Supporting Information

Highly Stereoselective Synthesis of Functionalized Pyrrolo[3,2-*c*]quinolines via *N*-Heterocyclic Carbene Catalyzed Cascade Sequence

Yu-Jie Yang, Hai-Rui Zhang, Shi-Ya Zhu, Ping Zhu, and Xin-Ping Hui*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: huixp@lzu.edu.cn

Contents

1.	General information	2
2.	Procedures for N-heterocyclic carbene-catalyzed stereoselective synthesis of functionalized	pyrrolo-
	[3,2-c]quinolines	2
3.	X-Ray crystal structure of compound 4b	15
4.	NMR spectra of compounds 4a-4r.	16
5.	HPLC spectra of titled compounds 4a-4r	33

1. General information

Optical rotation was measured by the Perkin Elmer 341 polarimeter. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer using tetramethylsilane as internal reference, and chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. The HRMS analysis was obtained on a Bruker Apex II FT-ICR mass spectrometer with ESI ionization method. The *ee* value determination was carried out using chiral HPLC with Chirapak IC and AD column on Waters with a 2996 UV-detector. All syntheses and manipulations were carried out under a dry nitrogen atmosphere. Triazolium salt **3b** was commercially available from TCI. Dichloromethane and 1,2-dichloroethane were freshly distilled from phosphorous pentoxide. Toluene and THF were freshly distilled from a deep-blue solution of sodium-benzophenone under nitrogen. Triethylamine and acetonitrile were dried by calcium hydride and freshly distilled. Other chemicals were purchased from commercial suppliers and used directly. Flash column chromatography was carried out utilizing 200–300 mesh silica gel.

2. Procedure for *N*-heterocyclic carbene-catalyzed stereoselective synthesis of functionalized pyrrolo-[3,2-*c*]quinolines

(3*R*,3a*S*,9b*R*)-diethyl-4-oxo-3-phenyl-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline-2,2(9bH)-dicarboxylate (4a).

To a well-stirred solution of 2-bromoenals 2a (21.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The

combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4a** (51.76 mg, 92% yield).

White solid, mp 76–78 °C, $[\alpha]_{D}^{20}$ –65 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.39 (t, 7.2 Hz, 1H), 7.29 – 7.26 (m, 4H), 7.24 – 7.18 (m, 4H), 4.84 (br s, 1H), 4.36 (d, *J* = 9.2 Hz, 1H), 4.14 – 4.08 (m, 2H), 3.75 – 3.70 (m, 1H), 3.60 (br s, 1H), 3.40 (dd, *J* = 9.2, 6.0 Hz, 1H), 3.28 – 3.24 (m, 1H), 2.43 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.66 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.1, 169.34, 169.29, 144.8, 136.3, 133.9, 129.4, 128.8, 128.7, 128.3, 128.21, 128.15, 127.6, 127.5, 126.1, 123.3, 62.2, 61.8, 57.7, 53.5, 52.0, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₁N₂O₇S (M+H)⁺: 563.1846, Found: 563.1840. HPLC (Chiralpak IC column *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, retention time: t_{minor} = 59.000 min, t_{major} = 71.151 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(2-chlorophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4b).

To a well-stirred solution of 2-bromoenals **2b** (24.6 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4b** (43.59 mg, 73% yield).

White solid, mp 72–74 °C, $[\alpha]_{D}^{20}$ –11 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 7.93 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.33 – 7.23 (m, 4H), 7.16 – 7.14 (m, 3H), 5.27 (br s, 1H), 4.90 (br s, 1H), 4.04 (q, J = 7.2 Hz, 2H), 3.83 – 3.79 (m, 1H), 3.59 (br s, 1H), 3.42 – 3.38 (m, 1H), 3.26 (br s, 1H), 2.43 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.2, 169.5, 168.2, 144.7, 136.6, 134.7, 129.9, 129.4, 128.8, 128.7, 126.8, 126.2, 125.9, 122.8, 62.0, 61.9, 58.5, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀ClN₂O₇S

 $(M+H)^+$: 597.1457, Found: 597.1451. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 16.165 \text{ min}, t_{minor} = 45.122 \text{ min}, > 99\%$ ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(3-fluorophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4c).

To a well-stirred solution of 2-bromoenals 2c (22.9 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4c** (47.03 mg, 81% yield).

