

Supplementary Information

Self-association of aromatic oligoamide foldamers into double helices in water

Jie Shang,^{†,¶,§} Quan Gan,^{†,¶} Simon J. Dawson,^{†,¶} Frédéric Rosu,^{‡,#} Hua Jiang,[§] Yann Ferrand^{*,†,¶} and Ivan Huc^{*,†,¶}

[†] Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France.

[¶] CNRS, CBMN, UMR 5248, 33607 Pessac, France.

[§] Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China.

[‡] Univ. Bordeaux, UMS 3033/US 001, Institut Européen de Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France.

[#] CNRS, IECB, UMS 3033, 33607 Pessac, France.

Table of contents

1. Materials and methods	Page S2
2. Synthetic schemes	Page S4
3. Experimental section	Page S5
4. NMR studies	Page S10
5. Mass spectrometry studies	Page S12
6. Modeling	Page S14
7. NMR spectra	Page S15

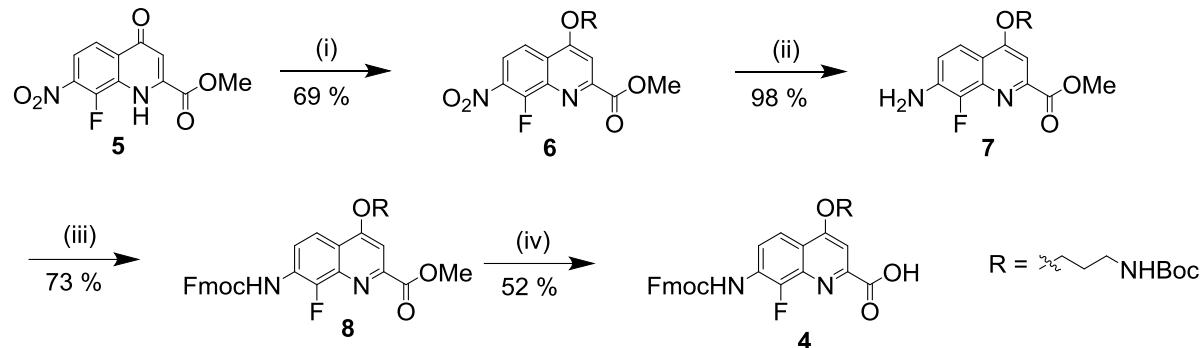
1. Materials and methods

All reactions were carried out under a dry nitrogen atmosphere. Low loading Wang resin was purchased from Novabiochem. Ghosez reagent (1-chloro-N,N,2-trimethyl-1-propenylamine) was purchased from Sigma Aldrich. *N,N*-diisopropylethylamine (DIPEA) was distilled over calcium hydride. Reactions requiring anhydrous conditions were performed under argon. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column chromatographies were carried out on Merck GEDURAN Si60 (40-63 μ m). Analytical grade organic solvents were used for solid phase synthesis. Anhydrous THF and CH₂Cl₂ for solution and solid phase synthesis were dispensed from an MBRAUN SPS-800 solvent purification system. RP-HPLC-quality acetonitrile and MilliQ water were used for RP-HPLC analyses and purification. ESI mass spectra were obtained from the mass spectrometry service at the IECB (UMS3033 & US001). NMR spectra were recorded on 2 different NMR spectrometers: (1) an Avance II NMR spectrometer (Bruker Biospin) with a vertical 7,05T narrow-bore/ultrashield magnet operating at 300 MHz for ¹H observation and 75 MHz for ¹³C observation by means of a 5-mm direct BBO H/X probe with Z gradient capabilities; (2) a DPX-400 NMR spectrometer (Bruker Biospin) with a vertical 9,4T narrow-bore/ultrashield magnet operating at 400 MHz for ¹H observation by means of a 5-mm direct QNP ¹H/¹³C/³¹P/¹⁹F probe with gradient capabilities. ¹H-NMR spectra were measured at 300 or 400 MHz and ¹³C-NMR spectra were measured at 75 MHz. Chemical shifts are reported in ppm and are calibrated against residual solvent signals of CDCl₃ (δ 7.26, 77.2), DMSO-d₆ (δ 2.50, 39.4), or D₂O (δ 4.79). All coupling constants are reported in hertz (Hz). Signals were abbreviated as s, singlet; brs, broad singlet; d, doublet; t, triplet; q, quartet; quin, quintet; m, multiplet, dd, doublet of doublets. Data processing was performed with Topspin 2.0 software.

- *Methods for NMR titrations*

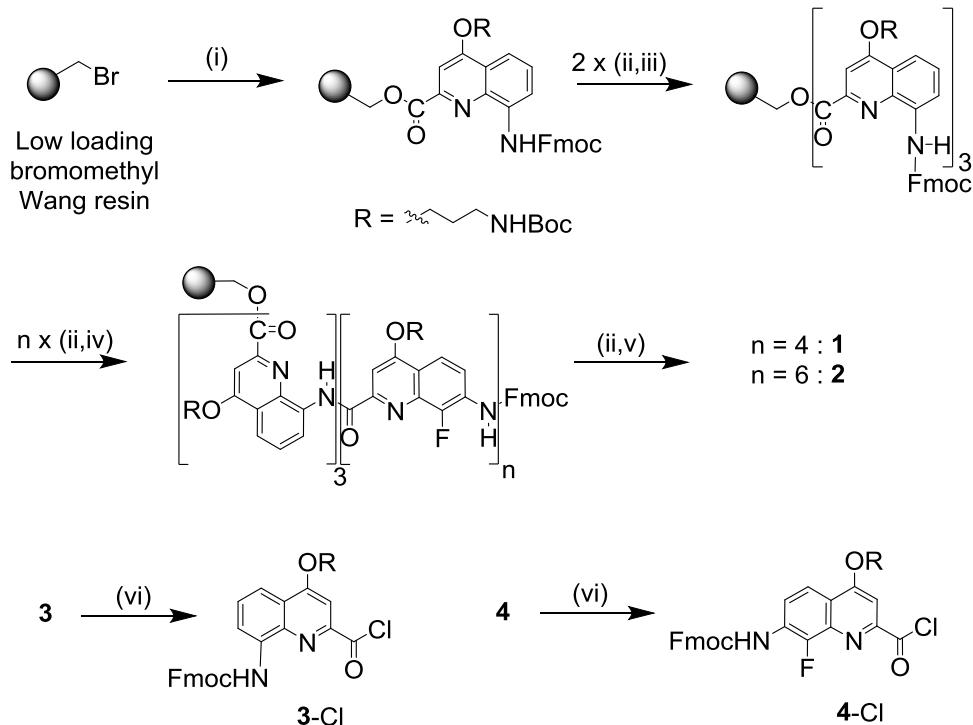
Solutions of oligomers **1** and **2** (2mM) were made up in DMSO-d₆ (99.9%). Aliquots of a solution containing oligomers **1** or **2** in water at the same concentration (2 mM) were then added. The sample tube was shaken carefully after each addition of the aqueous solution and ¹H NMR spectra were recorded at 298 K using a water suppression sequence (watergate).

