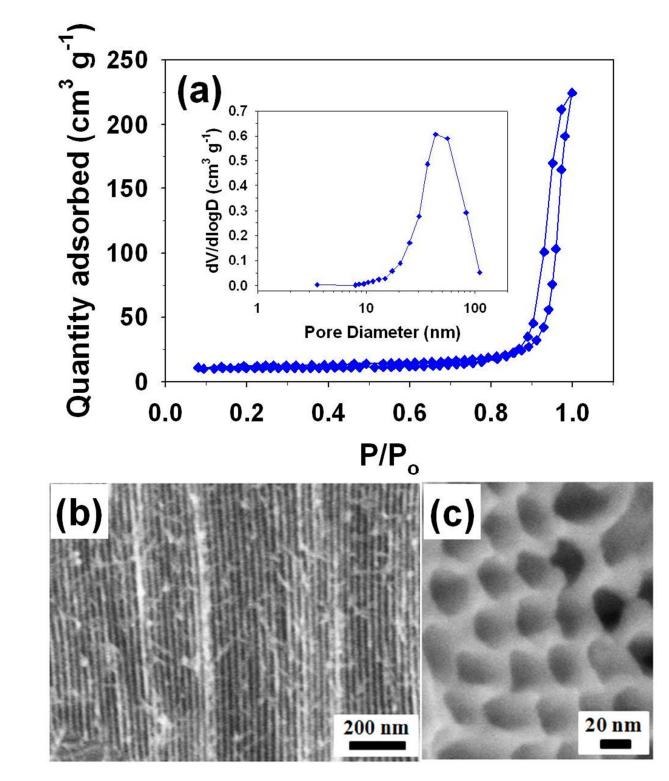
Supporting Information

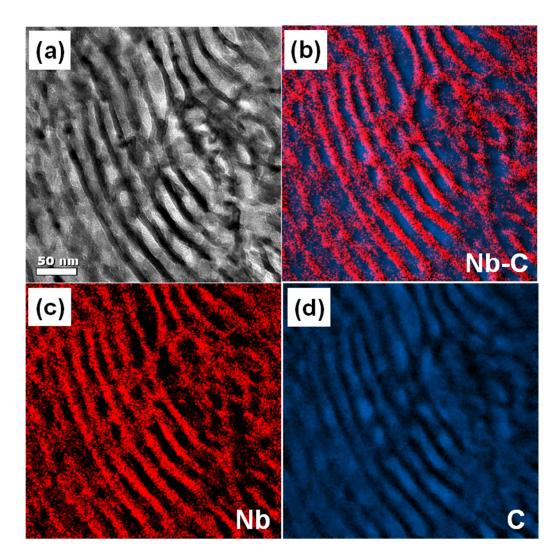
Advanced Hybrid Supercapacitor Based on Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode

Eunho Lim,^{†, ⊥} Haegyeom Kim,^{§, ⊥} Changshin Jo,^{‡, ⊥} Jinyoung Chun,[‡] Kyojin Ku,[§] Seongseop Kim,[‡] Hyung Ik Lee, [¥] In-Sik Nam,^{†, ‡} Songhun Yoon,^{£, *} Kisuk Kang,^{§, ¤, *} and Jinwoo Lee^{†, ‡, *}

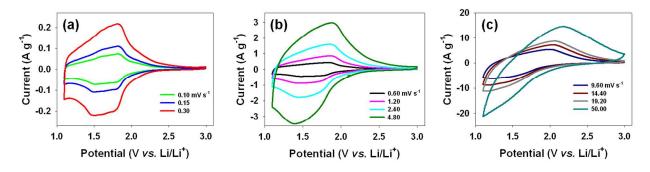
[†]School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea


^{*}Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea

[§]Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea


^{*}4-3, Agency for Defense Development, Yuseong, P.O. Box 35-4, 305-600 Daejeon, Republic of Korea

[£]Department of Integrative Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Republic of Korea


[°]Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 151-742, Republic of Korea

