Supporting Information

Noble Metal-Free Fe–N/C catalyst for Highly Efficient Oxygen Reduction Reaction Under Both Alkaline and Acidic Conditions

Ling Lin, Qing Zhu, An-Wu Xu^*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China

*To whom correspondence should be addressed. Email: <u>anwuxu@ustc.edu.cn</u>

EXPERIMENTAL SECTION

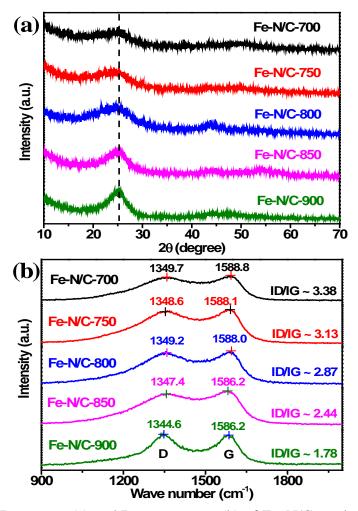
Chemicals. 11,11'-bis(dipyrido[3,2-a:2',3'-c]phenazinyl (bidppz) was purchased from Jinan Henghua Sci. & Tec. Co., Ltd. Other reagents were obtained from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further purification.

Catalyst Synthesis. Fe–N/C catalyst was synthesized by pyrolysis of iron-complex precursor, which is described in detail below. To synthesize precursor, 0.0225 g (0.04 mmol) bidppz was added into 40 mL DMF and sonicated to form a homogenous solution, then, 0.0111 g (0.04 mmol) FeSO₄•7H₂O was added under vigorous stirring. After stirring for 10 min, the mixture was transferred into a 50 mL Teflon-lined stainless autoclave and heated at 160 °C for 8 h. The brown product was collected by centrifugation, then washed with DMF and ethanol for several times and dried in air at 60 °C overnight. Finally, the dried precursor was heated to 700, 750, 800, 850 and 900 °C for 1.5 h at a heating rate of 5 °C/min. The pyrolyzed product was ultrasonicly leached in 6 M hydrochloride acid (HCl) for 8h to remove inactive iron species. The leached sample was washed to neutral with water for several times and dried in vacuum at 60 °C overnight.

Catalyst characterization. The X-ray powder diffraction (XRD) patterns of the samples were collected on a Rigaku/Max-3A X-ray diffractometer with Cu Ka radiation ($\lambda = 1.54178$ Å), the operation voltage and current was maintained at 40 kV and 200 mA, respectively. Raman spectra were recorded on a LabRAM HR Evolution Raman microscope with laser excitation at 514.5 nm. Scan electron microscopic (SEM) images were taken using a field-emission scanning electron microscope (JSM-6701F, JEOL) operated at an accelerating voltage of 5 kV. Transmission electron microscopic (TEM) images were taken on a Hitachi-7650 microscope with an accelerating voltage of 100 kV. The X-Ray photoelectron spectroscopy (XPS) was performed at a Perkin-Elmer RBD upgraded PHI-5000C ESCA system.

Cyclic voltammetry (CV). CV measurements of the catalysts were determined using a glassy carbon (GC) electrode. The GC electrode was polished using 0.05 μ m alumina slurry, rinsed with deionized water, then ultrasonically treated in water for 30 s for three times and washed with distilled water. A catalyst ink was prepared by dispersing 2 mg of the catalyst into 1 mL ethanol containing 10 μ L 5% Nafion (D520, Dupont Inc., USA). Ten microliters of the catalyst ink was then deposited on a GC electrode with a surface area of 0.196 cm² with an overall catalyst loading of 0.1 mg cm⁻². Electrochemical activities was conducted with a CHI 660D potentiostat in a three-electrode electrochemical cell with a platinum counter electroly. Electrolyte was saturated with oxygen by bubbling O₂ prior to each experiment. A flow of O₂ was maintained over the electrolyte during the measurements in order to ensure O₂ saturation. The scan rate was 10 mV s⁻¹, and at least 10 cycles were performed before collecting the data. In control experiments, measurements were also performed in N₂ flowing through the electrochemical cell.

