Supporting Information

Reactions of Grignard Reagents with Nitrous Oxide

Alexander G. Tskhovrebov, Euro Solari, Rosario Scopelliti, and Kay Severin*

Table of Contents

	Page
1. General remarks	S1
2. Reaction between <i>i</i> PrMgCl and N ₂ O	S2
3. Reaction between BnMgCl and N ₂ O	S5
4. Synthesis of 5–7	S7
5. Kinetic analyses	S8
6. NMR spectra	S10
7. Calibration curves for the GC-MS analyses	S16
8. X-ray crystallography	S18
9. References	S21

1. General remarks

Unless stated otherwise, the reactions were performed under an atmosphere of dry dinitrogen. Solvents were purified and dried according to standard procedures. MeMgI in Et₂O (0.3 M) was prepared by the dropwise addition of MeI to Mg powder in Et₂O. All other reagents were obtained from commercial sources. Grignard reagents were titrated with salicylaldehyde phenylhydrazone or by using No-D NMR spectroscopy prior to use according to a published procedures. N₂O (99.999%) was purchased from Air-liquide. NMR spectra were measured on a Bruker Avance DPX-400 (1 H: 400 MHz, 13 C: 100 MHz). GC-MS analyses were carried out on a Varian CP-3800 gas chromatograph equipped with a Saturn 2200 mass spectrometer (detector: ion trap) with octane as the internal standard. An Agilent capillary column (30 m x 0.250 mm x 0.5 μ m) with the stationary phase HP-5MS Ultra Inert and helium was used as carrier. Mass spectra were recorded with a Q-TOF Ultima (Waters) instrument. Combustion analysis was performed with a Thermo Scientific Flash 2000 Organic Elemental Analyzer.

2. Reaction between iPrMgCl and N2O

$$\begin{array}{c|c} & 1. \ N_2 \ O, \ THF \\ \hline & 2. \ H_2 O \end{array} \begin{array}{c} N = \\ \hline & NH \end{array} + \\ \end{array}$$

GC-MS analysis of the reaction between iPrMgCl and N_2O .

A solution of *i*PrMgCl in THF (8 mL, 490 mM) was stirred under an atmosphere of N₂O. After 1 h, an aliquot (0.5 mL) of the reaction mixture was added to a wet THF solution (ca. 300 mM of H₂O) containing the internal standard octane (1.25 mL, 70 mM). A colorless precipitate was removed by filtration and the solution was analyzed by GC-MS.

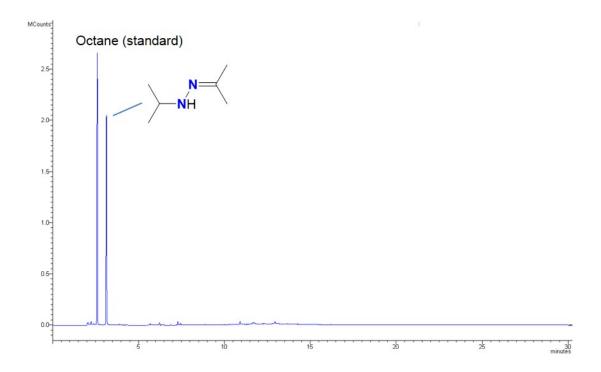


Figure S1. GC-MS spectrum of the reaction mixture obtained from iPrMgCl and N₂O.

THF- d_8 (0.5 mL) was added to a solution of *i*PrMgCl (2.0 M) and naphthalene (used as an internal standard, 0.2 M) in THF (0.1 mL) in a J. Young NMR tube. The solution was saturated with N₂O at 0 °C, warmed to room temperature, and analyzed by ¹H NMR spectroscopy after 1 h.

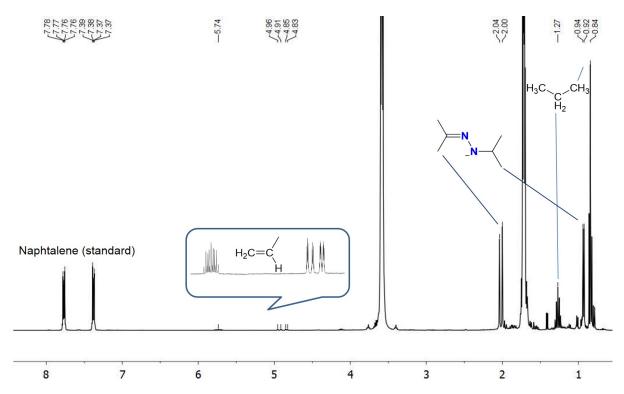


Figure S2. ¹H NMR spectrum of the reaction mixture obtained from *i*PrMgCl and N₂O.

