# Fluorine and Niobium doped TiO<sub>2</sub>: chemical and spectroscopic properties of polycrystalline n-type doped anatase.

Jakub Biedrzycki<sup>a</sup>, Stefano Livraghi<sup>a</sup>, Elio Giamello<sup>a</sup>\*, Stefano Agnoli<sup>b</sup>, Gaetano Granozzi<sup>b</sup>

### S.I.

Several samples were prepared in this work in order to clarify the role of amount of fluorine concentration on the phase composition of the final materials. Nevertheless, within the entire set of samples and with the exception of Nb1 only materials based the anatase polymorph were chosen for the characterization (sample reported in Table1 of the paper). Table S1 resume the main features of all samples prepared in this work.

| Sample abbreviation | Nb/Ti<br>Nominal | Nb/Ti<br>(XRF) | F/Ti<br>Nominal | Calc.<br>Temp.<br>(°C) | Phase (w/w %)* |    |    |    | Cryst.*† | Eg   |
|---------------------|------------------|----------------|-----------------|------------------------|----------------|----|----|----|----------|------|
|                     |                  |                |                 |                        | А              | R  | В  | TF | (nm)     | (eV) |
| TiO <sub>2</sub>    | 0                | -              | -               | 500                    | 100            | 0  | 0  | 0  | 30       | 3.20 |
| F1                  | 0                | =              | 0.01            | 500                    | 100            | 0  | 0  | 0  | 28       | 3.20 |
| F2                  | 0                | =              | 0.90            | 500                    | 100            | 0  | 0  | 0  | 30       | 3.20 |
| F3                  | 0                | =              | 1.80            | 500                    | 100            | 0  | 0  | 0  | 34       | 3.20 |
| F4                  | 0                | -              | 3.50            | 500                    | 100            | 0  | 0  | 0  | 36       | 3.20 |
| F5                  | 0                | -              | 5.50            | 500                    | 98             | 0  | 0  | 2  | 91       | 3.20 |
| F6                  | 0                | -              | 7.00            | 500                    | 28             | 0  | 0  | 72 | 140      | 3.14 |
| Nb1                 | 0.05             | 0.05           | -               | 500                    | 55             | 10 | 35 | 0  | 12       | 2.91 |
| Nb2                 | 0.05             | n.d.           | -               | 700                    | 31             | 69 | 0  | 0  | 27       | 2.95 |
| NbF05               | 0.05             | n.d            | 0.05            | 700                    | 35             | 65 | 0  | 0  | 22       | n.d. |
| NbF15               | 0.05             | n.d            | 0.15            | 700                    | 54             | 46 | 0  | 0  | 25       | n.d  |
| NbF25               | 0.05             | 0.05           | 0.25            | 700                    | 98             | 2  | 0  | 0  | 21       | 3.03 |
| NbF35               | 0.05             | 0.05           | 0.35            | 700                    | 100            | 0  | 0  | 0  | 24       | 3.08 |
| NbF45               | 0.05             | 0.06           | 0.45            | 700                    | 100            | 0  | 0  | 0  | 32       | 3.11 |
| NbF25a              | 0.05             | 0.05           | 0.25            | 700                    | 100            | 0  | 0  | 0  | 23       | 3.18 |

Table S1: Abbreviation adopted for the samples of the present work and corresponding compositional, structural and optical properties. A=Anatase. R=Rutile. B=Brookite. TF= $TiOF_2$ . n.d. = not determinate. \*Data obtained via Rietveld refinement using Maud program. † Data related to the anatase polymorph only.

#### F-TiO<sub>2</sub> systems.

Experimental evidence clearly indicates that a limit of fluorine solubility occurs. In this work different concentration of fluorine in solution (with a nominal F/Ti ratio ranging from 0.01 to 7.00)

were employed in the F-TiO<sub>2</sub> preparation. In all cases the anatase polymorph was obtained but, starting from a F/Ti ratio of 5.00, the  $TiOF_2$  phase is also formed (Fig.S.I.-1 A).