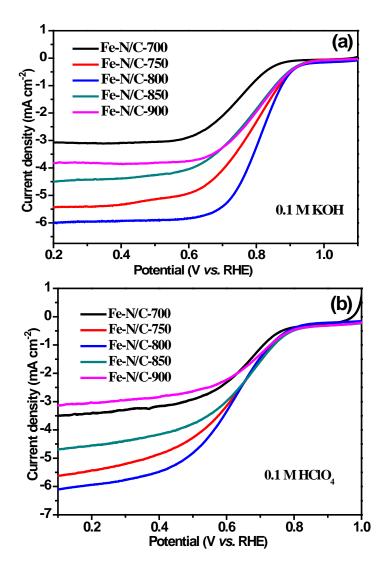
Linear sweep voltammetry (LSV). LSV measurements of the catalysts were determined using a rotating disk electrode (RDE) (Pine Research Instrumentation).


The working electrode was prepared by the same method as for CV. The scan rate of working electrode was 10 mV s⁻¹ with varying rotating speed from 400 to 1600 rpm. The number of electrons transferred (n) during ORR was calculated by Koutecky-Levich equation, at various electrode potentials:

$$\frac{1}{J} = \frac{1}{J_{L}} + \frac{1}{J_{K}} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_{K}}$$
$$B = 0.62 nFC_{0} D_{0}^{2/3} v^{-1/6}$$

where J is the measured current density, J_K and J_L are the kinetic and diffusion-limiting current densities, ω is the angular velocity, n is transferred electron number, F is the Faraday constant (96485 C mol⁻¹), C₀ is the bulk concentration of O₂ ((1.2 × 10⁻⁶ mol cm⁻³), D₀ is the diffusion coefficient of O₂ in 0.1 M KOH and 0.1 M HClO₄ (1.9 × 10⁻⁵ cm² s⁻¹), and v is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹). Rotating ring-disk electrode (RRDE) measurements was carried out to determine the four-electron selectivity. Before the experiments, the Pt ring electrode was activated through CV in 0.5 M HClO₄ from 0 to 1.4 V vs. RHE at a scan rate of 100 mV s⁻¹ for 10 minutes. For measurements, the electrolytes were 0.1 M KOH and 0.1 M HClO₄. The disk electrode was scanned at a rate of 10 mV s⁻¹, and the ring electrode potential was set to 1.2 V vs. RHE. The Hydrogen peroxide yield (%H₂O₂) and the electron transfer number (n) were calculated by the followed equations:

$$\%H_2O_2 = 200 \frac{i_r/N}{i_d + i_r/N}$$
$$n = 4 \frac{i_d}{i_d + i_r/N}$$


where i_d and i_r are the disk and ring currents, respectively. N is the ring current collection efficiency which was determined to be 37% by the reduction of 10 mM K₃[Fe(CN)₆] in 0.1 M KNO₃.

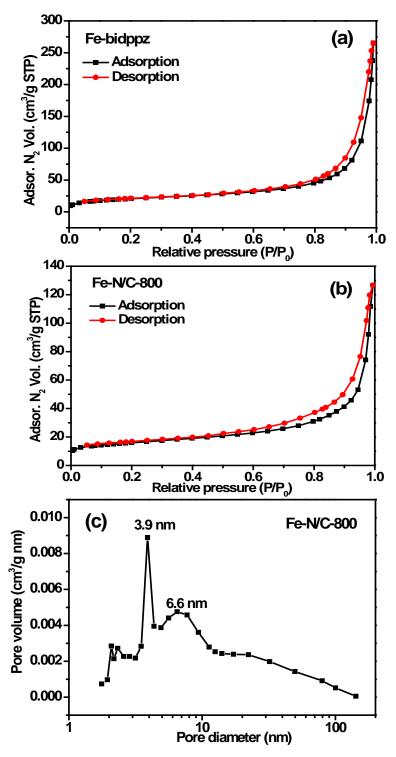
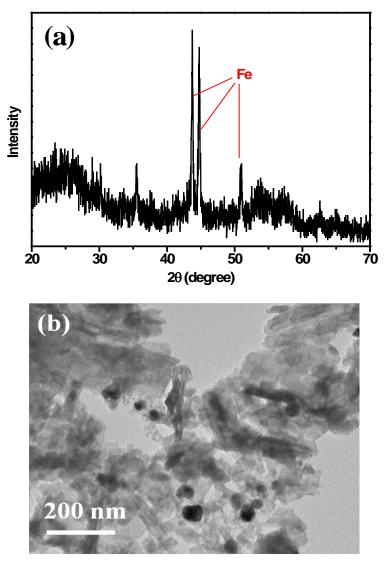

Figure S1. XRD patterns (a) and Raman spectra (b) of Fe–N/C catalysts pyrolyzed at different temperatures.