- *Methods for Mass Spectrometry*


Mass spectrometry experiments were carried out on an Exactive orbitrap mass spectrometer (Thermo, Bremen, Germany) equipped with the HESI electrospray source. The experiments were performed in positive ion mode (capillary voltage=3.7 kV) in soft source conditions. The capillary temperature was 140 °C, the skimmer voltage was 10 V, the gate lens inject was 6.2 V and the tube lens offset was 195 V. The samples were dissolved in water. In-source collision induced dissociation has been performed by increasing the source skimmer voltage. The duplex dissociates into a single strand when using a high skimmer voltage (Figure S3).

- *Methods for modeling*

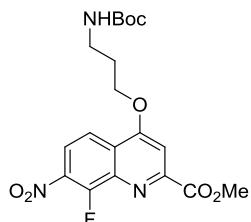
MacroModel v6.5, with the GB/SA model for water was used to perform the modeling of the single and double helices. All calculations were achieved using Montecarlo conformational analyses. Minimizations were carried out using the TNCG method as implemented MacroModel v6.5, the energy gradient was fixed at 0.05 as the convergence criteria, and at least 1000 iterations. All Montecarlo calculations were performed with MCMM (Monte Carlo Multiple Minimum) method. The minimization method was TNCG with the same characteristics described above. In a typical Montecarlo run a MCMM is performed with a minimum of 10000 steps, to carry out the search torsional rotations are performed and for all the Montecarlo a cutoff is applied to Van der Waals, electrostatic and H-bond interactions with 8 Å, 20 Å and 4 Å, respectively. These calculations were carried out with the Merck Molecular Force Field static (MMFFs) as implemented in the version of the program.


2. Synthetic schemes

- *Solution phase preparation of Q^F monomers*

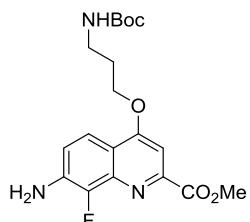
Scheme S1. Synthesis of Q^F monomers: (i) diisopropylazodicarboxylate, N-(tert-butoxycarbonyl)-3-aminopropanol, PPh₃; (ii) Pd/C, H₂; (iii) Fmoc-Cl, NaHCO₃; (iv) LiI.

- *Solid phase synthesis of Q₃(Q^F)_n oligomers*

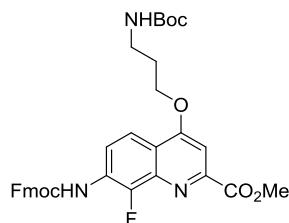


Scheme S1. Solid phase synthesis of Q₃(Q^F)_n oligomers: (i) **3**, CsI, DIEA, DMF, microwaves; (ii) piperidine, DMF; (iii) **3-Cl**, DIEA, THF, microwaves; (iv) **4-Cl**, DIEA, THF, microwaves (v) TFA, iPr₃SiH, H₂O; (vi) 1-Chloro-N,N,2-trimethyl-1-propenylamine, CH₂Cl₂.

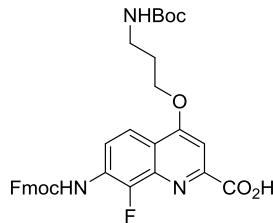
3. Experimental section


- *Experimental procedure for monomer synthesis and characterization*

Methyl 8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-7-nitro-2-quinolinecarboxylate **6**:


Methyl 8-fluoro-7-nitro-4-(1H)-quinolone-2-carboxylate (0.84 g, 3 mmol), triphenylphosphine (1.18 g, 4.5 mmol, 1.5 equiv.) and *N*-(*t*-butoxycarbonyl)-3-aminopropanol (0.78 g, 4.5 mmol, 1.5 equiv.) were partially dissolved in anhydrous THF (100 mL) and stirred at 0 °C under Ar. Diisopropylazaodicarboxylate (1.3 equiv., 8.25 mL, 41.93 mmol.) was added and the reaction mixture stirred at 0 °C for 30 min, then at room temperature for 15 h. Solvents were removed under reduced pressure, and the product purified by silica gel chromatography (100% DCM to DCM/EtOAc (20:1)) to afford the title compound as a pale brown solid (0.87 g, 69%). ¹H NMR (300 MHz, CDCl₃): δ = 8.12 (m, 2H), 7.74 (s, 1H), 4.69 (brs, 1H), 4.40 (t, 2H, ³J = 6.0), 4.10 (s, 3H), 3.43 (q, 2H, ³J = 6.4), 2.20 (quin, 2H, ³J = 6.4), 1.43 (s, 9H); ¹³C NMR (300 MHz, CDCl₃): δ = 165.09, 162.42, 162.37, 156.02, 154.20, 151.41, 150.49, 139.35, 139.2, 136.47, 136.40, 126.17, 121.79, 117.96, 117.88, 103.87, 67.52, 53.56, 37.48, 29.39, 28.36. HRMS calculated for C₁₉H₂₃FN₃O₇: 424.1515, found: 424.1508 [M+H]⁺.

Methyl 7-amino-8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-2-quinolinecarboxylate **7**:


Methyl 8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-7-nitro-2-quinolinecarboxylate **6** (0.84 g, 2.0 mmol) was dissolved in 150 mL EtOAc, to which was added 10% Pd/C (84 mg, 10% by mass) and the mixture stirred under H₂ for 15 h at room temperature. The reaction mixture was filtered through celite, and solvents removed under reduced pressure to afford the title compound as a yellow solid (0.77 g, 98%). ¹H NMR (300 MHz, CDCl₃): δ = 7.84 (dd, 1H, ³J = 9.0, 1.5), 7.44 (s, 1H), 7.12 (dd, 1H, ³J = 8.9, 7.8), 4.74 (brs, 1H), 4.34 (t, 2H, ³J = 6.4), 4.05 (s, 3H), 3.43 (q, 2H, ³J = 6.4), 2.15 (quin., 2H, ³J = 6.4), 1.44 (s, 9H); ¹³C NMR (300 MHz, CDCl₃): δ = 166.24, 162.36, 162.31, 156.0, 149.57, 145.46, 142.22, 139.70, 139.57, 135.03, 134.88, 119.73, 119.67, 117.59, 117.53, 115.67, 98.94, 79.42, 66.60, 53.16, 37.80, 29.34, 28.39. HRMS calculated for C₁₉H₂₅FN₃O₅: 394.1773, found: 394.1774 [M+H]⁺.