White solid, mp 73–75 °C, $[\alpha]_{D}^{20}$ –64 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.31 – 7.24 (m, 3H), 7.21 – 7.17 (m, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.97 – 6.88 (m, 2H), 4.83 (d, *J* = 5.6 Hz, 1H), 4.32 (d, *J* = 9.6 Hz, 1H), 4.15 – 4.09 (m, 2H), 3.80 – 3.71 (m, 1H), 3.62 (br s, 1H), 3.39 – 3.34 (m, 2H), 2.44 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.72 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.9, 169.2, 169.1, 163.7, 161.3, 144.9, 139.0, 138.9, 136.4, 133.9, 129.7, 129.6, 129.4, 128.8, 128.4, 128.2, 127.4, 127.3, 126.2, 124.3, 123.3, 116.2, 116.0, 114.7, 114.4, 62.2, 62.0, 57.7, 53.5, 51.7, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀FN₂O₇S (M+H)⁺: 581.1752, Found: 581.1744. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 13.292$ min, $t_{minor} = 54.256$ min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(3-chlorophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4d).

To a well-stirred solution of 2-bromoenals **2d** (24.6 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4d** (51.95 mg, 87% yield).

White solid, mp 75–77 °C, $[\alpha]_{D}^{20}$ –87 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.23 (m, 4H), 7.18 – 7.11 (m, 3H), 4.84 (d, *J* = 6.0 Hz, 1H), 4.30 (d, *J* = 9.6 Hz, 1H), 4.14 – 4.09 (m, 2H), 3.82 – 3.74 (m, 1H), 3.61 (br s, 1H), 3.42 – 3.34 (m, 2H), 2.44 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.9, 169.12, 169.09, 144.9, 138.5, 136.4, 134.1, 133.9, 129.48, 129.46, 129.3, 128.8, 128.5, 128.2, 127.8, 127.3, 126.7, 126.2, 123.3, 62.3, 62.0, 57.7, 53.4, 51.7, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀ClN₂O₇S (M+H)⁺: 597.1457, Found: 597.1453. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 13.280 min, t_{minor} = 56.502 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(3-bromophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4e).

To a well-stirred solution of 2-bromoenals 2e (29.0 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced

pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4e** (53.25 mg, 83% yield).

White solid, mp 70–72 °C, $[\alpha]_{D}^{20}$ –69 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.35 – 7.24 (m, 4H), 7.17 – 7.11 (m, 2H), 4.84 (br s, 1H), 4.29 (d, *J* = 9.6 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.80 – 3.76 (m, 1H), 3.61 (br s, 1H), 3.40 – 3.33 (m, 2H), 2.44 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.9, 169.10, 169.07, 145.0, 138.8, 136.3, 133.9, 132.2, 130.8, 129.8, 129.5, 128.8, 128.5, 128.2, 127.3, 127.1, 126.2, 123.2, 122.2, 76.9, 76.7, 62.4, 62.0, 57.7, 53.4, 51.7, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀BrN₂O₇S (M+H)⁺: 641.0952, Found: 641.0944. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 14.998 min, t_{minor} = 69.904 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(4-fluorophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4f).

To a well-stirred solution of 2-bromoenals **2f** (22.9 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4f** (51.09 mg, 88% yield).

White solid, mp 77–79 °C, $[\alpha]_{D}^{20}$ –59 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.30 – 7.26 (m, 3H), 7.24 – 7.19 (m, 2H), 6.92 (t, *J* = 8.4 Hz, 2H), 4.83 (d, *J* = 5.2 Hz, 1H), 4.30 (d, *J* = 10.0 Hz, 1H), 4.14 – 4.09 (m, 2H), 3.80 – 3.76 (m, 1H), 3.61 (br s, 1H), 3.39 – 3.31 (m, 2H), 2.44 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.0, 169.4, 169.1, 163.5, 161.0, 144.9, 136.4, 133.8, 131.93, 131.90, 130.5, 130.4, 129.4, 128.8, 128.4, 128.1, 127.6, 126.2, 123.3, 115.2, 114.9, 62.3, 61.9, 57.5, 53.5, 51.3, 21.7, 13.9, 13.3 HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀FN₂O₇S (M+H)⁺: 581.1752, Found:

581.1758. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, retention time: $t_{minor} = 38.516 \text{ min}, t_{major} = 50.212 \text{ min}, > 99\% \text{ ee}$).

(3*R*,3a*S*,9b*R*)-diethyl-3-(4-chlorophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4g).