Synthesis of 1 (iPrNHNCMe₂).

A solution of *i*PrMgCl in THF (5 mL, 2.1 M) was stirred under an atmosphere of N₂O. After 3 h, water (0.5 mL) was added and the liquid phase was separated from the white precipitate and dried over MgSO₄. Removal of the solvent gave an oily residue, which was dried under vacuum. Isolated yield: 52 mg (14%). Crude yield according to GC-MS: 51 %. ¹H NMR (400 MHz, CDCl₃, δ): 1.07 (d, J = 6.4 Hz, 6 H, CH(CH₃)₂) 1.67 (s, 3 H, CMe₂), 1.86 (s, 3 H, CMe₂), 3.32 (sept, J = 6.4 Hz, 1 H, CH(CH₃)₂). ¹³C{¹H} NMR (100 MHz, CDCl₃, δ): 15.60, 25.24 (N=C(CH₃)₂), 22.28 (CH(CH₃)₂), 50.64 (CH(CH₃)₂), 145.63 (N=C(CH₃)₂).

Synthesis of 4 ($iPrN_2H_4Cl$).

A solution of *i*PrMgCl in THF (5 mL, 2.1 M) was stirred under an atmosphere of N₂O. After 3 h, water (0.5 mL) was added and the liquid phase was separated from the white precipitate. Addition of HCl (4 N solution in dioxane, 1 mL) to the solution resulted in the formation of a precipitate, which was isolated by filtration, washed hexane (20 mL) and dried under vacuum. Yield: 256 mg (44 %). Elem. anal. calcd for C₃H₁₁N₂Cl: C 32.58; H 10.03; N 25.33. Found: C 32.81; H 9.78; N 25.47. ¹H NMR (400 MHz, CD₃OD, δ): 1.22 (d, 6.6 Hz, 6 H, CH(CH₃)₂), 3.26 (t, 6.6 Hz, 1 H, C*H*(CH₃)₂). ¹³C{¹H} NMR (100 MHz, CD₃OD, δ): 17.88 (CH(*C*H₃)₂), 54.91 (*C*H(CH₃)₂). MS (ESI⁺), found: 129.1411 [M + H₃O]⁺; calcd for C₃H₁₄N₂ClO: 129.0867.

3. Reaction between BnMgCl and N2O

GC-MS analysis of the reaction between BnMgCl and N_2O .

A solution of BnMgCl in THF (8 mL, 250 mM) was stirred under an atmosphere of N_2O . After 3 h, an aliquot (0.5 mL) of the reaction mixture was added to a wet THF solution (ca. 300 mM of H_2O) containing the internal standard octane (0.5 mL, 250 mM). A colorless precipitate was removed by filtration and the solution was analyzed by GC-MS.

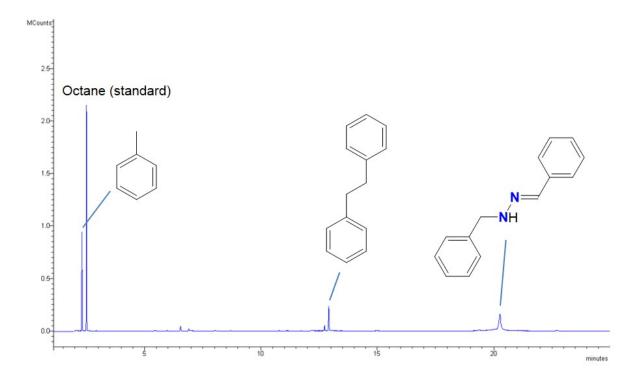


Figure S3. GC-MS spectrum of the reaction mixture obtained from BnMgCl and N₂O.

Synthesis of $2 \times HCl$ (BnNH₂NCHPhCl).

