Silver-Mediated Selective Oxidative Cross-Coupling between C-H/P-H: A Strategy to Construct Alkynyl(diaryl)phosphine Oxide†

Tao Wang ^a, Songtao Chen ^a, Ailong Shao ^b, Meng Gao ^a *, Yangfei Huang ^a, and Aiwen Lei ^{a b} *

Supporting Information

Table of Contents

General Information	S2
General Procedures for Preparation of Alkynyl(diaryl)phosphine Oxides	S3
Detail descriptions for products	S4
Procedure for the Synthesis of Phenylacetylene Silver	S14
Procedure for the Synthesis of (diphenylphosphoryl)silver	S14
General Procedures for the Ag ₂ CO ₃ Recovery Experiment	S14
Reference	S15
Spectrum	S16

^a National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.

^b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.

General Information

Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between 60-90 °C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they are listed as volume/volume ratios. NMR spectra were recorded on a Varian Mercury spectrometer at 300 MHz (¹H NMR), 75 MHz (¹³C NMR) or on a Bruker spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR). Tetramethylsilane was used as an internal standard. All ¹H NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument, accurate masses are reported for the molecular ion ([M+H]⁺). Selective ratios were recorded with a Varian GC 2000 gas chromatography instrument with a FID detector. GC-Ms spectra were recorded on a Varian GC-Ms 3900-2100T.

General Procedures for Preparation of phosphine oxide

Diphenyl(p-tolylethynyl)phosphine oxide (3a)¹

A mixture of diphenylphosphine oxide 2a (0.2 mmol) and Silver carbonate (0.4 mmol, 110 mg), alkyny 1a (0.3 mmol) in DMSO (3 mL) was stirred in N₂ at 120 °C for 15 h. After completion of the reaction, as indicated by TLC and GC-Ms, the solvent then diluted with 3% Na₂CO₃ and extracted with EtOAc. The combined extracts were washed with brine, dried over anhydrous Na₂SO₄; the residue was then purified by flash chromatography on silica gel with a mixture eluent of petroleum ether, ethyl acetate. After concentrating the fractions containing the product, the residue was dried under reduced pressure. The spectroscopic data of all the products are presented below. All the known compounds gave satisfactory spectroscopic values and are analogue to spectroscopic data reported in the literature.

Detail descriptions for products

Diphenyl(p-tolylethynyl)phosphine oxide (3a)¹

white solid (44.3 mg, 70% yield). PE/EA = 1:1, $R_f = 0.30$. Mp = 164-165 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92 -7.86 (m, 4H), 7.55 - 7.44 (m, 8H), 7.16 (d, J = 8 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 133.1 (d, ¹ $J_{C-P} = 121.0$ Hz, C), 132.5 (d, ⁴ $J_{C-P} = 2.0$ Hz, CH), 132.2 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 1301.0 (d, ³ $J_{C-P} = 13.1$ Hz, CH), 129.4, 128.7 (d, ² $J_{C-P} = 14.1$ Hz, CH), 116.8 (d, ³ $J_{C-P} = 4.0$ Hz, CH), 106.1 (d, ² $J_{C-P} = 30.3$ Hz, C), 82.2 (d, ¹ $J_{C-P} = 172.7$ Hz, C), 21.8. ³¹P NMR (162 MHz, CDCl₃): δ 8.38. HRMS (ESI) calcd for $C_{21}H_{17}OP$ [M+H]⁺: 317.1090; found: 317.1094.

Diphenyl(phenylethynyl)phosphine oxide (3b)¹

white solid (39.8 mg, 66% yield). PE/EA = 1:1, $R_f = 0.30$. Mp = 101-102 °C. ¹H NMR (400 MHz, CDCl3): δ 7.91 - 7.85 (m, 4H), 7.56 - 7.38 (m, 9H), 7.32 (t, J = 14.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 133.0 (d, ¹ $J_{C-P} = 121.0$ Hz, C), 132.6 (d, ⁴ $J_{C-P} = 2.0$ Hz, CH), 132.3 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 131.0 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 130.8, 128.7 (d, ² $J_{C-P} = 13.0$ Hz, CH), 119.9 (d, ³ $J_{C-P} = 4.0$ Hz,CH), 128.6, 105.5 (d, ² $J_{C-P} = 30.3$ Hz, C), 82.8 (d, ¹ $J_{C-P} = 170.7$ Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 8.38. HRMS (ESI) calcd for $C_{20}H_{15}OP$ [M+H]⁺: 303.0933; found: 303.0935.

