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1. X-ray photoelectron spectroscopy (XPS). A Kratos Axis Ultra-DLD instrument operated 

with a monochromatic Al K X-ray source at a power of 150 W was employed for the XPS 

analysis. Survey scans were acquired by accumulating two sweeps in the 0–1100 eV range at a pass 

energy of 160 eV. High-resolution scans were acquired at a pass energy of 20 eV. The pressure in 

the main chamber during the analysis was in the order of 10
–11

 bar. The generated XPS data were 

processed using the CasaXPS software. Atomic surface concentrations were determined by fitting 

the core spectra using Gaussian line shapes and a linear background. Binding energies of the 

components in the spectra were determined by calibrating against the C–H/C–C peak in the C1s 

spectra at 285.0 eV. The systematic error is estimated to be of the order of 5–10%. 

2. Ellipsometry. Film thicknesses below 50 nm were measured by means of a rotating analyzer 

ellipsometer (Dre, Germany) with a HeNe laser (λ = 632.8 nm) at 75° angle of incidence. The 

ellipsometric parameters of the bare (s, s) and grafted (g, g) substrates were measured in air at 

ambient temperature, where  is the phase shift and tan() is the amplitude ratio upon reflection. 

The complex refractive index of the bare substrate was calculated from the measured s and s 

values. A three-layer optical model
1,2 

consisting of a substrate with a complex refractive index, the 

grafted layer given by its refractive index and thickness and the surrounding medium (air) was used 

to calculate the overall reflection coefficients for in-plane (Rp) and out-of-plane (Rs) polarized 

lights. The real and the imaginary parts of the refractive index of the bare substrate were obtained 

by measuring the clean plates prior to modification. Ellipsometric measurements were performed on 

the same area of the plates before and after electrografting. Because the measurements are carried 

out on a dried and thus collapsed film, the refractive index of the layer is fixed at a constant value 

(real = 1.55; imaginary = 0), independent of the thickness. The average and the standard deviation 

values reported correspond to data points obtained from measuring three spots on each plate. 

3. Profilometry. Film thicknesses above 50 nm were measured by means of a Dektak 150 

Surface Profiler by scanning the surface of the substrate across the grafted and non-grafted parts. In 

the case of bad contrast the grafted material was scratched off by a plastic spatula and the scan was 
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made across the scratch. Typically, 3 runs with 2.9 × 10
-5

 kg m s
-2

 styles force, 40 m s
-1

 scanning 

speed, and 1200 µm scanning distance were used in order to obtain an average thickness value and 

standard deviation.  

4. Ice adhesion profiles. The representative ice adhesion strength vs. time profiles are shown for 

all strong anionic (Figure 1), strong cationic (Figure 2), weak anionic (Figure 3) and nonionic 

polymer brushes (Figure 4). Zero values of the ice adhesion strength correspond to a situation when 

the cuvette with ice was not yet in contact with the pulling arm and/or the ice cuvette was peeled 

from the surface. The peak force was used as a characteristic value for ice adhesion strength.  

 

 

Figure 1. Ice Adhesion Strength measured at -18 °C and -10 °C on bare glass (G) and strong anionic (G-SO3
‒
X

+
) 

polyelectrolyte brush layers comprising of different types of counter ions (X
n+

 = Li
+
, Na

+
, K

+
 Ag

+
, Ca

2+
, C16N

+
, La

3+
) 
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Figure 2. Ice Adhesion Strength measured at -18 °C and -10 °C on strong cationic (G-N
+
Y

n‒
) polyelectrolyte brush 

layers comprising of different types of counter ions (Y
n‒

 = F
‒
, Cl

‒
, BF4

‒
, SO4

2‒
) 

 

Figure 3. Ice Adhesion Strength measured at -18 °C and -10 °C on weak anionic (G-COO
‒
Z

+
) polyelectrolyte brush 

layers comprising of different types of counter ions (Z
+
 = H

+
, Li

+
, Na

+
) 
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Figure 4. Ice Adhesion Strength measured at -18 °C and -10 °C on poly(ethylene glycol) [G-PEG] and poly(methyl 

methacrylate) [G-PMMA] brushes 
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