Methyl 7-(((9H-fluoren-9-yl)methoxy)carbonylamino)-8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-2-quinolinecarboxylate **8**:

Methyl 7-amino-8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-2-quinolinecarboxylate **7** (0.75 g, 1.9 mmol) was dissolved in a mixture of 5% NaHCO₃ and dioxane (100 mL/20mL) and cooled to 0 °C. Over one hour, a solution of 9-fluorenylmethylchloroformate (0.72 g, 2.8 mmol, 1.5 equiv) in 20 mL dioxane was added dropwise using an addition funnel. The solution was further stirred for one hour at 0 °C and subsequently stirred for 15 h at room temperature. The reaction mixture was then poured into 160 ml water and acidified to pH 2 with a 1 M HCl solution. The aqueous phase was extracted with DCM (3 x 100 ml). The collected organic layers were washed with brine (3 x 150 ml), dried over Na₂SO₄, solvents evaporated under reduced pressure and the product purified by silica gel chromatography to afford the title compound as a white solid (0.85 g, 73%). ¹H NMR (300 MHz, CDCl₃): δ = 8.45 (brs, 1H), 7.98 (d, 1H, J = 9.2), 7.80 (d, 2H, J = 7.3), 7.66 (d, 2H, J = 7.3), 7.54 (s, 1H), 7.44 (t, 2H, J = 7.3), 7.35 (t, 2H, J = 7.3), 4.74 (brs, 1H), 4.61 (d, 2H, J = 6.7), 4.36 (t, 2H, J = 6.7), 4.34 (t, 2H, J = 6.0), 4.07 (s, 3H), 3.42 (q, 2H, J = 6.3), 2.18 (quin, 2H, J = 6.3), 1.44 (s, 9H); ¹³C NMR (300 MHz, CDCl₃): δ = 165.86, 162.36, 162.32, 156.03, 153.13, 149.91, 147.66, 144.31, 143.51, 141.35, 138.62, 138.48, 127.90, 127.19, 126.99, 126.88, 124.95, 120.42, 120.11, 118.83, 117.55, 117.48, 100.58, 79.46, 67.55, 66.91, 53.31, 46.99, 37.71, 29.35, 28.41. HRMS calculated for C₃₄H₃₅FN₃O₇: 616.2454, found: 616.2459 [M+H]⁺.

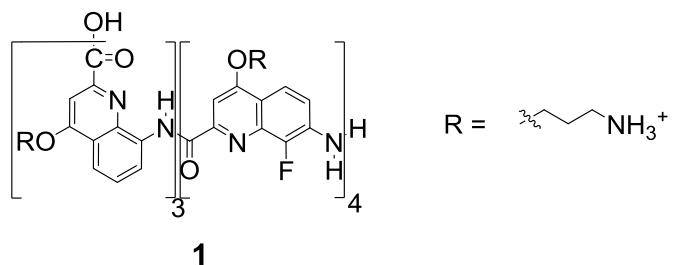
7-(((9H-fluoren-9-yl)methoxy)carbonylamino)-8-fluoro-4-(3-(tert-butoxycarbonylamino)propoxy)-2-quinolinecarboxylic acid **4**:

Compound **8** (0.8 g, 1.3 mmol) was dissolved in 100 mL of dry and degassed EtOAc. To the solution, LiI (0.52 g, 3.9 mmol, 3.0 equiv) was added, and the mixture was stirred for 6 h at 80 °C under inert atmosphere, then cooled to room temperature and concentrated under reduced pressure (to approximately 30 mL). The reaction mixture was then poured into 100 ml water and acidified to pH 2 with a 1 M HCl solution. The aqueous phase was extracted with DCM (3 x 30 mL), the combined organic

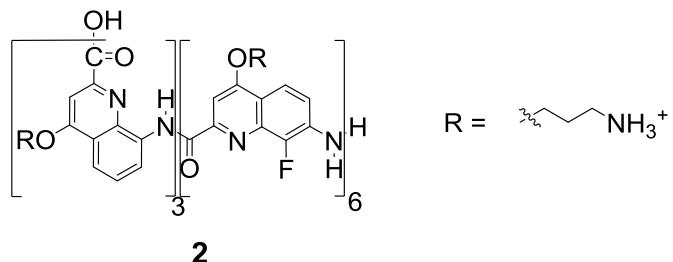
layers washed with brine (3 x 150 ml) and dried over Na_2SO_4 . Solvents were removed under reduced pressure and product was precipitated from DCM/cyclohexane to yield the title compound as a white solid. ^1H NMR (300 MHz, $\text{DMSO}-d_6$): δ = 13.45 (brs, 1H), 9.97 (s, 1H), 7.92 (m, 4H), 7.80 (d, 2H, J = 6.7), 7.52 (s, 1H), 7.44 (t, 2H, J = 7.6), 7.35 (t, 2H, J = 7.6), 6.97 (t, 1H, J = 5.6), 4.51 (d, 2H, J = 6.5), 4.35 (m, 3H), 3.21 (q, 2H, J = 6.3), 2.02 (quin., 2H), 1.35 (s, 9H); ^{13}C NMR (300 MHz, $\text{DMSO}-d_6$): δ = 166.86, 162.39, 162.34, 156.15, 154.26, 151.57, 150.24, 146.85, 144.18, 141.29, 138.86, 138.71, 128.21, 127.62, 126.86, 126.73, 125.77, 124.10, 120.65, 119.57, 117.33, 101.35, 78.01, 67.28, 66.88, 47.04, 37.30, 29.34, 28.70. HRMS calculated for $\text{C}_{33}\text{H}_{33}\text{FN}_3\text{O}_7$: 602.2297, found: 602.2295 $[\text{M}+\text{H}]^+$.

- *Method and experimental procedures for SPS*

Loading of first monomer unit: Wang bromide resin (75 mg, 0.38 mmol g⁻¹, 0.0285 mmol) was swollen in anhydrous DMF (1.5 mL) for 1 h under N₂. Compound **3** (50 mg, 0.0855 mmol, 3.0 equiv) and CsI (22 mg, 0.0855 mmol, 3.0 equiv) were then added, followed by DIEA (28 μ L, 0.171 mmol, 6.0 equiv). The mixture was then treated with microwaves (50 W, ramp to 50 °C over 5 min, then hold at 50 °C for 5 min). The resin was washed briefly with anhydrous DMF and the process was repeated. The resin was then washed thoroughly with DMF.