Diphenyl(m-tolylethynyl)phosphine oxide (3c)¹

white solid (39.2 mg, 62% yield). PE/EA = 1:1, $R_f = 0.30$. Mp = 155-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.93 - 7.87 (m, 4H), 7.55- 7.46 (m, 6H), 7.41 - 7.39 (m, 2H), 7.26 - 7.25 (m, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 133.3 (d, ¹ $J_{C-P} = 121.0$ Hz, CH), 133.0 (d, ⁴ $J_{C-P} = 2.0$ Hz, CH), 132.2, 131.7, 131.0 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 129.7 (d, ⁴ $J_{C-P} = 1.0$ Hz, CH), 128.7, 128.6 (d, ² $J_{C-P} = 10.1$ Hz, CH), 119.7 (d, ³ $J_{C-P} = 4.0$ Hz, CH), 105.8 (d, ² $J_{C-P} = 30.3$ Hz, C), 82.4 (d, ¹ $J_{C-P} = 171.7$ Hz, C), 21.2. ³¹P NMR (162 MHz, CDCl₃): δ 8.26. HRMS (ESI) calcd for $C_{21}H_{17}OP [M+H]^+$: 317.1090; found: 317.1094.

((4-Methoxyphenyl)ethynyl)diphenylphosphine oxide $(3d)^1$

yellow oil (41.2 mg, 62% yield). PE/EA = 1:1, $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 13.7, 7.1 Hz, 4H), 7.53 - 7.46 (m, 8H), 6.86 (d, J = 8.7 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 134.3 (d, ⁴ $J_{C-P} = 1.0$ Hz, CH), 134.0 (d, ¹ $J_{C-P} = 122.0$ Hz, C), 132.7, 132.1 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 131.0 (d, ³ $J_{C-P} = 4.0$ Hz, CH), 128.6 (d, ² $J_{C-P} = 13.1$ Hz, CH), 114.3, 111.8 (d, ³ $J_{C-P} = 4.0$ Hz, CH), 106.2 (d, ² $J_{C-P} = 30.3$ Hz, C), 81.7 (d, ¹ $J_{C-P} = 173.7$ Hz, C), 55.4. ³¹P NMR (162 MHz, CDCl₃): δ 8.19. HRMS (ESI) calcd for $C_{21}H_{17}O_{2}P$ [M+H]⁺: 333.1036; found: 333.1040.

((4-Bromophenyl)ethynyl)diphenylphosphine oxide (3e):

white solid (34.2 mg, 45% yield). PE/EA = 1:1, R_f = 0.31. Mp = 143-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 - 7.85 (m, 4H), 7.59 - 7.48 (m, 8H), 7.36 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 133.9 (d, ⁴ J_{C-P} = 2.0 Hz, CH), 132.5 (d, ¹ J_{C-P} = 121.0 Hz, C), 132.4 (d, ⁴ J_{C-P} = 3.0 Hz, CH), 132.0, 131.0 (d, ³ J_{C-P} = 11.1 Hz, CH), 128.8 (d, ² J_{C-P} = 13.1 Hz, CH), 125.5, 118.9 (d, ³ J_{C-P} = 4.0 Hz, CH), 104.1 (d, ² J_{C-P} = 30.3 Hz, C), 84.1 (d, ¹ J_{C-P} = 167.7 Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 8.47. HRMS (ESI) calcd for C₂₀H₁₄BrOP [M+H]⁺: 381.0038; found: 381.0046.

((4-Fluorophenyl)ethynyl)diphenylphosphine oxide (3f)

yellow solid (44.8 mg, 71% yield). PE/EA = 1:1, R_f = 0.35. Mp = 117-119 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 - 7.86 (m, 4H), 7.57 - 7.48 (m, 8H), 7.09 - 7.05 (m, 2H). 13 C NMR (101 MHz, CDCl₃) δ 163.9 (d, $^{1}J_{C-F}$ = 254.5 Hz), 134.8 (d, $^{4}J_{C-P}$ = 2.0,d $^{2}J_{C-F}$ = 11.1 Hz), 132.8 (d, $^{1}J_{C-P}$ = 122.0 Hz, *C*), 132.4 (d, $^{3}J_{C-P}$ = 3.0 Hz, *C*H), 131.0 (d, $^{3}J_{C-P}$ = 11.1 Hz, *C*H), 128.8, 128.7, 116.2 (d, $^{2}J_{C-P}$ = 22.2 Hz, *C*H), 104.4 (d, $^{2}J_{C-P}$ = 30.0 Hz, *C*), 82.8 (d, $^{1}J_{C-P}$ = 168.0 Hz, *C*). 31 P NMR (162 MHz, CDCl₃): δ 8.43. HRMS (ESI) calcd for C₂₀H₁₄FOP [M+H]⁺: 321.0845; found: 321.0840.