A solution of BnMgCl in THF (5 mL, 2.0 M) was stirred under an atmosphere of N₂O. After 3 h, water (0.5 mL) was added and the liquid phase was separated from the white precipitate. Addition of HCl (4 N solution in dioxane, 1 mL) to the solution resulted in the formation of a precipitate, which was isolated by filtration, washed hexane (20 mL) and dried under vacuum. Yield: 456 mg (37 %). Elem. anal. calcd for $C_{14}H_{15}N_2Cl$: C 68.15; H 6.13; N 11.35. Found: C 68.33; H 6.55; N 11.44. ¹H NMR (400 MHz, CD₂Cl₂, δ): 4.47 (s, 2 H, CH₂), 7.33–7.72 (m, 10 H, Ph's), 8.83 (s, 1 H, C*H*Ph). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, δ): 53.97 (CH₂), 125.65–132.96 (Ph's), 167.62 (*C*HPh). MS (ESI⁺), found: 211.1235 [M – Cl]⁺; calcd for $C_{14}H_{15}N_2$: 211.1229.

4. Synthesis of 5–7

Synthesis of 5 (CyN_2H_4Cl).

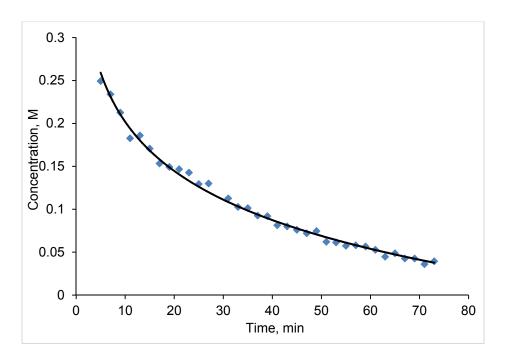
A solution of CyMgCl in THF (5 mL, 2.0 M) was stirred under an atmosphere of N_2O . After 3 h, water (0.5 mL) was added and the liquid phase was separated from the white precipitate. Addition of HCl (4 N solution in dioxane, 1 mL) to the solution resulted in the formation of a precipitate, which was isolated by filtration, washed hexane (20 mL) and dried under vacuum. Yield: 316 mg (42 %). Elem. anal. calcd for $C_6H_{15}N_2Cl$: C 47.84; H 10.04; N 18.60. Found: C 47.60; H 10.50; N 4.77. ¹H NMR (400 MHz, CD₃OD, δ): 1.19–2.14 (m, 10 H, CH₂), 3.02–3.10 (m, 1 H, CH). ¹³C{¹H} NMR (100 MHz, CD₃OD, δ): 25.26, 26.27, 29.06 (CH₂), 61.50 (CH). MS (ESI⁺), found: 115.1235 [M – Cl]⁺; calcd for $C_6H_{15}N_2$: 115.1229.

Synthesis of 6 (EtN_2H_4Cl).

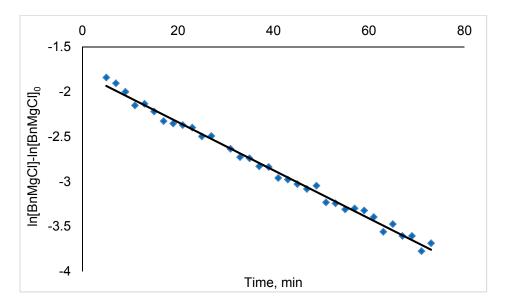
A solution of EtMgCl in THF (5 mL, 2.0 M) was stirred under an atmosphere of N₂O. After 3 h, water (0.5 mL) was added, liquid phase was separated from the white precipitate. Addition of HCl (4 N solution in dioxane, 1 mL) to the solution resulted in the formation of a precipitate, which was isolated by filtration, washed hexane (20 mL) and dried under vacuum. Yield: 302 mg (63%). Elem. anal. calcd for C₂H₉N₂Cl: C 24.88; H 9.39; N 29.01. Found: C 24.80; H 8.98; N 28.70. ¹H NMR (400 MHz, CD₃OD, δ): 1.18 (t, 7.3 Hz, 3 H, CH₃CH₂), 3.02 (q, 7.3 Hz, 2 H, CH₃CH₂). ¹³C{¹H} NMR (100 MHz, CD₃OD, δ): 10.16 (*C*H₃CH₂), 47.71 (CH₃CH₂). MS (ESI⁺), found: 113.1126 [M + HO]⁺; calcd for C₂H₁₀N₂ClO: 113.0554.