In Fig.S.I.-1B, DR-UV-Vis absorption spectra of the different F-TiO<sub>2</sub> samples are reported. Optical properties do not significantly change until a F/Ti ratio of 7.00, all samples show an optical absorption edge of about 3.20 eV (Fig.S.I.-2) which is the commonly reported value for the anatase polymorph. At higher level of doping the absorption edge is shifted to 3.14 eV (Fig.S.I.-2), however in this case the TiOF<sub>2</sub> component in this sample become predominant and a possible contribution of this crystallographic phase cannot be excluded.

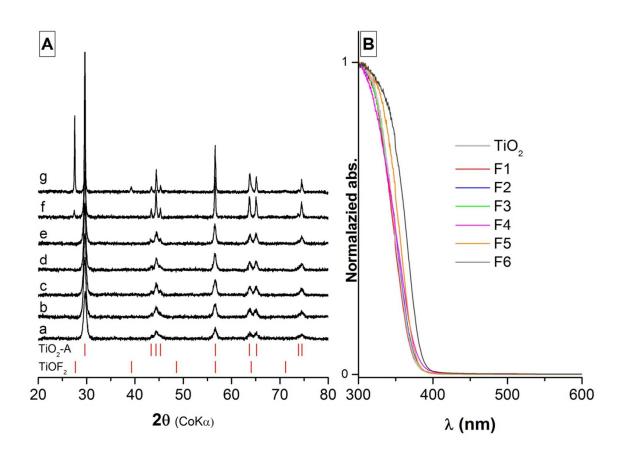



Fig SI-1. F-  $TiO_2$  samples. Panel A: XRD patterns of a)  $TiO_2$ , b) F1, c) F2, d) F3, e) F4, f) F5, g) F6.  $TiO_2$ -A and  $TiOF_2$  indicate the peaks position of Anatase and  $TiOF_2$  phases. Panel B: DR-UV-Vis spectra.

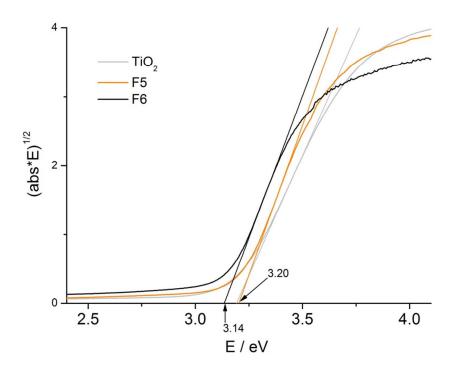



Fig SI-2. Optical absorption edge determinated via Tauc plot method for TiO<sub>2</sub>, F5 and F6 samples.

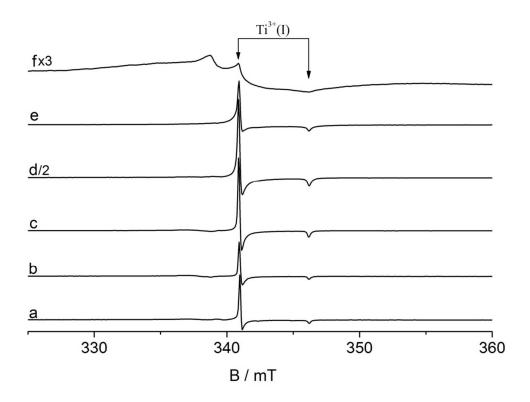
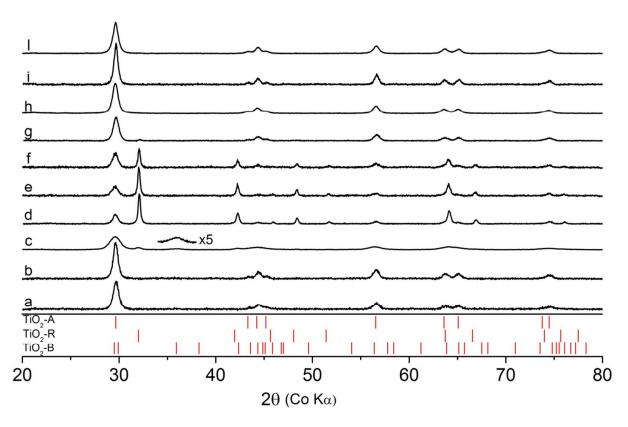




Fig SI-3. EPR spectra of F-TiO $_2$  samples. a) F1, b) F2, c) F3, d) F4, e) F5, f) F6.