((4-Chlorophenyl)ethynyl)diphenylphosphine oxide (3g)

white solid (47.0 mg, 70% yield). PE/EA = 1:1, R_f = 0.30. Mp = 131-132 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 - 7.85 (m, 4H), 7.55 - 7.47 (m, 8H), 7.36 - 7.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 133.8 (d, ⁴ J_{C-P} = 1.0 Hz, CH), 132.6 (d, $^1J_{C-P}$ = 121.0 Hz, CH), 132.4 (d, ⁴ J_{C-P} = 3.0 Hz, CH), 131.0 (d, ³ J_{C-P} = 11.1 Hz, CH), 129.1, 128.8 (d, ² J_{C-P} = 13.1 Hz, CH), 118.4 (d, ³ J_{C-P} = 4.0 Hz, CH), 104.2 (d, ² J_{C-P} = 30.3 Hz, C), 83.8 (d, ¹ J_{C-P} = 168.7 Hz, C), ³¹P NMR (162 MHz, CDCl₃): δ 8.45. HRMS (ESI) calcd for C₂₀H₁₄ClOP [M+H]⁺: 337.0549; found: 337.0544.

((3-Chlorophenyl)ethynyl)diphenylphosphine oxide (3h)

yellow oil (42.3 mg, 63% yield). PE/EA = 1:1, $R_f = 0.30^{-1}H$ NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 13.8, 7.2 Hz, 4H), 7.57 - 7.43 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 134.5, 132.6 (d, ${}^{1}J_{C-P} = 121.0$ Hz, C), 132.5 (d, ${}^{4}J_{C-P} = 3.0$ Hz, CH), 132.2, 131.0 (d, ${}^{3}J_{C-P} = 11.1$ Hz, CH), 130.7 (d, ${}^{4}J_{C-P} = 2.0$ Hz, CH), 129.9, 128.8 (d, ${}^{2}J_{C-P} = 14.1$ Hz, CH), 121.6 (d, ${}^{3}J_{C-P} = 4.0$ Hz, CH), 103.4 (d, ${}^{2}J_{C-P} = 30.3$ Hz, C), 84.1 (d, ${}^{1}J_{C-P} = 166.7$ Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 8.37. HRMS (ESI) calcd for $C_{20}H_{14}$ ClOP [M+H]⁺: 337.0549; found: 337.0541.

((2-Chlorophenyl)ethynyl)diphenylphosphine oxide (3i)

yellow oil (33.6 mg, 50% yield). PE/EA = 1:1, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃) δ 7.97 - 7.91 (m, 4H), 7.61 - 7.43 (m, 8H), 7.39 - 7.34 (m 1H), 7.28 - 7.24 (m,

1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 134.3 (d, ⁴ J_{C-P} = 2.0 Hz, CH), 132.8 (d, ¹ J_{C-P} = 122.0 Hz, C), 132.3 (d, ⁴ J_{C-P} = 3.0 Hz, CH), 131.7, 131.0 (d, ³ J_{C-P} = 12.1 Hz, CH), 129.6, 128.7 (d, ² J_{C-P} = 13.1 Hz, CH), 126.8, 120.3 (d, ³ J_{C-P} = 4.0 Hz, CH), 101.4 (d, ² J_{C-P} = 29.3 Hz, C), 87.8 (d, ¹ J_{C-P} = 167.7 Hz, C). ³¹P NMR (162 MHz, CDCl₃) δ 8.61. HRMS (ESI) calcd for C₂₀H₁₄ClOP [M+H]⁺: 337.0549; found: 337.0544.

Diphenyl(thiophen-2-ylethynyl)phosphine oxide (3j)

yellow oil (33.3 mg, 62% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ 7.91 - 7.85 (m, 4H), 7.56 - 7.42 (m, 8H), 7.03 (dd, J = 5.1, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.9 (d, ⁴ $J_{C-P} = 2.0$ Hz, CH), 132.8 (d, ¹ $J_{C-P} = 122.0$ Hz, C), 132.4 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 131.0 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 130.7, 128.7 (d, ² $J_{C-P} = 13.1$ Hz, CH), 127.5, 119.6 (d, ³ $J_{C-P} = 5.1$ Hz, CH), 98.8 (d, ² $J_{C-P} = 31.3$ Hz, C), 86.9 (d, ¹ $J_{C-P} = 169.7$ Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 8.53. HRMS (ESI) calcd for $C_{18}H_{13}OPS$ [M+H]⁺: 309.0503; found: 309.0497.

Diphenyl(pyridin-2-ylethynyl)phosphine oxide (3k)

Brown solid (31.5 mg, 52% yield). PE/EA = 1:2, $R_f = 0.20$. Mp = 168-169 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.63 - 8.62 (m, 1H), 7.92 - 7.87 (m, 4H), 7.72 - 7.68(m, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.54 - 7.46 (m, 6H), 7.35 - 7.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 140.7 (d, ⁴ $J_{C-P} = 4.0$ Hz, CH), 136.5, 132.3 (d, ¹ $J_{C-P} = 122.0$ Hz,

CH), 132.5 (d, ${}^{4}J_{C-P} = 3.0$ Hz, CH), 131.7, 131.1 (d, ${}^{3}J_{C-P} = 11.1$ Hz, CH), 128.8 (d, ${}^{2}J_{C-P} = 13.1$ Hz, CH), 124.9, 103.0 (d, ${}^{2}J_{C-P} = 28.3$ Hz, C), 82.2 (d, ${}^{1}J_{C-P} = 163.6$ Hz, C). ${}^{31}P$ NMR (162 MHz, CDCl₃): δ 8.84. HRMS (ESI) calcd for C₁₉H₁₄NOP [M+H]⁺: 304.0891; found: 304.0887.