Table S1. Elemental compositions of Fe-N/C samples pyrolyzed at different temperatures determined by XPS.


Temp/°C	C atom %	N atom %	O atom %	Fe atom %
700	82.45	12.54	4.42	0.59
750	84.02	11.78	3.69	0.51
800	87.25	9.62	2.85	0.28
850	92.22	6.23	1.38	0.17
900	96.04	3.12	0.73	0.11

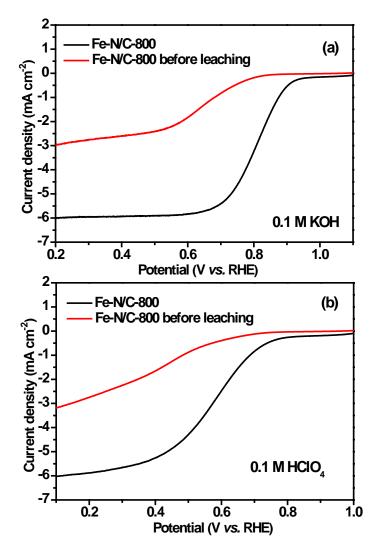

Figure S2. RDE voltammograms of Fe-N/C catalysts pyrolyzed at different temperatures in O₂-saturated 0.1 M KOH (a) and 0.1 M HClO₄ (b). For all experiments, the rotating speed is 1600 rpm, the catalyst loading is 0.1 mg cm⁻² and the scan rate is 10 mV s⁻¹.

Figure S3. Nitrogen adsorption/desorption isotherms of Fe–bidppz (a), Fe–N/C-800 catalyst (b) and pore distribution in Fe–N/C-800 catalyst (c).

Figure S4. XRD pattern (a) and TEM image (b) of Fe–N/C-800 catalyst before leaching in 6 M HCl solution.

Figure S5. RDE voltammograms of Fe–N/C-800 catalyst in O₂-saturated 0.1 M KOH (a) and 0.1 M HClO₄ (b) before and after being leached in acid. For all experiments, the rotating speed is 1600 rpm, the catalyst loading is 0.1 mg cm⁻² and the scan rate is 10 mV s^{-1} .

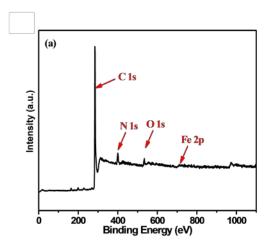
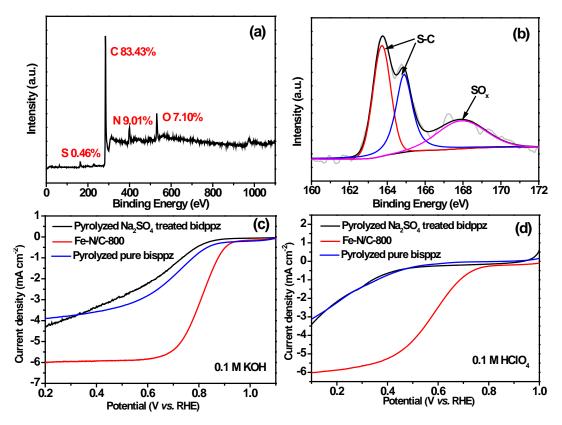



Figure S6. XPS survey scan of Fe–N/C-800.

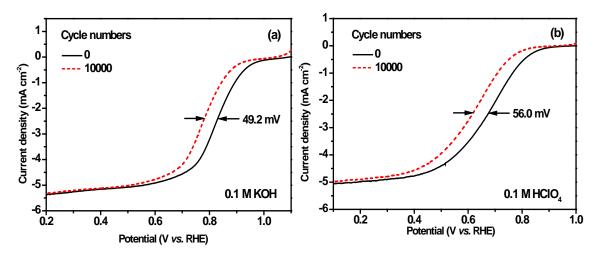


Figure S7. XPS survey scan (a) and S 2p XPS spectrum of pyrolyzed Na₂SO₄ treated bidppz catalyst. RDE voltammogram of pyrolyzed Na₂SO₄ treated bidppz catalyst, pyrolyzed pure bidppz catalyst and Fe–N/C-800 catalyst in O₂-saturated 0.1 M KOH (c) and 0.1 M HClO₄ (d). For all experiments, the rotating speed is 1600 rpm, the catalyst loading is 0.1 mg cm⁻² and the scan rate is 10 mV s⁻¹.