Synthesis of 7 ($Ph(CH_2)_2N_2H_4Cl$).

A solution of Ph(CH₂)₂MgCl in THF (10 mL, 1.0 M) was stirred under an atmosphere of N₂O. After 3 h, water (0.5 mL) was added, liquid phase was separated from the white precipitate. Addition of HCl (4 N solution in dioxane, 1 mL) to the solution resulted in the formation of a precipitate, which was isolated by filtration, washed hexane (20 mL) and dried under vacuum. Yield: 409 mg (47%). Elem. anal. calcd for C₈H₁₃N₂Cl: C 55.65; H 7.59; N 16.23. Found: C 55.56; H 7.69; N 16.59. ¹H NMR (400 MHz, CD₃OD, δ): 2.87 (m, 4 H, PhCH₂), 3.19 (m, 4 H, BnCH₂), 7.19 (m, 5 H, Ph). ¹³C{¹H} NMR (100 MHz, CD₃OD, δ): 31.23 (PhCH₂), 52.18 (BnCH₂), 126.65, 128.33, 128.48, 136.93 (Ph). MS (ESI⁺), found: 137.1079 [M – Cl]⁺; calcd for C₈H₁₃N₂: 137.1073.


5. Kinetic analyses

General procedure for monitoring of the reactions of N_2O with Grignard reagents in THF.


THF- d_8 (0.5 mL) was added to a THF solution (0.1 mL) of the corresponding Grignard reagent (2.0 M) and naphthalene (used as an internal standard, 0.2 M) in a J. Young NMR tube. The solution was saturated with N₂O at 0 °C. The time course of the conversion of the starting material was determined by 1 H NMR spectroscopy at RT.

General procedure for monitoring of the reactions of N_2O with Grignard reagents in Et_2O .

Et₂O (0.4 mL) was added to an Et₂O solution (0.2 mL) of iPrMgCl or MeMgI (1.0 M) and naphthalene (used as an internal standard, 0.2 M) in a J. Young NMR tube. The solution was saturated with N₂O at 0 °C. One drop of C₆D₆ was added in order to shim the sample. The time course of the conversion of the starting material was determined by 1H NMR spectroscopy at RT.

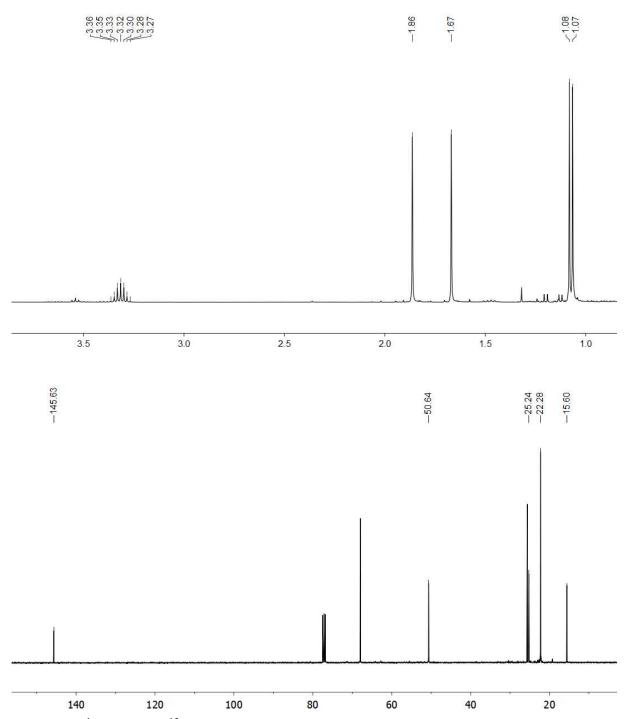


Figure S4. Concentration vs. time for the reaction between BnMgCl and N_2O in THF- d_8 (0.3 M, 25 °C).