((4-Pentylphenyl)ethynyl)diphenylphosphine oxide (3l)

yellow oil (27.1 mg, 45% yield). PE/EA = 1:1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃): δ 7.93 - 7.87 (m, 4H), 7.57 - 7.46 (m, 8H), 7.19 (d, J = 8.4Hz, 2H), 2.78 - 2.49 (m, 2H), 1.64 - 1.56 (m, 2H), 1.33 - 1.27 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 133.8, 132.5 (d, ⁴ J_{C-P} = 2.0 Hz, CH), 132.2 (d, ⁴ J_{C-P} = 3.0 Hz, CH), 131.0 (d, ³ J_{C-P} = 11.1 Hz, CH), 128.7 (d, ² J_{C-P} = 14.1 Hz, CH), 117.0 (d, ³ J_{C-P} = 4.0 Hz, CH), 106.1 (d, ² J_{C-P} = 30.3 Hz, C), 82.1 (d, ¹ J_{C-P} = 172.7 Hz, C), 36.0, 31.4, 30.8, 22.5, 14.0. ³¹P NMR (162 MHz, CDCl₃): δ 8.44. HRMS (ESI) calcd for C₂₅H₂₅OP [M+H]⁺: 373.1721; found: 373.1714.

((4-Butylphenyl)ethynyl)diphenylphosphine oxide (3m)

yellow oil (43.0 mg, 60% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (dd, J = 13.8, 8.0 Hz, 4H), 7.56 - 7.46 (m, 8H), 7.18 (d, J = 3.6 Hz, 2H), 2.65 (t, J = 7.7 Hz, 2H), 1.69 - 1.54 (m, 2H), 1.38 - 1.29 (m, 2H), 0.93 - 0.90 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 133.1 (d, ¹ $J_{C-P} = 121.0$ Hz, C), 132.5 (d,

 ${}^{4}J_{C-P}$ = 2.0 Hz, *C*H), 132.2 (d, ${}^{4}J_{C-P}$ = 3.0 Hz, *C*H), 131.0 (d, ${}^{3}J_{C-P}$ = 11.1 Hz, *C*H), 130.1, 128.7 (d, ${}^{2}J_{C-P}$ = 13.1 Hz, *C*H), 128.4, 117.0 (d, ${}^{3}J_{C-P}$ = 4.0 Hz, *C*H), 106.2 (d, ${}^{2}J_{C-P}$ = 30.3 Hz, *C*), 82.1 (d, ${}^{1}J_{C-P}$ = 173.7 Hz, *C*), 35.8, 33.3, 22.3, 13.9. 31 P NMR (162 MHz, CDCl₃): δ 8.41. HRMS (ESI) calcd for C₂₄H₂₃OP [M+H]⁺: 359.1565; found: 359.1558.

([1,1'-Biphenyl]-4-ylethynyl)diphenylphosphine oxide (3n)

yellow oil (28.1 mg, 40% yield). PE/EA = 1:1, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.89 (m, 4H), 7.67 (d, J = 8.4 Hz, 2H), 7.62 - 7.44 (m, 12H), 7.41 - 7.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.7, 133.0 (d, ${}^{1}J_{C-P} = 122.0$ Hz, C), 133.0 (d, ${}^{4}J_{C-P} = 2.0$ Hz, CH), 132.3 (d, ${}^{4}J_{C-P} = 3.0$ Hz, CH), 131.0 (d, ${}^{3}J_{C-P} = 11.1$ Hz, CH), 129.0, 128.7 (d, ${}^{2}J_{C-P} = 13.1$ Hz, CH), 128.2, 127.2 (d, ${}^{3}J_{C-P} = 10.1$ Hz, CH), 118.6 (d, ${}^{3}J_{C-P} = 4.0$ Hz, CH), 105.5 (d, ${}^{2}J_{C-P} = 30.3$ Hz, C), 83.4 (d, ${}^{1}J_{C-P} = 170.7$ Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 8.47. HRMS (ESI) calcd for $C_{26}H_{19}OP$ [M+H]⁺: 379.1252; found: 379.1246.