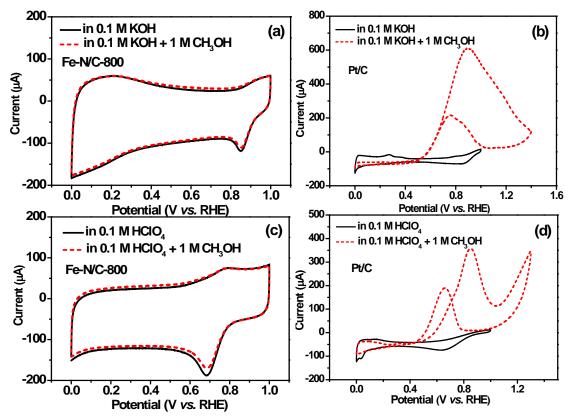

The XPS survey scan of pyrolyzed Na₂SO₄ treated bidppz catalyst shows the presence of S. A detailed scan of S 2p shows three peaks: peaks at 163.7 and 164.8 eV belong to S-C species, and peak at 167.9 eV belongs to oxidized S (SO_x), indicating S atoms are partially doped into carbon network. Similarly, the trace amount of S in our Fe– N/C-800 is likely to present in the form of S-C and SO_x, because our acid leaching process can remove all iron sulfide species. Electrochemical tests show that pyrolyzed Na₂SO₄ treated bidppz catalyst shows an ORR activity comparable to pyrolyzed pure bidppz catalyst and much poorer than Fe–N/C-800 in both alkaline and acidic conditions. Therefore, the trace amount of S has no obvious contribution to our catalyst.

Table S2. Elemental compositions of pyrolyzed pure bidppz catalyst determined by XPS.

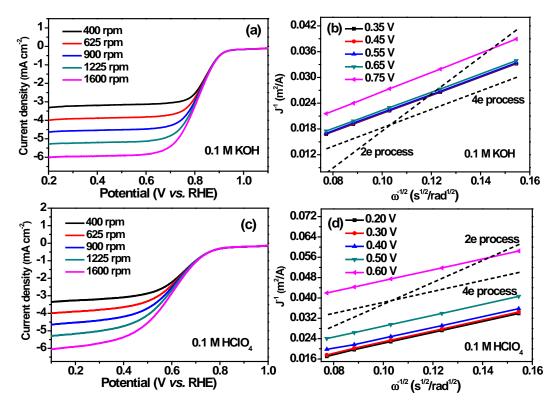

	C atom %	N atom %	O atom %	Fe atom %
Pyrolyzed bidppz	85.74	10.15	4.11	0

Figure S8. Endurance test of Pt/C catalyst for 10000 cycles in O_2 -saturated 0.1 M KOH (a) and 0.1 M HClO₄ (b). For all experiments, the rotating speed is 1600 rpm, the catalyst loading is 0.1 mg cm⁻² and the scan rate is 10 mV s⁻¹.

Figure S9. Cyclic voltammograms of Fe–N/C-800 (a) and Pt/C (b) catalysts before and after adding 1 M CH₃OH in O₂-saturated 0.1 M KOH. Cyclic voltammograms of Fe–N/C-800 (c) and Pt/C (d) catalysts before and after adding 1 M CH₃OH in O₂-saturated 0.1 M HClO₄. For all experiments, the catalyst loading is 0.1 mg cm⁻² and the scan rate is 10 mV s⁻¹.

Figure S10. RDE voltammograms at different rotating speeds (a) and Koutecky-Levich plots (b) of Fe–N/C-800 in O₂-saturated 0.1 M KOH. RDE voltammograms at different rotating speeds (c) and Koutecky-Levich plots (d) of Fe–N/C-800 in O₂-saturated 0.1 M HClO₄. For all tests, the catalyst loading is 0.1 mg cm⁻², and the scan rate is 10 mV s⁻¹.