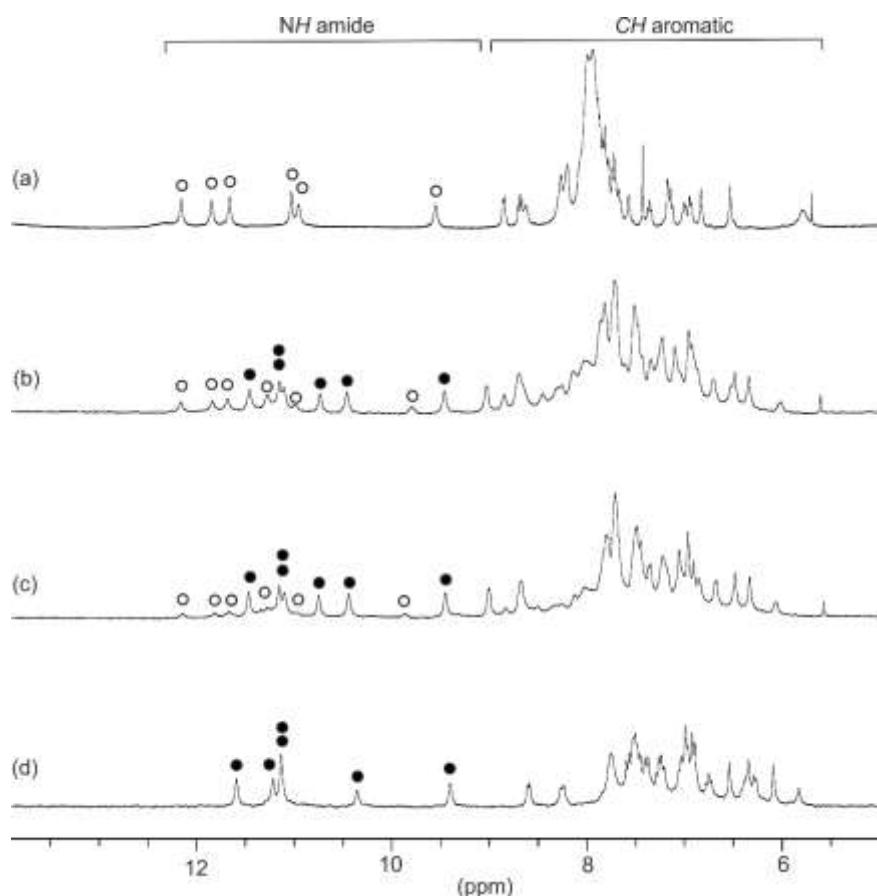

Fmoc deprotection: To Fmoc-Q-Wang was added a 20% vol/vol solution of piperidine in DMF (4 mL) and the resin was stirred for 10 min at room temperature. The resin was washed briefly with DMF and the process was repeated twice again. The resin was then washed thoroughly with DMF.

Conversion of Fmoc monomer acid to acid chloride exemplified by preparation of **3-Cl:** Compound **3** (100 mg, 0.171 mmol) was dissolved in anhydrous DCM (3 mL) under N₂, and 1-chloro-*N,N*,2-trimethyl-1-propenylamine (70 μ L, 0.513 mmol, 2 equiv) was added. The mixture was stirred for 1 h and then solvents evaporated on a vacuum manifold.

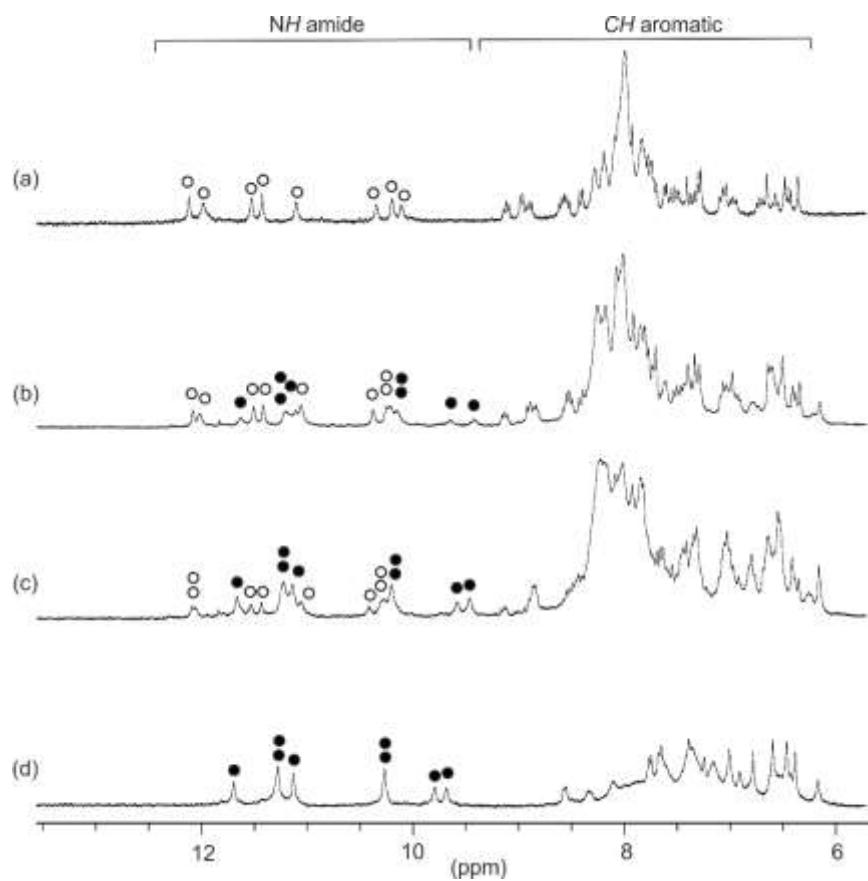

Coupling of Fmoc monomer acid chloride exemplified by preparation of Fmoc-(Q)₂-Wang: NH₂-Q-Wang resin was suspended in anhydrous THF (1 mL), to which was added DIEA (30 μ L, 0.171 mmol, 6.0 equiv). Compound **3-Cl** was dissolved in anhydrous THF (1.5 mL) and added to the resin, which was then treated with microwaves (50 W, ramp to 50 °C over 5 min, then hold at 50 °C for 15 min). The resin was washed briefly with anhydrous THF, and the process repeated once. The resin was then washed thoroughly with THF and DMF.

Resin cleavage: The completed resin-bound foldamer was washed with DMF, DCM and then DCM/MeOH (1:1), dried and desiccated. It was then suspended in a solution of TFA/iPr₃SiH/H₂O (95:2.5:2.5 vol/vol/vol, 2 mL for 75 mg resin), and the mixture was stirred for 2 h at room temperature. The resin was then removed by filtration and washed with TFA, and the filtrate evaporated under reduced pressure. The resulting oily solid was precipitated with Et₂O, triturated, washed with Et₂O, filtered and dried under vacuum to obtain the crude foldamer.

- Characterization of aromatic amide oligomers



NH₂-(Q^F)₄-(Q)₃-OH 1: Prepared on a 28.5 μ mol scale (75 mg of resin, 0.38 mmol g⁻¹) using the general procedures reported above, affording the title compound as a pale orange solid (35 mg, 69%) after purification by preparative RP-HPLC (System C). RP-HPLC (System A): R_t = 4.25 min. ¹H-NMR (400 MHz, DMSO-d₆): δ = 12.24 (s, 1H), 11.93 (s, 1H), 11.74 (s, 1H), 11.11 (s, 1H), 11.03 (s, 1H), 9.63 (s, 1H), 8.93 (m, 2H), 8.77 (m, 2H), 8.35-7.66 (m, CHAr), 7.46 (m, 2H), 7.22 (m, 2H), 7.07-7.03 (m, 2H), 6.62 (s, 1H), 4.63-4.18 (m, 14H), 3.17 (m, 14H), 2.27 (m, 14H). HRMS calculated for C₉₁H₈₉F₄N₂₁O₁₅: 1791.6, found: 897.3 [M+2H]²⁺.