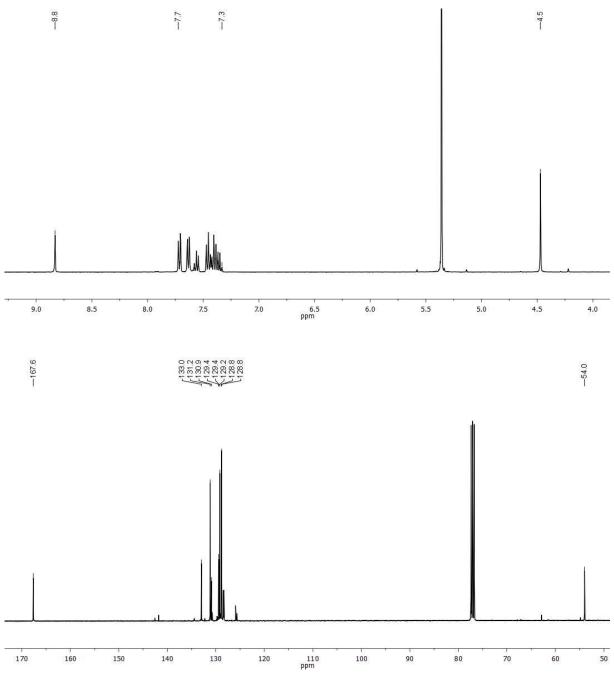
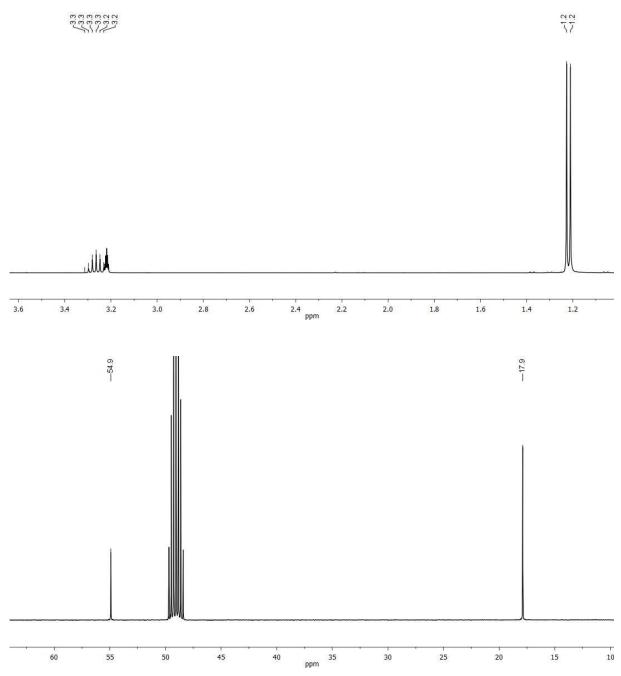


Figure S5. Plot of rate ln[BnMgCl]-ln[BnMgCl]₀ vs. time for the reaction between BnMgCl and N₂O in THF- d_8 (0.3 M, 25 °C). k = 0.027 min⁻¹, $t_{1/2} = 26$ min.