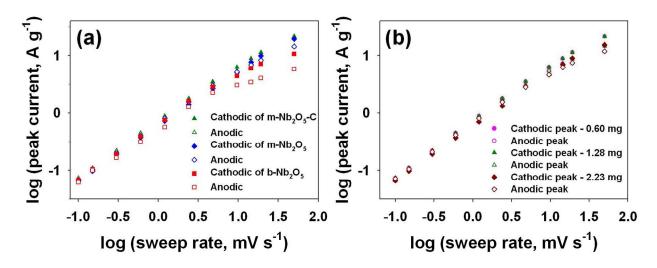

Figure S1. (a) N_2 adsorption-desorption isotherm for m-Nb₂O₅ and the corresponding pore size distribution. SEM images of (b) as-synthesized Nb₂O₅ and (c) m-Nb₂O₅.

Figure S2. Electron microscopy images. (a) microtomed TEM image of $m-Nb_2O_5-C$ (b, c, d) EELS mapping images of the (b) Nb-C, (c) Nb, and (d) C.

Figure S3. CV analysis of m-Nb₂O₅-C at different sweep rates (a) from 0.10 to 0.30 mV s⁻¹, (b) from 0.60 to 4.80 mV s⁻¹, and (c) from 9.60 to 50.00 mV s⁻¹. The distorted CV profiles at high scan rates are inevitable due to a variety of resistances resulting from coin-type cells.

Figure S4. Specific peak current with respect to various sweep rates of (a) $m-Nb_2O_5-C$, $m-Nb_2O_5$, and $b-Nb_2O_5$ and (b) different mass loadings of $m-Nb_2O_5-C$ between 0.1 and 50 mV s⁻¹.

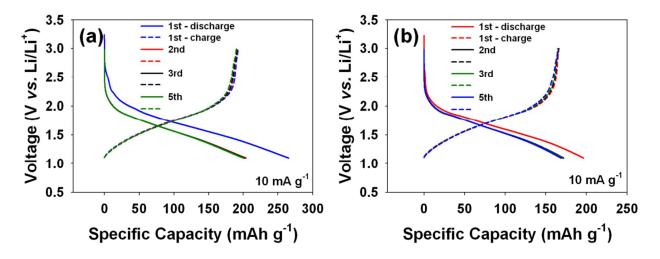
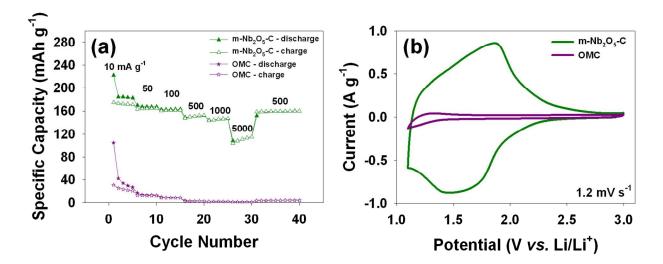
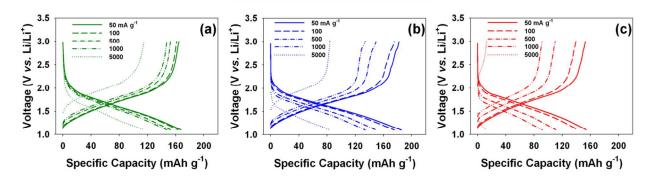




Figure S5. Charge-discharge voltage profiles of (a) m-Nb₂O₅ and (b) b-Nb₂O₅ at 10 mA g⁻¹.

Figure S6. (a) Comparison of capacities of the m-Nb₂O₅-C/Li and ordered mesoporous carbon (OMC)/Li half cells under different current densities varying from 10 to 5000 mA g^{-1} . (b) CV analysis at 1.2 mV s⁻¹ for the m-Nb₂O₅-C/Li and OMC/Li half cells (OMC, main pore size: 32 nm, specific surface area: 521 m² g⁻¹).

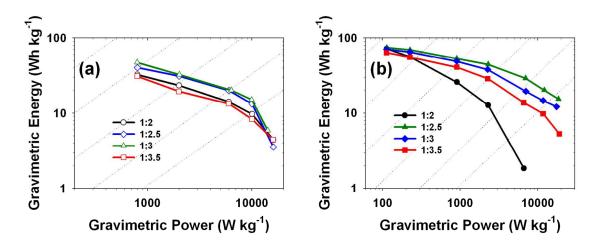


Figure S7. Charge-discharge voltage profiles of (a) $m-Nb_2O_5-C$, (b) $m-Nb_2O_5$, and (c) $b-Nb_2O_5$ at various current densities (50 to 5000 mA g⁻¹).