NH₂-(Q^F)₆-(Q)₃-OH 2: Prepared on a 28.5 μ mol scale (75 mg of resin, 0.38 mmol g⁻¹) using the general procedures reported above, affording the title compound as a pale orange solid (7.4 mg, 11%) after purification by preparative RP-HPLC (System C). RP-HPLC (System B): R_t = 9.37 min. ¹H-NMR (400 MHz, DMSO-d₆): δ = 12.11 (s, 1H), 12.00 (s, 1H), 11.52 (s, 1H), 11.43 (s, 1H), 11.11 (s, 1H), 10.36 (s, 1H), 10.21 (s, 1H), 10.12 (s, 1H), 9.12 (m, 1H), 8.92 (m, 2H), 8.52 (m, 2H), 8.39-7.74 (m, CHAr), 7.70-7.28 (m, 7H), 7.10-6.96 (m, 4H), 6.70-6.36 (m, 7H), 4.71-4.46 (m, 18H), 3.25-3.17 (m, 18H), 2.37-2.21 (m, 18H). HRMS calculated for C₁₁₇H₁₁₃F₆N₂₇O₁₉: 2313.9, found : 1158.4 [M + 2H]²⁺.

4. NMR studies

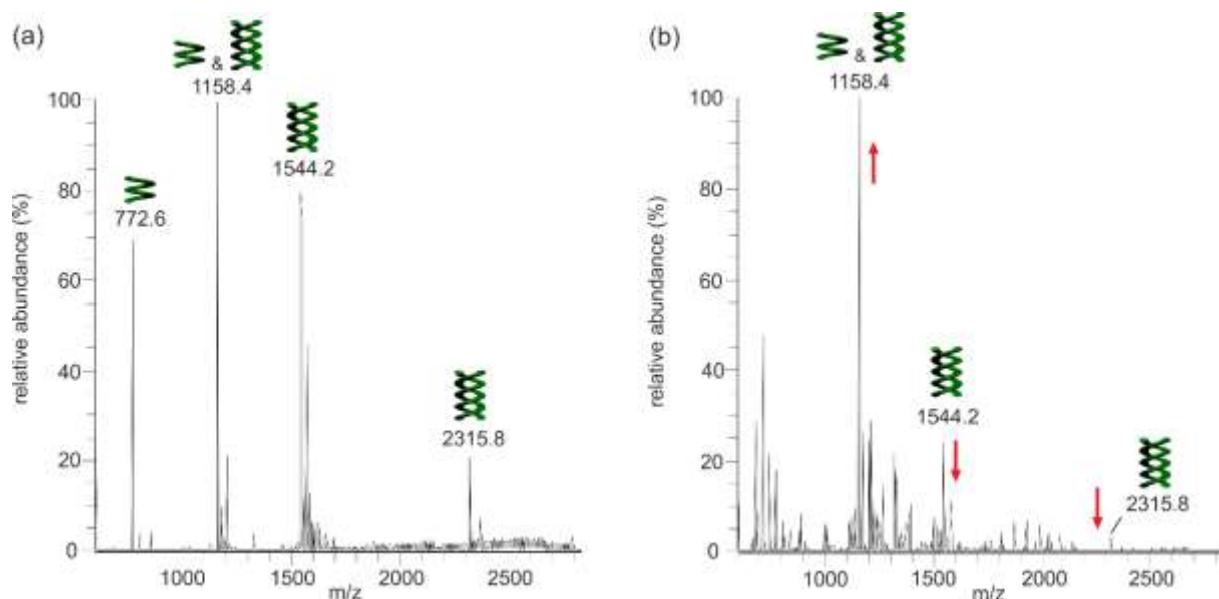


Figure S1. Excerpts of the ^1H NMR (400 MHz) titration at 298 K of **1** (2 mM) in varying proportions of $\text{d}_6\text{-DMSO:H}_2\text{O}$ vol/vol: (a) 100:0; (b) 80:20; (c) 76:24; (d) 0:100. Empty and black circles stand for the eight amide signals of either the single **1** or the double helix $(\mathbf{1})_2$, respectively. Aromatic resonances are visible between 6 and 9 ppm.

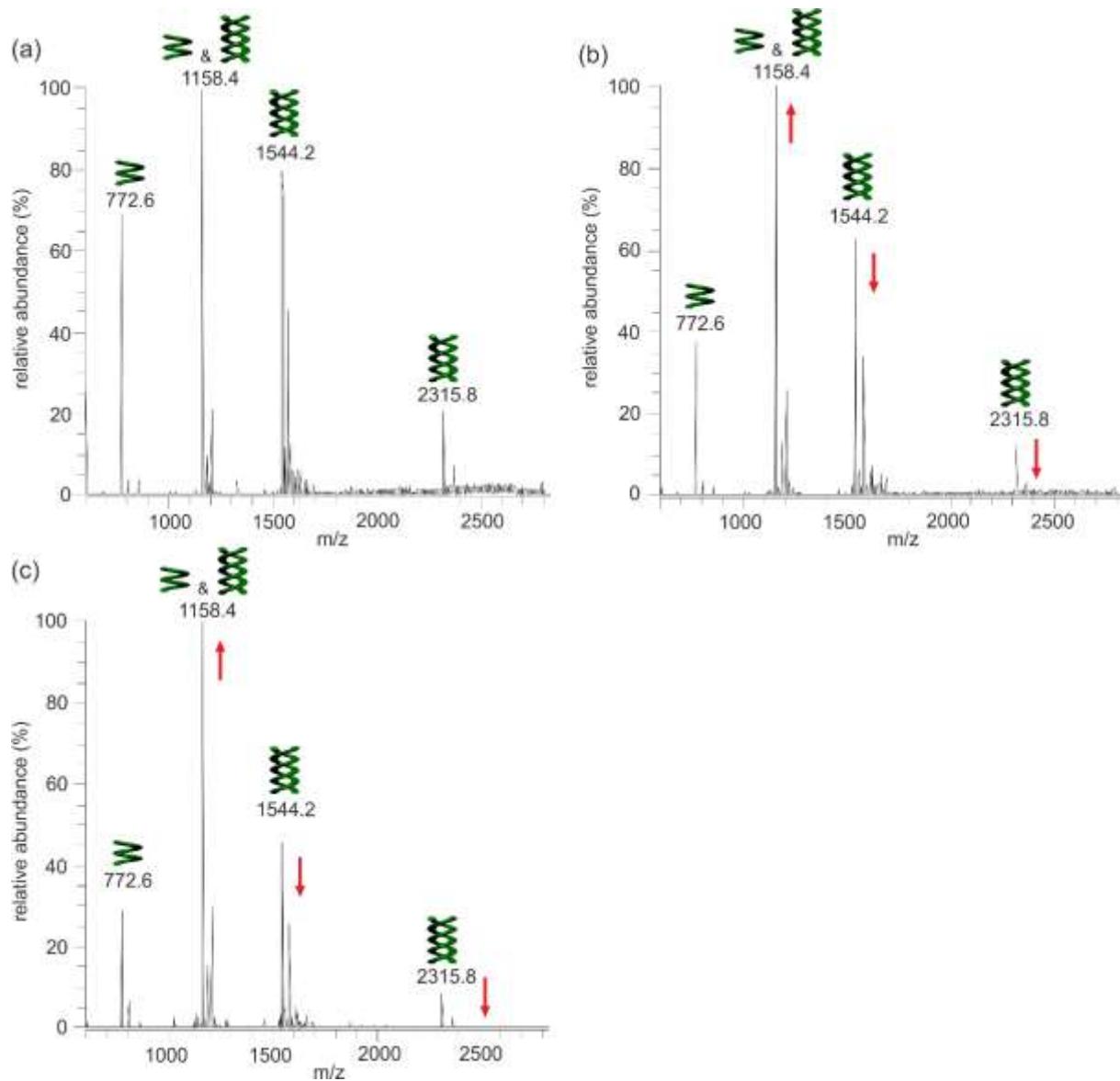


Figure S2. Excerpts of the ^1H NMR (400 MHz) titration at 298 K of **2** (2 mM) in varying proportions of $\text{d}_6\text{-DMSO:H}_2\text{O}$ vol/vol: (a) 100:0; (b) 84:16; (c) 80:20; (d) 0:100. Empty and black circles stand for the eight amide signals of either the single **2** or the double helix $(\mathbf{2})_2$, respectively. Aromatic resonances are visible between 6 and 9 ppm.