6. NMR spectra

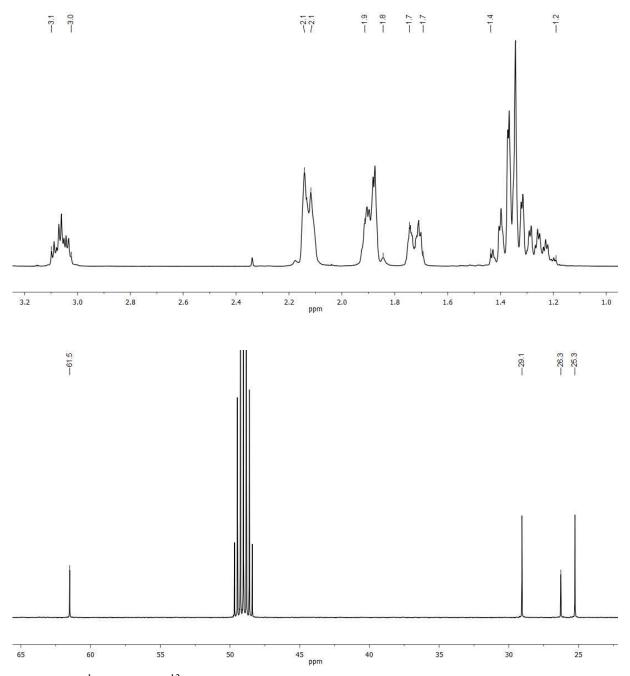
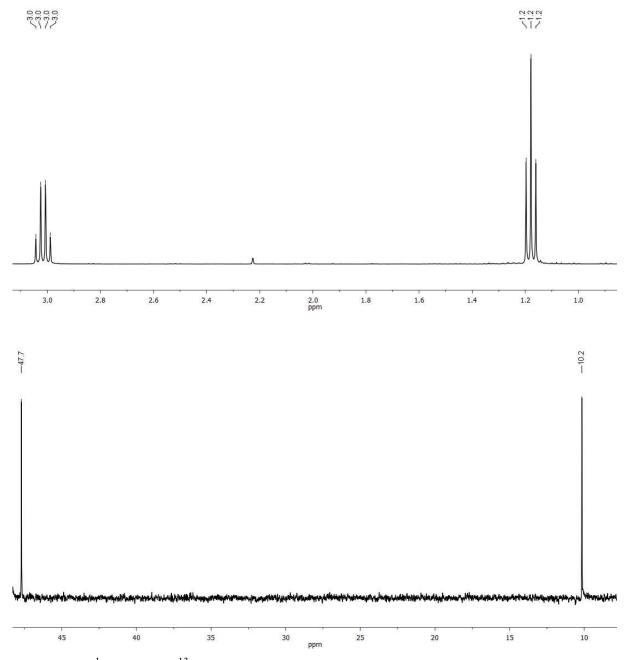
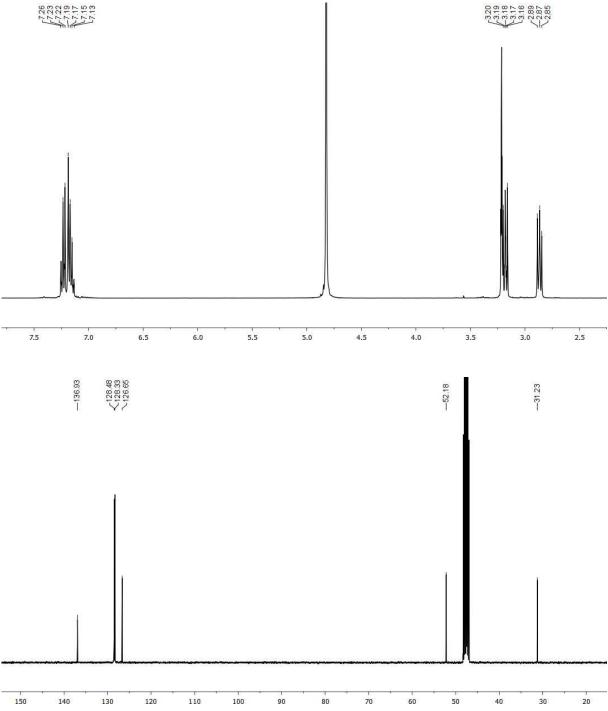
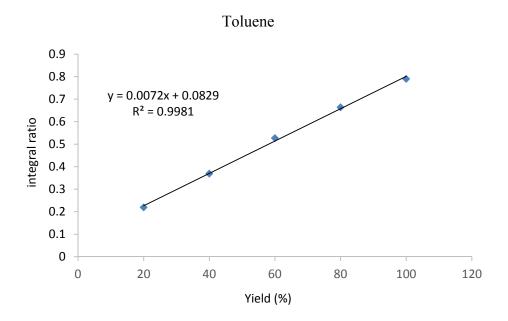

Figure S6. ¹H (top) and ¹³C (bottom) NMR spectrum of *i*PrNHNCMe₂ (1) at RT (CDCl₃).