To a well-stirred solution of 2-bromoenals 2g (24.6 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4g** (54.93 mg, 92% yield).

White solid, mp 82–84 °C, $[\alpha]_{D}^{20}$ –78 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.22 – 7.16 (m, 4H), 4.83 (d, *J* = 5.6 Hz, 1H), 4.28 (d, *J* = 10.0 Hz, 1H), 4.14 – 4.09 (m, 2H), 3.80 – 3.75 (m, 1H), 3.62 (br s, 1H), 3.39 – 3.35 (m, 2H), 2.44 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.0, 169.3, 169.1, 145.0, 136.4, 134.7, 133.8, 133.6, 130.2, 129.5, 128.8, 128.44, 128.36, 128.1, 127.6, 126.2, 123.3, 62.4, 62.0, 57.5, 53.4, 51.4, 21.7, 14.0, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀ClN₂O₇S (M+H)⁺: 597.1457, Found: 597.1455. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, retention time: t_{minor} = 39.299 min, t_{major} = 56.364 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(4-bromophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinolin e-2,2(9bH)-dicarboxylate (4h).

To a well-stirred solution of 2-bromoenals **2h** (29.0 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4h** (60.30 mg, 94% yield).

White solid, mp 76–78 °C, $[\alpha]_{D}^{20}$ –86 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.30 – 7.24 (m, 3H), 7.11 (d, *J* = 8.4 Hz, 2H), 4.83 (br s, 1H), 4.26 (d, *J* = 10.0 Hz, 1H), 4.14 – 4.09 (m, 2H), 3.81 – 3.73 (m, 1H), 3.62 (br s, 1H), 3.41 – 3.33 (m, 2H), 2.43 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.9, 169.3, 169.0, 144.9, 136.4, 135.2, 133.8, 131.3, 130.5, 129.4, 128.8, 128.4, 128.1, 127.5, 126.2, 123.2, 121.7, 62.3, 62.0, 57.5, 53.3, 51.5, 21.7, 13.9, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀BrN₂O₇S (M+H)⁺: 641.0952, Found: 641.0945. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, retention time: t_{minor} = 28.400 min, t_{major} = 39.767 min, 98.8% ee).

(3R,3aS,9bR)-diethyl-4-oxo-3-(p-tolyl)-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline-2,2(9b H)-dicarboxylate (4i).

To a well-stirred solution of 2-bromoenals **2i** (22.5 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4i** (51.90 mg, 90% yield).

White solid, mp 79–81°C, $[\alpha]_{D}^{20}$ –75 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.29 – 7.23 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.83 (d, *J* = 6.0 Hz, 1H), 4.31 (d, *J* = 9.6 Hz, 1H), 4.12 – 4.08 (m, 2H), 3.75 – 3.71 (m, 1H), 3.60 (br s, 1H), 3.40 – 3.29 (m, 2H), 2.43 (s, 3H), 2.25 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.67 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.2, 169.4, 144.8, 137.2, 136.5, 134.0, 133.3, 129.4, 128.84, 128.78, 128.6, 128.3, 128.2, 127.7, 126.1, 123.2, 62.1, 61.8, 57.7, 53.6, 51.8, 21.7, 20.9, 13.9, 13.1. HRMS (ESI): Exact Mass Calcd. for C₃₁H₃₃N₂O₇S (M+H)⁺: 577.2003, Found: 577.2007. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 13.018 min, t_{minor} = 49.937 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(4-methoxyphenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinol ine-2,2(9bH)-dicarboxylate (4j).

To a well-stirred solution of 2-bromoenals 2j (24.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4j** (46.23 mg, 78% yield).

White solid, mp 75–77 °C, $[\alpha]_{D}^{20}$ –79 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ: 7.89 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.30 – 7.23 (m, 3H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 2H), 4.82 (d, *J* = 6.0 Hz, 1H), 4.28 (d, *J* = 10.0 Hz, 1H), 4.13 – 4.08 (m, 2H), 3.83 – 3.77 (m, 1H), 3.76 (s, 3H), 3.60 (br s, 1H), 3.39 – 3.32 (m, 2H), 2.43 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.73 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.2, 169.5, 169.3, 159.1, 144.8, 136.5, 133.9, 129.8, 129.4, 128.8, 128.3, 128.14, 128.10, 127.8, 126.1, 123.3, 113.6, 76.9, 76.7, 62.2, 61.8, 57.5, 55.2, 53.7, 51.4, 21.7, 13.9, 13.3. HRMS (ESI): Exact Mass Calcd. for C₃₁H₃₃N₂O₈S (M+H)⁺: 593.1952, Found: 593.1960. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 19.488 min, t_{minor} = 74.565 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-4-oxo-5-tosyl-3-(4-(trifluoromethyl)phenyl)-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline-2,2(9bH)-dicarboxylate (4k).