5. Mass spectrometry studies

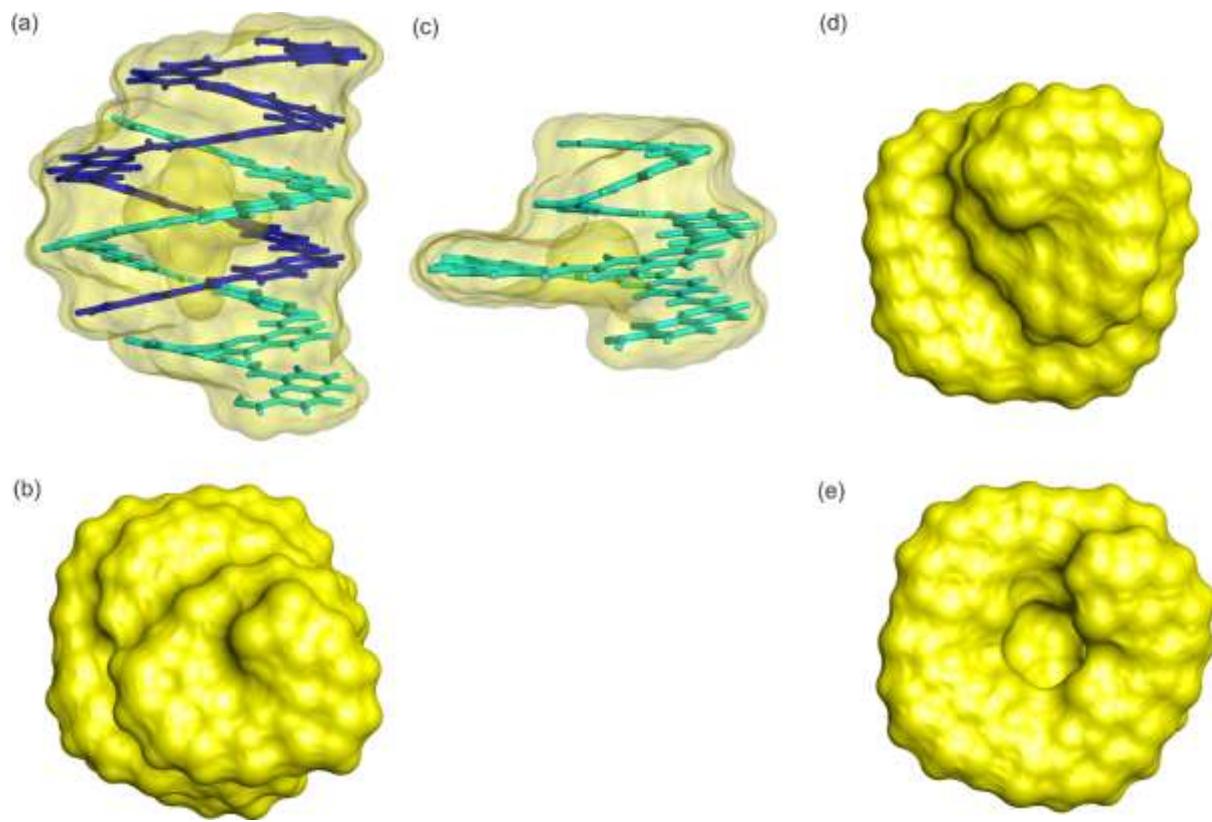