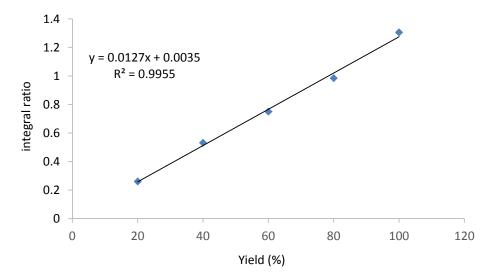
Figure S7. 1 H (top, CD₂Cl₂) and 13 C (bottom, CDCl₃) NMR spectrum of BnNH₂NCHPhCl (**2**) at RT.

Figure S8. 1 H (top) and 13 C (bottom) NMR spectrum of iPrN₂H₄Cl (**4**) at RT (CD₃OD).

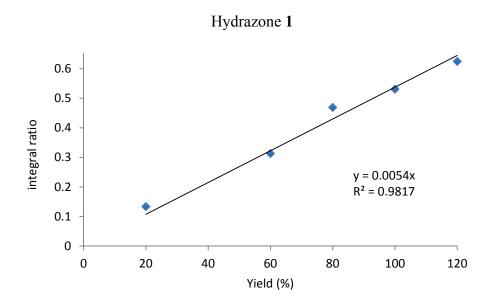
Figure S9. ¹H (top) and ¹³C (bottom) NMR spectrum of CyN₂H₄Cl (**5**) at RT (CD₃OD).


Figure S10. 1 H (top) and 13 C (bottom) NMR spectrum of EtN₂H₄Cl (6) at RT (CD₃OD).


Figure S11. 1 H (top) and 13 C (bottom) NMR spectrum of Ph(CH₂)₂N₂H₄Cl (7) at RT (CD₃OD).

7. Calibration curves for the GC-MS analyses


For the calibration curves for toluene and bibenzyl, a stock solution of the internal standard octane (0.250 M in THF) and stock solutions of toluene (0.250 M) or 1,2-diphenylethane (0.125 M) in THF were prepared. Aliquots of the stock solutions were mixed and diluted with THF to give a total volume of 1.0 mL. The final concentration of the internal standard was 0.125 M and the concentrations of the product 0.025 M (20% yield), 0.075 M (60% yield), 0.100 M (80% yield), 0.125 M (100% yield) for toluene; 0.013 M (20% yield), 0.038 M (60% yield), 0.05 M (80% yield), 0.063 M (100% yield) for 1,2-diphenylethane. The calibration curve gives the ratio of the chromatogram peak integrals in relation to the corresponding yield.

1,2-Diphenylethane

For the calibration curve for hydrazone **1**, 5 THF solutions (1.75 mL) were prepared, which contained octane (70 mM) and hydrazone **1** 20% yield (14 mM), 60% yield (42 mM), 80% yield (56 mM), 100% yield (70 mM), 120% yield (84 mM). The calibration curve gives the ratio of the chromatogram peak integrals (hydrazone vs. octane) in relation to the corresponding yield.

8. X-ray crystallography

Upon storage of 1 under air at -35 °C, the formation of single crystals was observed. A structural analysis revealed that hydrazone 1 had co-crystallized with its corresponding hydroperoxide (denoted $1 \cdot O_2$). The diffraction data (except compound 2) were measured at low temperature [100(2) K] using Mo K_{α} radiation on a Bruker APEX II CCD diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by EvalCCD^[2] and then corrected for absorption. [3] The data collection of compound 2 was performed at room temperature using Cu K_{α} radiation on an Agilent Technologies SuperNova dual system in combination with an Atlas CCD detector. The data reduction was carried out by Crysalis PRO.^[4] The solutions and refinements were performed by SHELX.^[5] The crystal structures were refined using full-matrix least-squares based on F^2 with all non hydrogen atoms anisotropically defined. Hydrogen atoms were placed in calculated positions by means of the "riding" model. Some refinement problems (dealing with disordered THF) were encountered in the last stages of refinement of compound 3 and solved by the split model and by applying some geometrical constraints (SADI card). Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Center (CCDC) as Supplementary Publication No. CCDC 989041 (2), 989042 (1+1·O₂) and 989043 (3). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge, CB2 1EZ, U.K. (fax, (internat.) +44-1223-336033; E-mail, deposit@ccdc.cam.ac.uk).