To a well-stirred solution of 2-bromoenals 2k (27.9 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor 3b (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine 1a (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product 4k (46.67 mg, 74% yield).

White solid, mp 78–80°C, $[\alpha]_{D}^{20}$ –73 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.89 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.31 – 7.27 (m, 3H), 4.86 (d, *J* = 6.0 Hz, 1H), 4.36 (d, *J* = 10.0 Hz, 1H), 4.13 (q, *J* = 6.8 Hz, 2H), 3.77 – 3.69 (m, 1H), 3.65 (br s, 1H), 3.43 (dd, *J* = 10.4, *J* = 6.4 Hz, 1H), 3.35 – 3.27 (m, 1H), 2.44 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.65 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.8, 169.2, 169.0, 145.0, 140.4, 136.4, 133.8, 129.5, 129.3, 128.8, 128.5, 128.1, 127.5, 126.3, 125.14, 125.11, 123.3, 62.4, 62.1, 57.6, 53.3, 51.7, 21.7, 13.9, 13.0. HRMS (ESI): Exact Mass Calcd. for C₃₁H₃₀F₃N₂O₇S (M+H)⁺: 631.1720, Found: 631.1724. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 12.427 min, t_{minor} = 32.269 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(4-nitrophenyl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline-2,2(9bH)-dicarboxylate (4l).

To a well-stirred solution of 2-bromoenals **2l** (25.6 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the

nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4l** (38.28 mg, 63% yield).

White solid, mp 88–90 °C, $[\alpha]_{D}^{20}$ –117 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 8.10 (d, *J* = 8.8 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.31 – 7.26 (m, 3H), 4.88 (d, *J* = 4.4 Hz, 1H), 4.38 (d, *J* = 10.4 Hz, 1H), 4.17 – 4.12 (m, 2H), 3.83 – 3.75 (m, 1H), 3.68 (br s, 1H), 3.45 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.37 – 3.29 (m, 1H), 2.44 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.70 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.6, 169.1, 168.7, 147.4, 145.1, 143.7, 136.2, 133.6, 130.0, 129.5, 128.8, 128.6, 128.0, 127.3, 126.3, 123.3, 123.2, 62.5, 62.3, 57.5, 53.3, 51.6, 21.7, 13.9, 13.3. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀N₃O₉S (M+H)⁺: 608.1697, Found: 608.1690. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH= 80/20, flow rate = 1.0 mL/min, retention time: t_{minor} = 67.598 min, t_{major} = 80.932 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(naphthalen-1-yl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoli ne-2,2(9bH)-dicarboxylate (4m).

To a well-stirred solution of 2-bromoenals 2m (26.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4m** (43.50 mg, 71% yield).

White solid, mp 91–93 °C, $[\alpha]_{D}^{20}$ –2.0 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 8.51 (d, *J* =8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.52 – 7.42 (m, 3H), 7.36 – 7.26 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 4.11 – 4.05 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 4.11 – 4.05 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 4.11 – 4.05 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 4.11 – 4.05 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (d, *J* = 3.6 Hz, 1H), 5.06 (d, *J* = 5.6 Hz, 1H), 5.06 (m, 5H), 5.71 (m, 5H), 5.

2H), 3.49 - 3.43 (m, 2H), 3.41 - 3.38 (m, 1H), 2.89 - 2.81 (m, 1H), 2.44 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H), 0.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 170.2, 168.5, 144.5, 136.6, 135.9, 135.1, 133.6, 133.1, 129.3, 129.1, 128.8, 128.7, 128.21, 128.18, 126.3, 126.1, 125.9, 125.8, 124.8, 124.3, 123.1, 61.8, 61.4, 59.4, 55.5, 46.6, 21.7, 13.9, 12.5. HRMS (ESI): Exact Mass Calcd. for C₃₄H₃₃N₂O₇S (M+H)⁺: 613.2003, Found: 613.1995. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH= 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 13.231 min, t_{minor} = 29.182 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-3-(naphthalen-2-yl)-4-oxo-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoli ne-2,2(9bH)-dicarboxylate (4n).