1-(4-((Diphenylphosphoryl)ethynyl)phenyl)propan-1-one (30)

yellow oil (50.8 mg, 71% yield). PE/EA = 1:1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 8.4 Hz, 2H), 7.92 - 7.86 (m, 4H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 - 7.48 (m, 6H), 4.41 - 4.35 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 131.6 (d, ${}^{1}J_{C-P}$ = 121.0 Hz, C), 132.5 (d, ${}^{4}J_{C-P}$ = 2.0 Hz, CH), 132.0 (d,

 $^{2}J_{C-P} = 14.1 \text{ Hz}$, CH), 131.0 (d, $^{2}J_{C-P} = 11.1 \text{ Hz}$, CH), 129.6, 128.8 (d, $^{3}J_{C-P} = 13.1 \text{ Hz}$, CH), 124.2 (d, $^{3}J_{C-P} = 4.0 \text{ Hz}$, CH), 104.0 (d, $^{2}J_{C-P} = 29.3 \text{ Hz}$, C), 85.4 (d, $^{1}J_{C-P} = 170.7 \text{ Hz}$, C), 61.5, 14.3. ^{31}P NMR (162 MHz, CDCl₃): δ 8.50. HRMS (ESI) calcd for $C_{23}H_{19}O_{2}P$ [M+H]⁺: 359.1195; found: 359.1196.

Bis(4-chlorophenyl)(p-tolylethynyl)phosphine oxide (3p)

yellow oil (31.1 mg, 42% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ 7.84 - 7.77 (m, 4H), 7.59 - 7.57 (m, 2H), 7.49 - 7.45 (m, 5H), 7.39 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 132.6 (d, ⁴ $J_{C-P} = 1.0$ Hz, CH), 132.3 (d, ² $J_{C-P} = 13.1$ Hz, CH), 131.2 (d, ¹ $J_{C-P} = 125.1$ Hz, C), 131.1, 129.2 (d, ² $J_{C-P} = 14.1$ Hz, CH), 128.7, 119.5 (d, ³ $J_{C-P} = 4.0$ Hz, CH), 106.4 (d, ² $J_{C-P} = 31.3$ Hz, C), 81.9 (d, ¹ $J_{C-P} = 175.7$ Hz, C). ³¹P NMR (162 MHz, CDCl₃): δ 6.32. HRMS (ESI) calcd for $C_{20}H_{13}Cl_2OP$ [M+H]⁺: 371.0159; found: 371.0157.

Bis(4-fluorophenyl)(p-tolylethynyl)phosphine oxide (3q)

yellow oil (38.7 mg, 55% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ 7.92 - 7.85 (m, 4H), 7.48 (d, J = 8.1 Hz, 2H), 7.21 - 7.16 (m, 6H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3 (d, ⁴ $J_{C-P} = 4.0$ Hz, d, ¹ $J_{C-F} = 254.5$ Hz, C),

141.7, 133.5 (d, ${}^{3}J_{C-P}$ = 9.1,d, ${}^{2}J_{C-P}$ = 13.1 Hz, C), 132.5 (d, ${}^{4}J_{C-P}$ = 2.0Hz, *C*H), 129.6 (d, ${}^{4}J_{C-P}$ = 3.0 Hz, *C*H), 129.4, 128.4 (d, ${}^{3}J_{C-P}$ = 3.0 Hz, *C*H), 116.5 (d ${}^{3}J_{C-P}$ = 3.0 Hz, *C*H), 116.2 (d, ${}^{2}J_{C-P}$ = 21.2,d, ${}^{2}J_{C-P}$ = 14.1 Hz, C), 106.6 (d, ${}^{2}J_{C-P}$ = 31.3 Hz, *C*), 81.8 (d, ${}^{1}J_{C-P}$ = 176.8 Hz, *C*), 21.8. ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 6.24. ${}^{31}P$ NMR (162 MHz, CDCl₃): δ 8.50. HRMS (ESI) calcd for C₂₁H₁₅F₂OP [M+H]⁺: 353.0907; found: 353.0901.

Di-o-tolyl(p-tolylethynyl)phosphine oxide (3r)

yellow oil (41.3 mg, 60% yield). PE/EA = 1:1, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m , 2H), 7.47- 7.41 (m, 4H), 7.34 - 7.30 (m, 2H), 7.23 - 7.20 (m, 2H), 7.16 (d, J = 7.9 Hz, 2H), 2.41 (s, 6H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6 (d, ⁴ $J_{C-P} = 10.6$ Hz, C), 141.2, 132.8 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 132.6 - 132.1 (m), 131.7 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 130.5 (d, ¹ $J_{C-P} = 122.0$ Hz, C), 129.4, 125.8 (d, ² $J_{C-P} = 13.1$ Hz, CH), 117.1 (d, ⁴ $J_{C-P} = 4.0$ Hz, CH), 105.5 (d, ² $J_{C-P} = 29.3$ Hz, C), 82.5 (d, ¹ $J_{C-P} = 169.7$ Hz, C), 21.8, 21.2 (d, $J_{C-P} = 5.1$ Hz, CH). ³¹P NMR (162 MHz, CDCl₃): δ 8.50. HRMS (ESI) calcd for $C_{23}H_{21}OP$ [M+H]⁺: 345.1408; found: 345.1403.