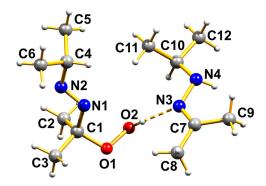


Figure S12. Molecular structures of co-crystallized $1 + 1 \cdot O_2$.

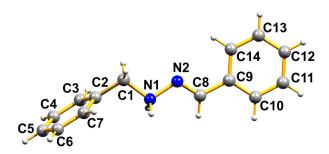


Figure S13. Molecular structure of 2. Cl anion is omitted.

Table S1. Crystallographic data for compounds $1+1\cdot O_2$, 2, and 3.

Complex	$1 + 1 \cdot O_2$	2	3
Empirical formula	$C_{12}H_{28}N_4O_2$	$C_{14}H_{15}ClN_{25}$	$C_{32}H_{64}Cl_{4}Mg_{5}N_{4}O_{6} \\$
Mol. Weight / g mol ⁻¹	260.38	246.73	864.22
Temperature / K	100(2)	293(2) K	100(2)
Wavelength / Å	0.71073	1.54178	0.71073 Å
Crystal system	Triclinic	Orthorhombic	Monoclinic
Space group	P-1	$P2_{1}2_{1}2_{1}$	$P2_1/n$
a / Å	8.3803(6)	a = 7.5186(3)	a = 11.483(2)
b / Å	10.3708(6)	b = 13.2135(4)	b = 18.8942(15)
c / Å	11.0004(3)	c = 27.5125(13)	c = 21.2253(17)
α/°	115.652(4)	90	90
β/°	99.615(4)	90	100.705(9)
γ/°	101.009(6)	90	90
Volume / Å ³	811.58(8)	2733.26(19)	4525.1(10)
Z	2	8	4
Density / g cm ⁻³	1.066	1.199	1.269
Absorption Coeff. / mm ⁻¹	0.074	2.299	0.373
Crystal size / mm ³	0.44 x 0.32 x 0.27	0.53 x 0.44 x 0.12	0.46 x 0.33 x 0.20
Θ range / °	3.38 to 31.70	3.21 to 73.18	3.09 to 30.02°.
o range /	$-12 \le h \le 12$	$-8 \le h \le 8$	$-16 \le h \le 16$
Index ranges	$-15 \le k \le 15$	$-16 \le k \le 15$	$-26 \le k \le 26$
	-16 ≤1 ≤ 15	-33 ≤1 ≤ 29	$-29 \le l \le 29$
Reflections collected	18097	7203	61326
Independent reflections	$5425 (R_{int} = 0.0203)$	$4633 (R_{int} = 0.0381)$	$12819 (R_{int} = 0.0340)$
Completeness	98.6 % (to θ=31.70°)	99.9 % (θ= 67.00°)	99.3 % (θ=25.00°)
Absorption correction	Semi-empirical from equivalents	Gaussian	Semi-empirical from equivalents
Transmission max/min	0.7463 and 0.6809	0.686 and 0.115	0.7460 and 0.6558
Data/restraints/param.	5425 / 0 / 179	4633 / 0 / 308	12819 / 21 / 499
Goodness-of-fit on F ²	1.086	1.039	1.108
Final R indices $[I > 2 s (I)]$	R1 = 0.0341	R1 = 0.0688	R1 = 0.0401
	wR2 = 0.0892	wR2 = 0.1710	wR2 = 0.0820
R indices (all data)	R1 = 0.0409	R1 = 0.0756	R1 = 0.0612
	wR2 = 0.0952	wR2 = 0.1841	wR2 = 0.0928
Larg. diff. peak/hole / $e \mbox{\normalfont\AA}^{-3}$	0.388 and -0.181	1.187 and -0.260	0.934 and -0.527

9. References

- [1] (a) Hoye, T. R.; Eklov, B. M.; Voloshin, M. Org. Lett. 2004, 6, 2567-2570. (b) Love,
 B. E.; Jones, E. G. J. Org. Chem. 1999, 64, 3755-3756.
- [2] Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M. J. Appl. Crystallogr. 2003, 36, 220-229.
- [3] Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33-38.
- [4] Crysalis PRO, Agilent Technologies, release 1.171.37.31, 2014.
- [5] SHELX, Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112-122.