8 - 7.4)     | 6.2      | 7.0        | (3.5 - 13.7)    | 1.2        | 6.1             | 4.9   | (0.5 - 6.9)      |  |  |
| EHDPP                | 93.3             | 93.3           | (42.5 - 144.1)            | 74.9                | 74.9            | (18.0 - 131.8)  | 47.8     | 50.8       | (32.6 - 75.2)   | n.c        | 34.3            | 34.3  | (15.1 - 53.6)    |  |  |
| TEHP                 | 27.7             | 28.9           | (14.7 - 46.4)             | 33.7                | 32.7            | (9.6 - 53.1)    | 15.3     | 17.3       | (9.8 - 30.5)    | 16.5       | 31.7            | 25.7  | (6.3 - 33.0)     |  |  |
| $\sum TCrPs^{b}$     | 8.2              | 8.2            | (6.4 - 10.1)              | 13.3                | 13.5            | (10.0 - 17.1)   | 6.6      | 10.2       | (5.4 - 22.2)    | 3.9        | 12.1            | 12.1  | (11.7 - 12.6)    |  |  |
| ∑ <sub>14</sub> OPEs | 298.6            | 370.8          | (71.5 - 807.4)            | 375.5               | 408.8           | (140.5 - 882.5) | 360.8    | 421.3      | (280.0 - 733.9) | 165.8      | 346.8           | 513.9 | (296.7 - 1065.4) |  |  |
| a sum of three TO    | CPP isomers; b s | um of four TCr | P isomers, n.c = not calc | cualted (aerosol co | ocentrations ≤I | .OD)            |          |            |                 |            |                 |       |                  |  |  |

Table S7. Dry deposition fluxes of OPEs (ng m<sup>-2</sup> d<sup>-1</sup>) in all samples across de Mediterranean and in the SW Black Sea

| C1                  |                | Western Mediterranean |                  |                 |                  |                |       |       | Ionian Sea / sicily |       |       |       |       | South-East Mediterranean |       |       |       |       |       |       | Black Sea |        |       |
|---------------------|----------------|-----------------------|------------------|-----------------|------------------|----------------|-------|-------|---------------------|-------|-------|-------|-------|--------------------------|-------|-------|-------|-------|-------|-------|-----------|--------|-------|
| Compound            | A1             | A2                    | A3               | A4              | A5               | A6             | A7    | A8    | A9                  | A10   | A11   | A12   | A13   | A14                      | A15   | A16   | A17   | A18   | A19   | A20   | A21       | A22    | A23   |
| TCEP                | 31.2           | 147.5                 | 36.4             | 73.3            | 12.1             | 39.8           | 32.2  | 142.6 | 17.8                | 19.1  | 23.0  | 145.3 | 21.2  | 20.7                     | 38.8  | 82.8  | 46.8  | 40.6  | 14.9  | 105.7 | 53.2      | 417.7  | 64.5  |
| TDCP                | 13.0           | 19.9                  | n.c              | n.c             | 8.7              | n.c            | 79.4  | 27.1  | n.c                 | 13.0  | n.c   | n.c   | 7.0   | 7.6                      | 8.9   | n.c   | 25.5  | 51.6  | n.c   | 10.1  | 14.8      | n.c    | 16.7  |
| ∑TCPPs <sup>a</sup> | 173.4          | 310.7                 | 118.4            | 217.4           | 21.8             | 39.1           | 275.3 | 167.0 | 91.5                | 164.7 | 52.0  | 404.1 | 109.9 | 168.1                    | 152.0 | 328.8 | 185.0 | 96.8  | 86.3  | 108.4 | 93.1      | 470.4  | 175.0 |
| TiBP                | 40.2           | 57.6                  | 23.1             | 92.0            | 0.7              | 42.8           | 14.7  | 16.0  | 10.4                | 13.1  | 11.4  | 57.0  | 16.5  | 29.6                     | 70.3  | 101.8 | 111.2 | 60.1  | 10.1  | 27.1  | 33.0      | 27.5   | 11.5  |
| TnBP                | 31.0           | 86.1                  | 36.6             | 72.4            | 9.8              | 70.4           | 55.5  | 58.8  | 13.4                | 36.2  | 20.9  | 87.9  | 54.3  | 52.5                     | 39.1  | 103.4 | 56.5  | 49.9  | 32.8  | 54.8  | 63.8      | 58.2   | 35.0  |
| TPhP                | 6.2            | 3.6                   | 0.5              | 7.6             | 3.7              | 1.5            | 1.8   | 2.1   | 7.4                 | n.c   | 5.5   | n.c   | 3.5   | 8.2                      | 4.8   | 4.2   | 13.7  | 7.5   | 1.2   | 6.5   | 5.8       | 6.9    | 0.5   |
| EHDPP               | n.c            | 144.1                 | n.c              | 42.5            | n.c              | n.c            | n.c   | n.c   | n.c                 | n.c   | 18.0  | 131.8 | 55.3  | 32.6                     | 40.2  | 75.2  | n.c   | n.c   | n.c   | n.c   | 15.1      | 53.6   | n.c   |
| TEHP                | 30.7           | 37.9                  | 46.4             | 24.7            | 14.7             | 18.7           | 49.9  | 53.1  | 16.4                | 28.0  | 9.6   | 39.3  | 12.2  | 15.8                     | 21.0  | 30.5  | 9.8   | 14.8  | 16.5  | 33.0  | 6.3       | 31.1   | 32.4  |
| ∑TCrPs <sup>b</sup> | n.c            | n.c                   | 10.1             | n.c             | n.c              | 6.4            | n.c   | n.c   | 13.3                | 10.0  | n.c   | 17.1  | n.c   | 5.4                      | 6.0   | 7.1   | 22.2  | n.c   | 3.9   | n.c   | 11.7      | n.c    | 12.6  |
| Σ <sub>14</sub> OPE | 325.7          | 807.4                 | 271.5            | 529.8           | 71.5             | 218.7          | 508.8 | 466.6 | 170.2               | 284.3 | 140.5 | 882.5 | 280.0 | 340.4                    | 381.1 | 733.9 | 470.8 | 321.3 | 165.8 | 345.5 | 296.7     | 1065.4 | 348.1 |
| a sum of three T    | CPP isomers; b | sum of four To        | CrP isomers, n.e | = not calcualte | ed (aerosol coce | ntrations ≤LOD | ))    |       |                     |       |       |       |       |                          |       |       |       |       |       |       |           |        |       |