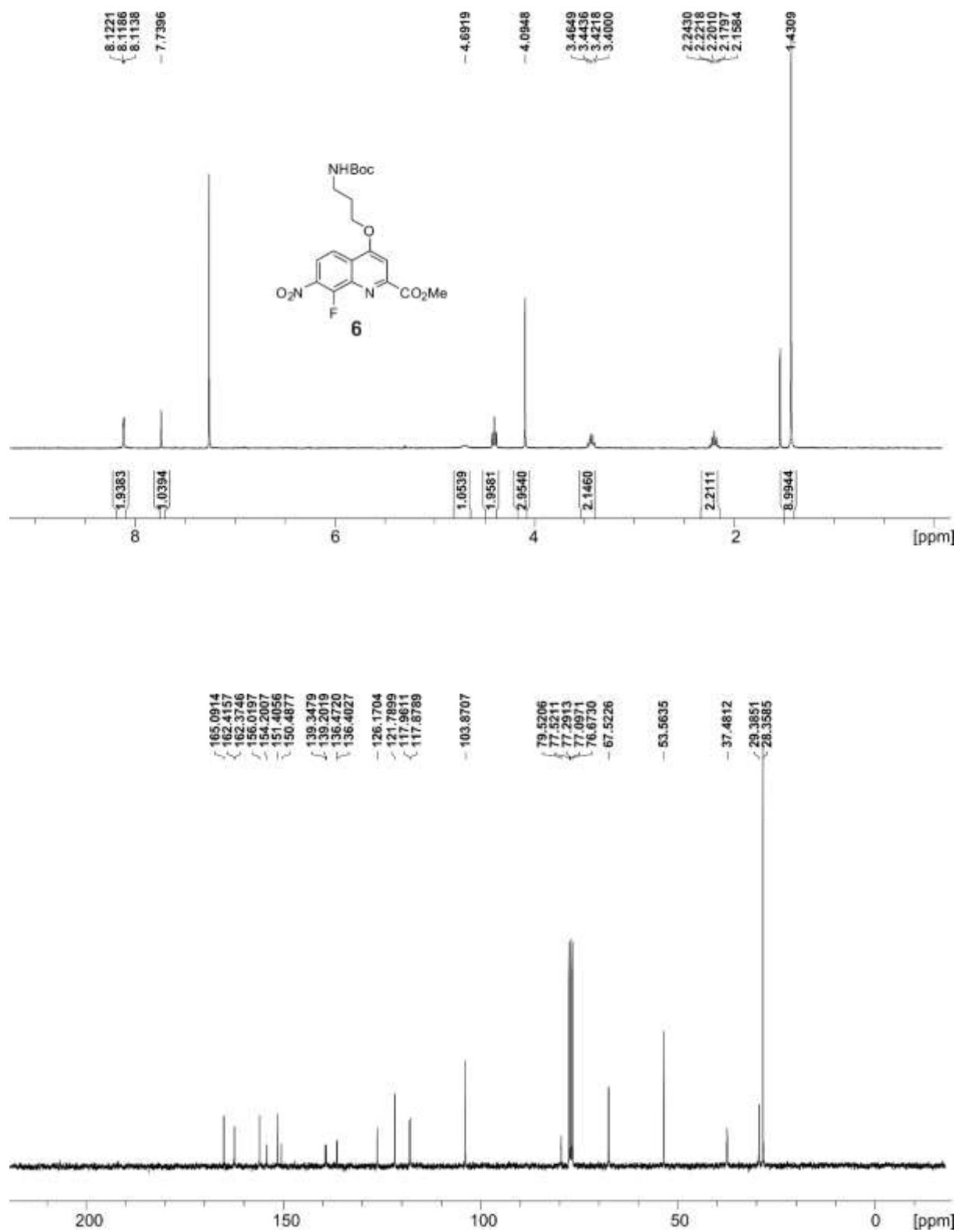
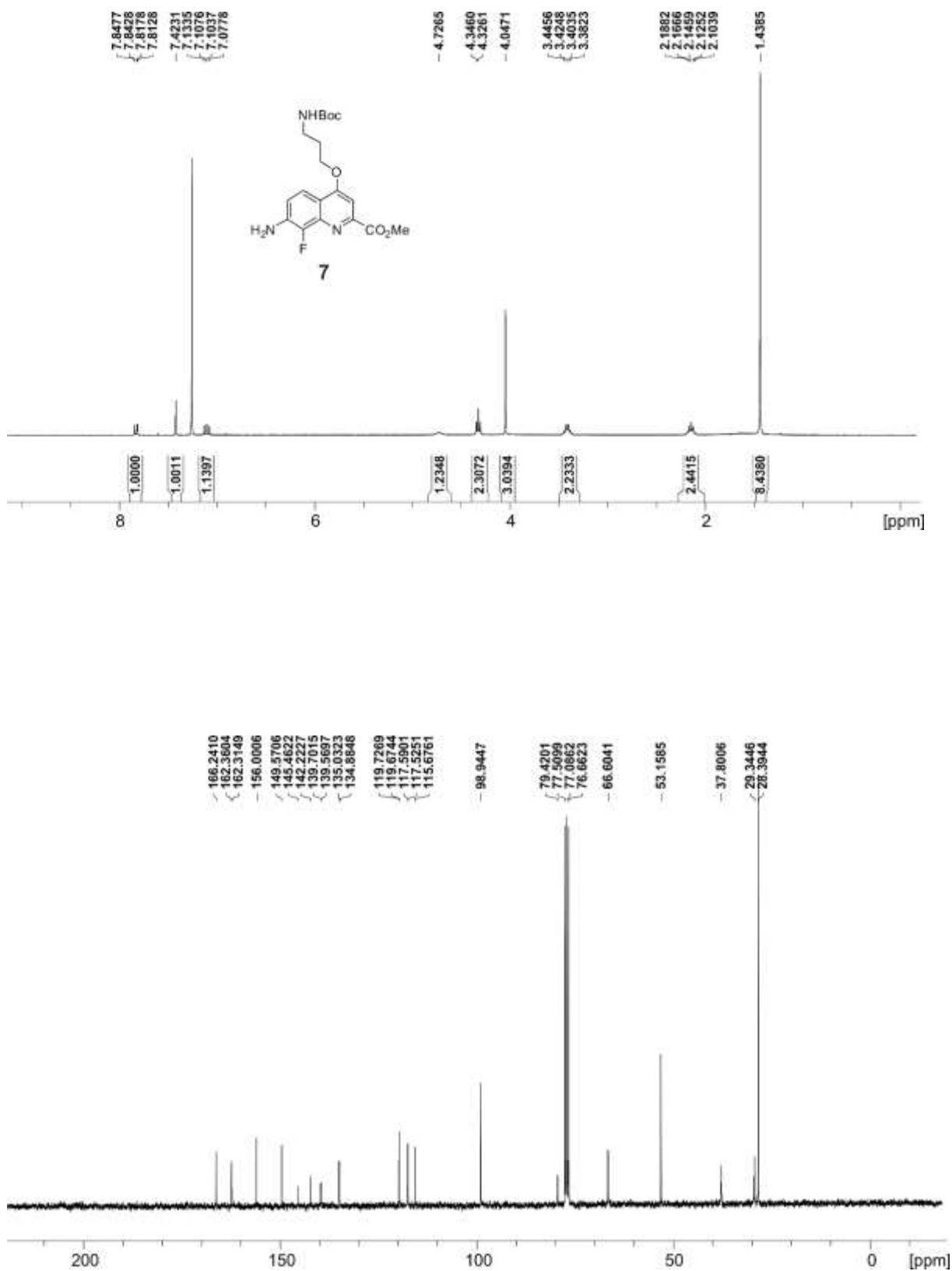