To a well-stirred solution of 2-bromoenals 2n (26.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4n** (50.85 mg, 83% yield).

White solid, mp 93–95 °C, $[\alpha]_{D}^{20}$ –101 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.90 (d, *J* = 8.0 Hz, 2H), 7.74 – 7.64 (m, 6H), 7.43 – 7.39 (m, 3H), 7.33 – 7.26 (m, 4H), 4.93 (d, *J* = 5.6 Hz, 1H), 4.53 (d. *J* = 9.6 Hz, 1H), 4.16 – 4.10 (m, 2H), 3.68 (br s, 1H), 3.62 – 3.52 (m, 2H), 3.10 – 3.06 (m, 1H), 2.43 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.1, 169.3, 144.8, 136.4, 134.0, 133.8, 133.1, 132.7, 129.4, 128.8, 128.4, 128.2, 128.0, 127.9, 127.7, 127.6, 127.3, 126.5, 126.1, 126.03, 125.97, 123.2, 62.1, 61.9, 57.8, 53.7, 52.3, 21.7, 13.9, 12.9. HRMS (ESI): Exact Mass Calcd. for $C_{34}H_{32}N_2O_7SNa (M+Na)^+$: 635.1822, Found: 635.1831. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH= 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 16.526 \text{ min}$, $t_{minor} = 65.188 \text{ min}$, > 99% ee).

(3*S*,3a*S*,9b*R*)-diethyl-4-oxo-3-(thiophen-2-yl)-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline-2,2(9bH)-dicarboxylate (40).

To a well-stirred solution of 2-bromoenals **2o** (21.7 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1a** (75.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4o** (38.67 mg, 68% yield).

White solid, mp 71–73 °C, $[\alpha]_{D}^{20}$ –67 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.90 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.13 (d, *J* = 5.2 Hz, 1H), 6.93 (d, *J* = 3.2 Hz, 1H), 6.88 – 6.86 (m, 1H), 4.80 (br s, 1H), 4.63 (d, *J* = 8.8 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.88 – 3.80 (m, 1H), 3.61 (d, *J* = 2.8 Hz, 1H), 3.55 – 3.47 (m, 1H), 3.31 (dd, *J* = 8.8, 6.0 Hz, 1H), 2.44 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.82 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.0, 169.1, 168.7, 144.9, 139.1, 136.4, 134.0, 129.4, 128.8, 128.4, 128.3, 127.4, 126.8, 126.6, 126.2, 124.9, 123.4, 62.5, 61.9, 57.6, 55.1, 47.5, 21.7, 13.9, 13.4. HRMS (ESI): Exact Mass Calcd. for C₂₈H₂₉N₂O₇S₂ (M+H)⁺: 569.1411, Found: 569.1417. HPLC (Chiralpak AD column, *n*-hexane/*i*-PrOH= 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 17.136 min, t_{minor} = 74.246 min, > 99% ee).

(3*R*,3a*S*,9b*R*)-diethyl-8-chloro-4-oxo-3-phenyl-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline -2,2(9bH)-dicarboxylate (4q).

To a well-stirred solution of 2-bromoenals **2a** (21.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a

solution of tosyl-protected *o*-amino aromatic aldimine **1b** (81.7 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4q** (45.98 mg, 77% yield).

White solid, mp 84–86 °C, $[\alpha]_{D}^{20}$ –73 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.85 (d, *J*= 8.0 Hz, 2H), 7.79 (d, *J* = 1.2 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.30 – 7.21 (m, 7H), 4.77 (d, *J* = 4.8 Hz, 1H), 4.28 (d, *J* = 10.8 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.78 – 3.71 (m, 2H), 3.43 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.30 – 3.22 (m, 1H), 2.43 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.66 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 169.7, 169.5, 168.5, 145.2, 136.1, 135.6, 132.8, 131.3, 131.0, 130.2, 129.5, 128.8, 128.7, 128.3, 127.8, 125.0, 119.9, 62.3, 62.2, 57.2, 53.5, 52.0, 21.7, 14.0, 13.2. HRMS (ESI): Exact Mass Calcd. for $C_{30}H_{30}ClN_2O_7S$ (M+H)⁺: 597.1457, Found: 597.1450. HPLC (Chiralpak IC column, *n*-hexane/DCM= 50/50, flow rate = 1.0 mL/min, retention time: $t_{minor} = 40.501$ min, $t_{major} = 49.885$ min, > 99% ee).