Sample	Electrical conductivity (S cm ⁻¹)
m-Nb ₂ O ₅ -C	3.49×10^{-3}
m-Nb ₂ O ₅	1.44×10^{-7}

Table S1. The electrical conductivity of m-Nb₂O₅-C and m-Nb₂O₅.

The electrochemical conductivity was measured by using Van der Pauw four-probe methods.¹

Figure S8. Ragone plots of hybrid supercapacitors based on $m-Nb_2O_5-C$ and MSP-20 with different mass ratio of anode and cathode active materials in the voltage range of (a) 0.5-3.0 V and (b) 0.5-3.5 V.

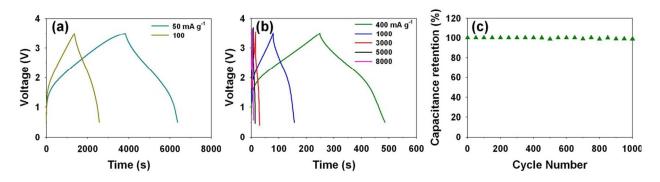
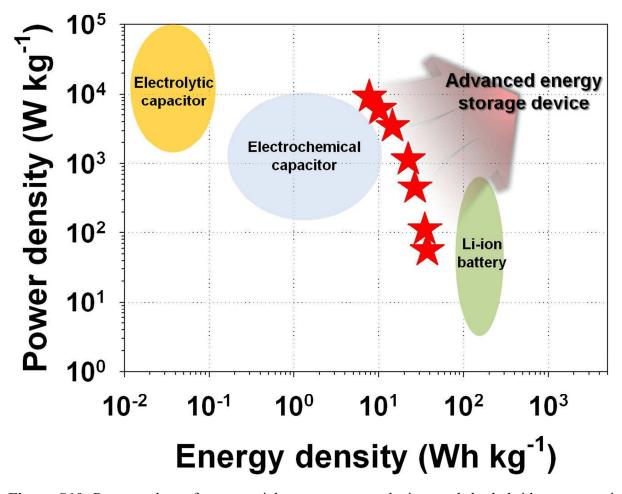



Figure S9. (a, b) Charge-discharge profiles of hybrid supercapacitor based on m-Nb₂O₅-C anode between 0.5 and 3.5 V at different current rates. (c) Cycling performance of hybrid supercapacitor based on m-Nb₂O₅-C anode between 0.5 and 3.5 V at a current rate of 5000 mA g^{-1} .

Figure S10. Ragone plots of commercial energy storage devices and the hybrid supercapacitor using m-Nb₂O₅-C (\bigstar). In order to consider commercialization of the hybrid supercapacitor using m-Nb₂O₅-C, the gravimetric energy and power densities of the hybrid supercapacitor using m-Nb₂O₅-C (\bigstar) were calculated by dividing the values of the energy and power densities of the electrode by a factor of 2.²⁻⁴

REFERENCES AND NOTES

- Kang, E.; An, S.; Yoon, S.; Kim, J. K.; Lee, J. Ordered Mesoporous WO_{3-x} Possessing Electronically Conductive Framework Comparable to Carbon Framework toward Long-Term Stable Cathode Supports for Fuel Cells. *J. Mater. Chem.* **2010**, 20, 7416-7421.
- 2. Dudney, N. J. Thin Film Micro-Batteries. *Electrochem. Soc. Interfaces.* 2008, 17, 44-48.
- Li, W.; Dahn, R. Wainwright, D. S. Rechargeable Lithium Batteries with Aqueous Electrolytes. *Science* 1994, 264, 1115-1118.
- Kim, H.; Cho, M.-Y.; Kim, M.-H.; Park, K.-Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO₂-Reduced Graphene Oxide Anode and an Activated Carbon Cathode. *Adv. Energy Mater.* 2013, 3, 1500-1506.