Figure S3. Electrospray ionization mass spectrum (ESI-MS) of a solution of 20 μM of oligomer **2** in: (a) H_2O and (b) 50:50 $\text{H}_2\text{O}:\text{MeCN}$ vol/vol mixture. The red arrows indicate the decrease of the relative abundance of the duplex compared to the single helix in the presence of organic solvent in water.


Figure S4. Electrospray ionization mass spectrum (ESI-MS) of a solution of 20 μM of oligomer **2** with varying skimmer voltage: (a) 10V; (b) 17V and (c) 20V. The increase of experimental harshness (e.g. voltage increase) induced the dissociation of the duplex.


6. Modelling

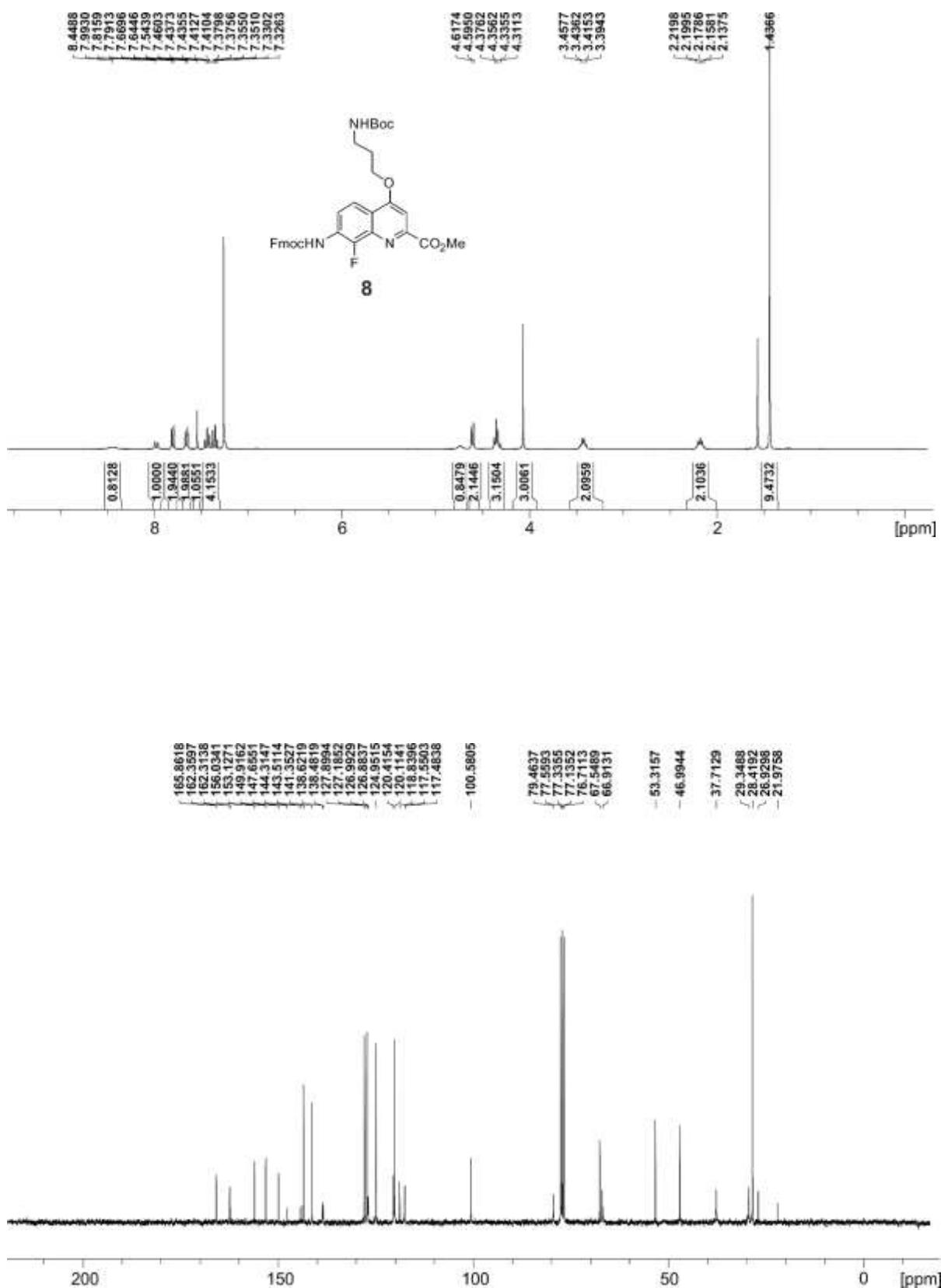
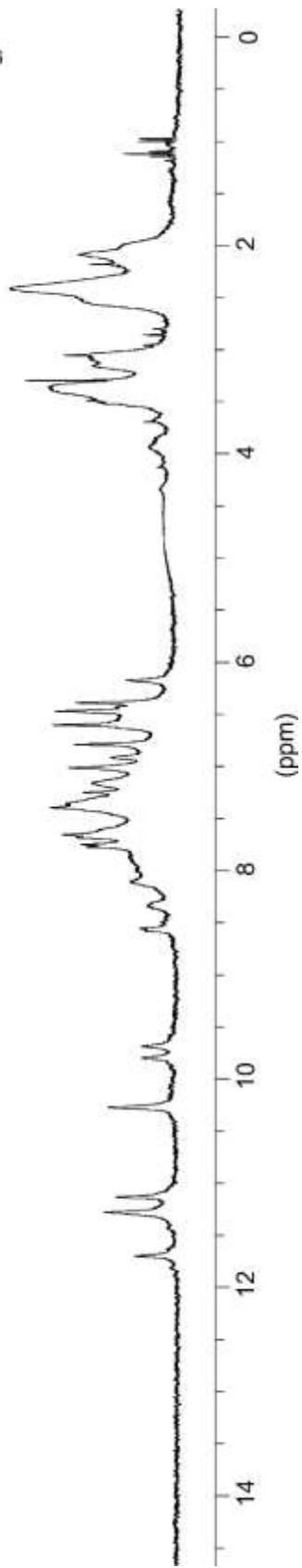
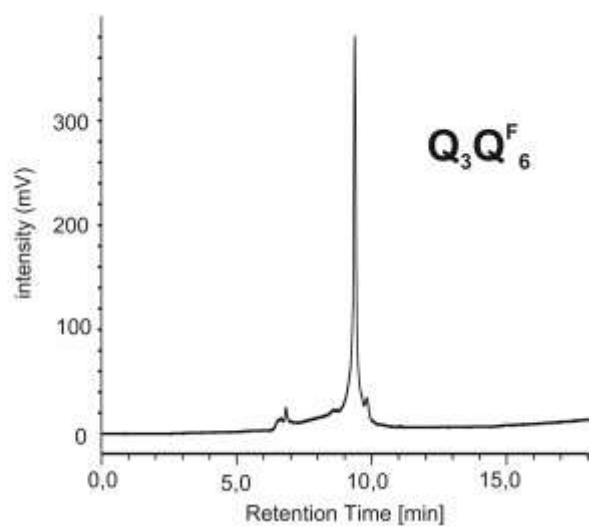
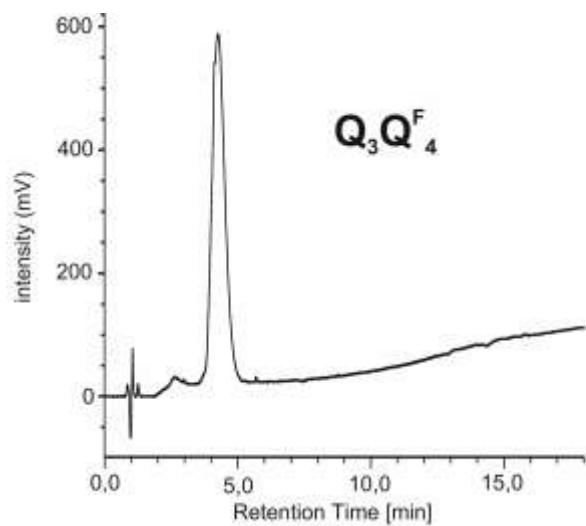


Figure S5. Solvent accessible surface of: (a) side view and (b) top view of duplex **(2)₂**. Solvent accessible surface of: (c) side view, (d) top view and (e) bottom view of single helix **2**. In (a) and (c) solvent accessible surfaces are shown as transparent yellow isosurfaces and helical backbones are shown as blue tube. In (b), (d) and (e) solvent accessible surfaces are shown as yellow opaque isosurfaces. Solvent-accessible surface area was calculated by rolling ball method with a radius of 1.4 Å. Flexible side chains have been removed for the surface estimation. The calculated solvent accessible surface for **(2)₂** and **2** were found to be 1655 Å² and 1021 Å², respectively. Thus, one can estimate that a double helix **(2)₂** presents to the solvent about 80% of the surface presented by two individual single helix **2**.

7. NMR spectra





1: $Q_3Q_4^F$

2: $Q_3Q_6^F$

6. RP-HPLC chromatograms