(*3R*,3a*S*,9b*R*)-diethyl-8-bromo-4-oxo-3-phenyl-5-tosyl-3,3a,4,5-tetrahydro-1H-pyrrolo[3,2-c]quinoline -2,2(9bH)-dicarboxylate (4r).

To a well-stirred solution of 2-bromoenals **2a** (21.1 mg, 0.10 mmol), *N*-heterocyclic carbene catalyst precursor **3b** (3.7 mg, 0.01 mmol) and DABCO (12.3 mg, 0.11 mmol) in DCE (0.5 mL) was added a solution of tosyl-protected *o*-amino aromatic aldimine **1c** (89.5 mg, 0.175 mmol) in DCE (1 mL) under the nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h (monitored by TLC), and was quenched by water (2 mL). The aqueous layer was extracted with ethyl acetate (10 mL×3). The combined organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (4:1) to afford the desired product **4r** (48.76 mg, 76% yield).

White solid, mp 88–90°C, $[\alpha]_{D}^{20}$ –145 (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 1.6 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.21 – 7.18 (m, 5H), 4.77 (d, J = 4.4 Hz, 1H), 4.28 (d, J = 10.8 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.78 – 3.71 (m, 2H), 3.43 (dd, J = 10.8, 6.4 Hz, 1H), 3.30 – 3.22 (m, 1H), 2.44 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 0.66 (t, J = 7.2 Hz, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ : 169.8, 169.5, 168.5, 145.2, 136.1, 135.6, 132.8, 131.3, 131.0, 130.2, 129.5, 128.8, 128.7, 128.3, 127.8, 125.0, 119.9, 62.4, 62.2, 57.2, 53.5, 52.0, 21.7, 14.0, 13.2. HRMS (ESI): Exact Mass Calcd. for C₃₀H₃₀BrN₂O₇S (M+H)⁺: 641.0952, Found: 641.0943. HPLC (Chiralpak IC column, *n*-hexane/DCM = 50/50, flow rate = 1.0 mL/min, retention time: t_{minor} = 47.766 min, t_{major} = 54.107 min, > 99% ee).

3. X-Ray crystal structure of compound 4b

4. NMR spectra of compounds 4a-4r

¹H NMR spectrum of compound **4a** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4b** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4c** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4d** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4g** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4h** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4i** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4j** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4l** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4n** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **40** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4q** (CDCl₃, 400 MHz)

5. HPLC spectra of titled compounds 4a-4r

Dook	Processed channel	Ret. Time	Area	Height	$\Delta rop(0/2)$
reak	r tocesseu chaimer	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	16.096	5994064	178492	53.32
2	PDA 254.0 nm	45.280	5247134	51501	46.68

40068844

229003

49.68

54.489

2

Dool	Drocossed channel	Ret. Time	Area	Height	$\Delta roo(0/)$
Реак	Processed channel	(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	13.292	78135750	2533418	99.99
2	PDA 254.0 nm	54.256	4584	-104	0.01

Dool	Processed channel	Ret. Time	Area	Height	Area (%)
гсак	Flocessed challer	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	13.146	24914576	866348	51.07
2	PDA 254.0 nm	56.426	23870010	143504	48.93

1083

26

0.01

56.502

2

Dook	Processed channel	Ret. Time	Area	Height	Aron(0/4)
гсак	Flocessed channel	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	15.235	87899866	2267256	49.74
2	PDA 254.0 nm	69.995	88813142	449343	50.26

Dool	Processed channel	Ret. Time	Area	Height	Aron(0/2)
гсак	Flocessed channel	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	14.998	48653263	1494032	99.92
2	PDA 254.0 nm	69.904	38260	307	0.08

Dook	Processed channel	Ret. Time	Area	Height	Aron(0/2)
гсак	Flocesseu chaimer	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	38.952	7333579	61449	44.61
2	PDA 254.0 nm	51.274	9107302	62841	55.39

Dook	Processed channel	Ret. Time	Area	Height	$\Lambda rop(0/2)$
гсак	Processed channel	(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	38.516	1531	26	0.01
2	PDA 254.0 nm	50.212	10840348	76682	99.99

Deals	Dropping dishermal	Ret. Time	Area	Height	A = 0
Реак	Processed channel	(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	40.546	6128815	43031	48.01
2	PDA 254.0 nm	57.742	6638130	40506	51.99