Ethyl phenyl(phenylethynyl)phosphinate (3s)

yellow oil (29.2 mg, 54% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.92 (m, 2H), 7.59 - 7.48 (m, 5H), 7.45-7.41 (m,1H), 7.37- 7.33 (m, 2H), 4.34 - 4.25 (m, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.8 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 132.6 (d, ⁴ $J_{C-P} = 2.0$ Hz, CH), 131.1 (d, ¹ $J_{C-P} = 166.7$ Hz, C), 131.1 (d, ² $J_{C-P} = 12.1$ Hz, CH), 130.7, 128.7, 128.5 (d, ³ $J_{C-P} = 4.0$ Hz, CH),

119.8 (d, ${}^{3}J_{C-P} = 5.0 \text{ Hz}$, *C*H), 101.6 (d, ${}^{2}J_{C-P} = 39.4 \text{ Hz}$, *C*), 81.7 (d, ${}^{1}J_{C-P} = 217.2 \text{ Hz}$, *C*), 62.4 (d, ${}^{2}J_{C-P} = 6.0 \text{ Hz}$, *C*H), 16.4 (d, ${}^{3}J_{C-P} = 7.0 \text{ Hz}$, *C*H). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 9.78. $C_{16}H_{15}O_{2}P$ [M+H]⁺: 271.0888; found: 271.0892.

(Cyclopropylethynyl)diphenylphosphine oxide (3t)

yellow oil (23.9 mg, 45% yield). PE/EA = 1:1, $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃) δ 8.82 - 7.76 (m, 4H), 7.50 - 7.43 (m, 6H), 1.49 - 1.42 (m, 1H), 0.95 - 0.93 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 133.5 (d, ¹ $J_{C-P} = 121.0$ Hz, C), 132.0 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 130.9 (d, ³ $J_{C-P} = 11.1$ Hz, CH), 128.5 (d, ² $J_{C-P} = 13.1$ Hz, CH), 112.4 (d, ² $J_{C-P} = 31.3$ Hz, C), 69.7 (d, ¹ $J_{C-P} = 177.8$ Hz, C), 9.4 (d, ³ $J_{C-P} = 10.0$ Hz, CH), 0.4 (d, ⁴ $J_{C-P} = 40.0$ Hz, CH), ³¹P NMR (162 MHz, CDCl₃) δ 7.57. HRMS (ESI) calcd for $C_{17}H_{15}$ OP [M+H]⁺: 266.0861; found: 266.0865.

(3,3-dimethylbut-1-yn-1-yl)diphenylphosphine oxide (3u)

white solid (25.3 mg, 45% yield). PE/EA = 1:1, R_f = 0.35. Mp = 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 13.8, 7.7 Hz, 4H), 7.54 - 7.43 (m, 6H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 133.6 (d, ¹ J_{C-P} = 121.0 Hz, C), 133.0, 132.0 (d, ⁴ J_{C-P} = 2.0 Hz, C), 130.8 (d, ³ J_{C-P} = 11.1 Hz, CH), 128.5 (d, ² J_{C-P} = 13.1 Hz, CH), 116.8 (d, ² J_{C-P} = 30.3 Hz, C), 73.1 (d, ¹ J_{C-P} = 175.7 Hz, C), 30.0 (d, ⁴ J_{C-P} = 2.0 Hz, CH), 28.5 (d, ³ J_{C-P} = 3.0 Hz, CH). ³¹P NMR (162 MHz, CDCl₃) δ 7.68. C₁₈H₁₉OP [M+H]⁺: 283.1252; found: 283.1256.

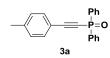
Ethyl 3-(diphenylphosphoryl)propiolate (3v)

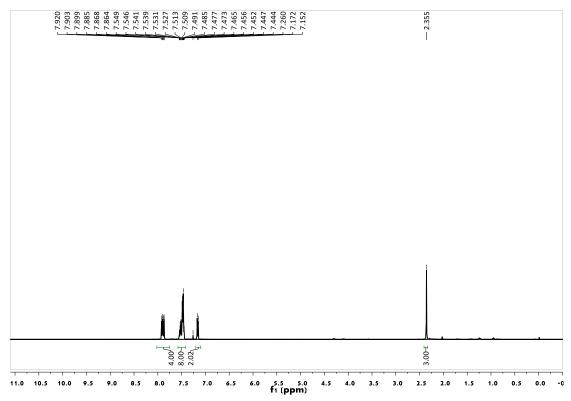
yellow oil (35.8 mg, 60% yield). PE/EA = 1:1, $R_f = 0.35^{-1}H$ NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 14.1, 8.0 Hz, 4H), 7.61 – 7.49 (m, 6H), 4.28 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8 (d, ⁴ $J_{C-P} = 4.0$ Hz, CH), 133.0 (d, ⁴ $J_{C-P} = 3.0$ Hz, CH), 131.0 (d, ¹ $J_{C-P} = 123.2$ Hz, C), 131.1 (d, ³ $J_{C-P} = 12.1$ Hz, CH), 128.9 (d, ² $J_{C-P} = 13.1$ Hz, CH), 92.8 (d, ² $J_{C-P} = 23.2$ Hz, CH),79.3 (d, ¹ $J_{C-P} = 146.5$ Hz, C), 63.2, 13.9.³¹P NMR (162 MHz, CDCl₃) δ 9.02. C₁₇H₁₅O₃P [M+H]⁺: 299.0837; found: 299.0842.