As already reported in our previous work<sup>1</sup>, TiO<sub>2</sub> doping with fluorine ions leads to the formation of Ti<sup>3+</sup> centres. EPR spectra reported in Fig.S.I.-3 confirms the formation of these centres but at the same time EPR analysis shows that the amount of observed Ti<sup>3+</sup> centres due to the fluorine insertion in the TiO<sub>2</sub> lattice is not proportional to the nominal amount of dopant adopted in the preparation. These two experimental evidences clearly indicate that a limit of fluorine solubility occurs.

#### Nb- $TiO_2$ systems.

In Fig.S.I-4 XRD patterns of niobium doped materials prepared in this work are reported. Niobium, at variance with fluorine is not removed allowing thermal treatments at high temperature in order to ensure a full diffusion of the dopant cation in the TiO<sub>2</sub> lattice and to obtain well crystallized materials. Two different Nb doped samples were preparedcalcining the material at 770K (Nb1) and at 970K (Nb2) respectively. In these two cases it was not possible to obtain a single phase material. At the lower temperature small fractions of rutile and Brookite are formed (sample Nb1, Fig. SI-4c) while at higher temperature the Anatase to Rutile phase conversion easily occurs. (sample Nb2, Fig. SI-4d)



**Fig SI-4.** XRD patterns of TiO<sub>2</sub> based materials. a) Bare TiO<sub>2</sub>, b) F2, c) Nb1, d) Nb2, e) NbF1, f) NbF2, g) NbF3, h) NbF4, i) NbF5, l) NbF6. The sticks corresponding to TiO<sub>2</sub>-A, TiO<sub>2</sub>-R, and TiO<sub>2</sub>-B indicate the diffraction peaks of the anatase, rutile and brookite polymorph respectively.

#### *Nb-F-TiO*<sup>2</sup> *systems*.

Incremental amount of fluorine was added during the synthesis of Nb doped materials in order to avoid the rutile generation. Data reported in Figure SI-4 indicate that a critical amount of fluorine is needed during the synthesis to completely suppress the Rutile formation. With a F/Ti ratio lower than 0.25 the presence of rutile is always observed whereas for a F/Ti ratio of 0.25 (pattern g in Fig. SI-4) only a negligible trace of the polymorph (2%) is observed. For an F/Ti ratio of 0.35 or higher (pattern from h to l in Fig. SI-4) rutile formation is completely suppressed. *XPS* 

XPS analysis indicates that all samples show a Ti/O ratio higher than the expected stoichiometric value (see table 2 in the text). This is due to the presence of surface hydroxyl groups and chemisorbed water which alter the surface composition of the samples. The presence of such groups is confirmed by an absorption shoulder in the O 1s XPS spectra at high binding energy with respect to that of lattice oxygen. An example of such spectral feature in shown in Figure SI-5 where the O 1s XPS spectrum of sample NbF6 is reported.

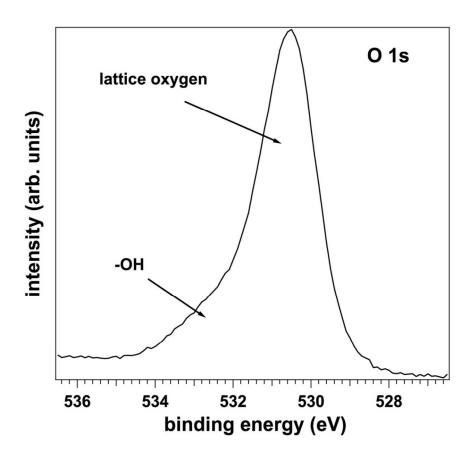



Fig SI-5. O 1s XPS spectrum of sample NbF25a sample.

## References.

\_\_\_\_

<sup>[1]</sup> A. Czoska; S. Livraghi; M. Chiesa; E. Giamello; S. Agnoli; G. Granozzi; E. Finazzi; C. Di Valentin; G. Pacchioni, *J. Phys. Chem. C* **2008**, *112*, (24), 8951-8956.