Dool	Processed channel	Ret. Time	Area	Height	$\Lambda reg (0/)$
геак	Processed channel	(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	39.299	1588	-77	0.02
2	PDA 254.0 nm	56.364	8675859	54000	99.98

Dool	Processed channel	Ret. Time	Area	Height	Area (0/)
геак	Processed channel	(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	27.970	3532608	32872	41.98
2	PDA 254.0 nm	40.229	4882143	39299	58.02

Dogl	Processed channel	Ret. Time	Alca	meight	$\Lambda roa(\%)$
I Cak	R Trocessed enamer	(min)	(mAu*s)	(mAu)	Alca (70)
1	PDA 254.0 nm	28.400	52805	794	0.58
2	PDA 254.0 nm	39.767	9074184	72491	99.42

Peak	Processed channel	Ret. Time	Area	Height	A rop (0/)
		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	13.154	7157208	257939	48.22
2	PDA 254.0 nm	50.006	7687032	63458	51.78

Peak	Processed channel	Ret. Time	Area	Height	$\Delta rop(0/2)$
		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	13.018	18901176	682286	99.98
2	PDA 254.0 nm	49.937	3387	18	0.02

74.565

2541

-36

0.02

2

Peak	Processed channel	Ret. Time	Area	Height	Area (0/)
		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	12.854	14206813	445392	41.86
2	PDA 254.0 nm	32.485	19734067	251577	58.14

Dool	Processed channel	Ret. Time	Area	Height	$\Lambda reg (0/)$
геак		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	12.427	52082297	1442106	99.98
2	PDA 254.0 nm	32.269	9555	-226	0.02

Peak	Processed channel	Ret. Time	Area	Height	$\Delta rop(0/4)$
		(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	67.598	2675	-26	0.19
2	PDA 254.0 nm	80.932	1401183	5280	99.81

Dool	Processed channel	Ret. Time	Area	Height	Area (0/2)
геак		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	13.231	60458744	1984348	99.99
2	PDA 254.0 nm	29.182	6117	-183	0.01

Peak	Processed channel	Ret. Time	Area	Height	Aron(0/4)
		(min)	(mAu*s)	(mAu)	Area (%)
1	PDA 254.0 nm	17.044	23035411	560456	51.81
2	PDA 254.0 nm	65.670	21428949	137159	48.19

Peak	Processed channel	Ret. Time	Area	Height	Aron(0/2)
		(min)	(mAu*s)	(mAu)	Alca (70)
1	PDA 254.0 nm	16.526	47253216	1153851	100.00
2	PDA 254.0 nm	65.188	875	-42	0.00

0.70

Peak	Processed channel	Ret. Time	Area	Height	Aron(0/2)
		(min)	(mAu*s)	(mAu)	Alea (70)
1	PDA 254.0 nm	16.931	24025349	723369	41.63
2	PDA 254.0 nm	74.099	33686806	201560	58.37

Peak	Processed channel	Ret. Time	Area	Height	Area (0/)
		(min)	(mAu*s)	(mAu)	Alea (%)
1	PDA 254.0 nm	25.462	24798219	482399	46.50
2	PDA 254.0 nm	29.422	28525967	457114	53.50

1133983

22087

0.90

30.662

2

Daalr	Processed channel	Ret. Time	Area	Height	Area (0/)
Реак		(min)	(mAu*s)	(mAu)	Area (%)
1	2998 (190- 400) nm	39.659	24430182	156211	49.14
2	2998 (190- 400) nm	48.336	25290282	122592	50.86

Dool	Processed channel	Ret. Time	Area	Height	Aron(0/2)
reak		(min)	(mAu*s)	(mAu)	Alea (70)
1	2998 (190- 400) nm	40.501	29141	-313	0.23
2	2998 (190- 400) nm	49.885	12453630	68348	99.77

Peak	Processed channel	Ret. Time	Area	Height	Area (%)
		(min)	(mAu*s)	(mAu)	
1	2998 (190- 400) nm	44.605	18942891	101737	52.34
2	2998 (190- 400) nm	51.278	17249851	72643	47.66

Peak	Processed channel	Ret. Time	Area	Height	Area (%)
		(min)	(mAu*s)	(mAu)	
1	2998 (190- 400) nm	47.766	3818	-62	0.12
2	2998 (190- 400) nm	54.107	3234865	18496	99.88