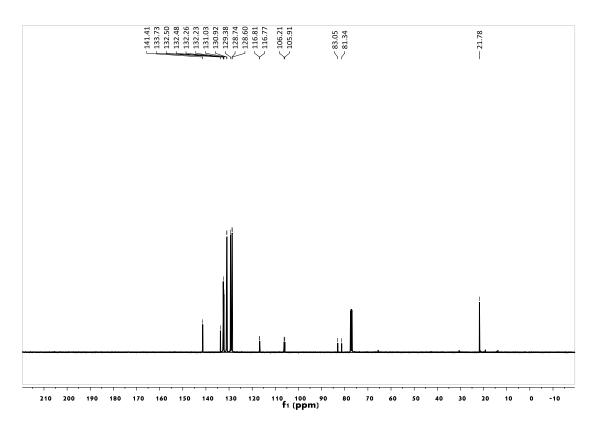
Procedure for the Synthesis of Phenylacetylene Silver²

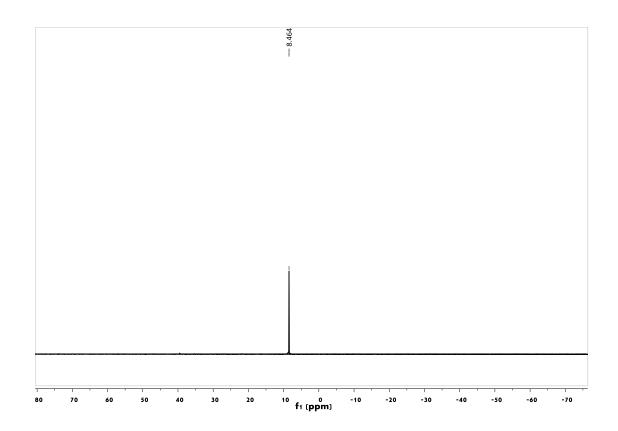
To a solution of 1-trimethylsilyl-2-phenylacetylene (5 mmol) in 20 mL methanol ($H_2O:MeOH=1:3$), was added silver nitrate (5 mmol) at room temperature. The starting materials rapidly disappeared and a white precipitate formed within 5 - 15 min. This solid was recovered by filtration and washed with cold methanol (stored at 0 °C). Subsequent drying led to the phenylacetylene silver as a white powder.

Procedure for the Synthesis of (diphenylphosphoryl)silver³

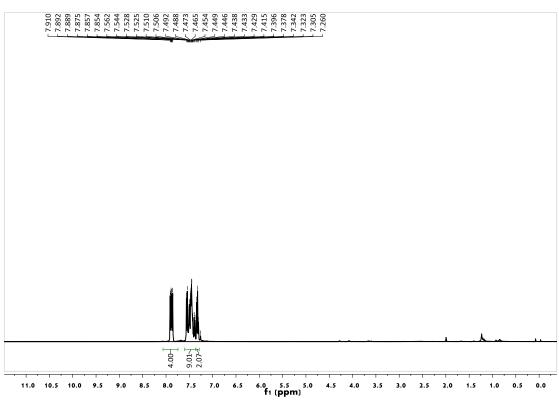

To a stirred solution (The solution pH = 2.90) of HP(O)Ph₂ (404 mg, 2.0 mmol) in H₂O (20 mL) were added AgNO₃(340 mg, 2.0 mmol). The mixture was allowed to stir at room temperature for 2 hours. The reaction mixture pH = 1.45. The silver salt was filtered off. The acidity was increased, which indicates that HNO₃ was generated. (pH were mearsured using METTLE TOLEDOFE20-FiveEasyTM pH)

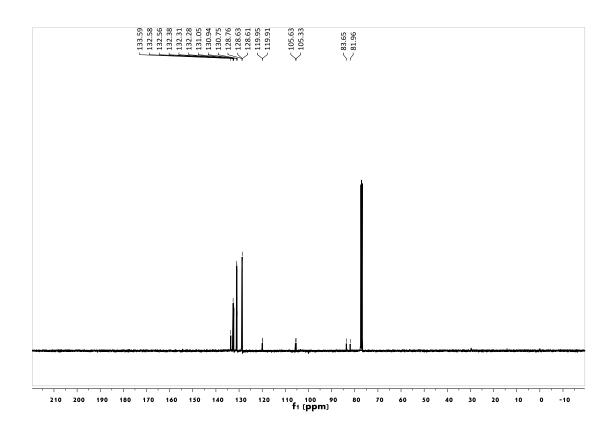

General Procedures for the Ag₂CO₃ Recovery Experiment:

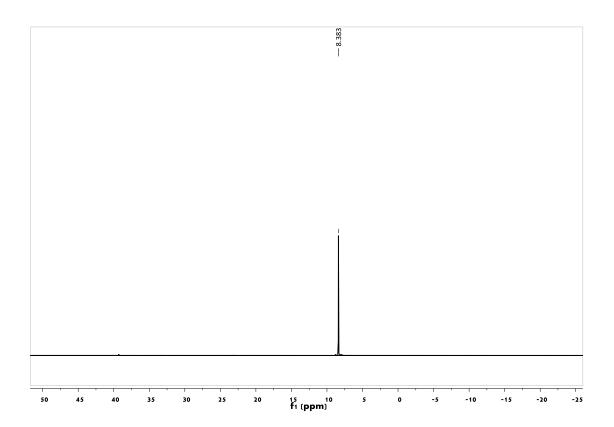

A mixture of diphenylphosphine oxide 2a (0.2 mmol) and Silver carbonate (0.4 mmol, 110 mg), 1-ethynyl-4-methylbenzene 1a (0.3 mmol) in DMSO (3 mL) was stirred in N₂ at 120 °C for 15 h. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. Then the residue was washed with CH₂Cl₂ (3 × 5 mL) and the solid was dissolved in 25 mL HNO₃ (10%, v/v in H₂O). After stirring for 1 h, the reaction mixture was filtered. To the filtrate was added Na₂CO₃ (10%, v/v in H₂O, 25 mL). The suspension was filtered and the solid residue washed with water (3 × 5 mL) to afford 82.5 mg Ag₂CO₃ (yield 75%) as a green powder.

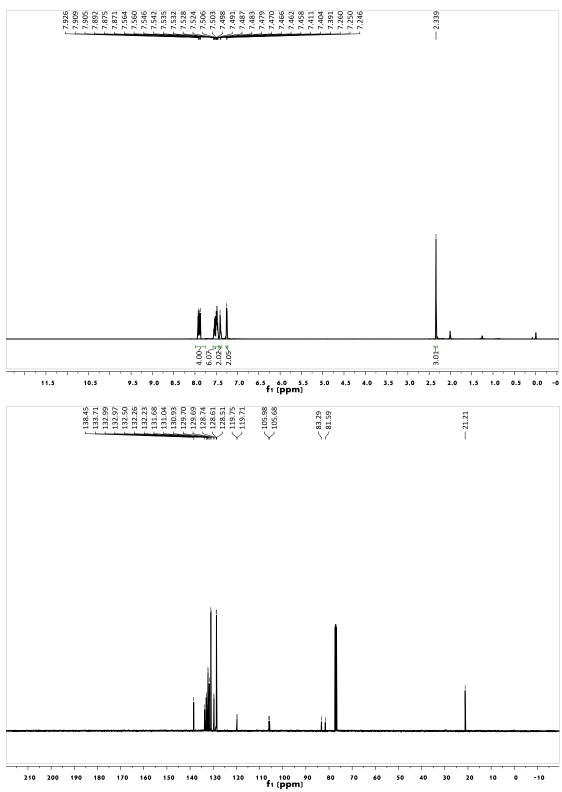

Reference:

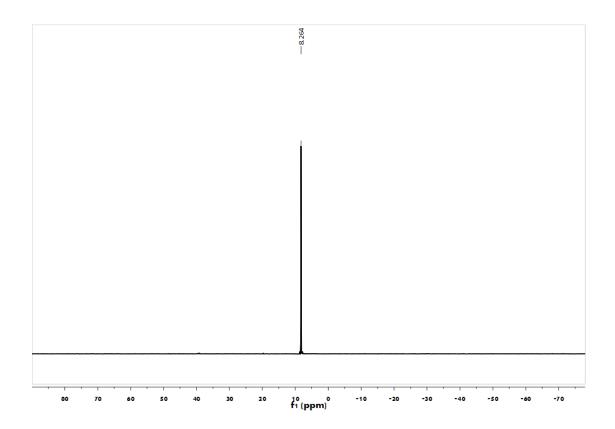
- J. Hu, N. Zhao, B. Yang, G. Wang, L.-N. Guo, Y.-M. Liang and S.-D. Yang, *Chem-Eur. J.*, 2011, 17, 5516-5521.
- 2. A. Viterisi, A. Orsini, J. M. Weibel and P. Pale, Tetrahedron Lett., 2006, 47, 2779-2781.
- 3. Y.-M. Li, M. Sun, H. L. Wang, Q. P. Tian and S.-D. Yang, *Angew. Chem. Int. Ed.*, 2013, **52**, 3972-3976.

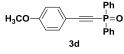


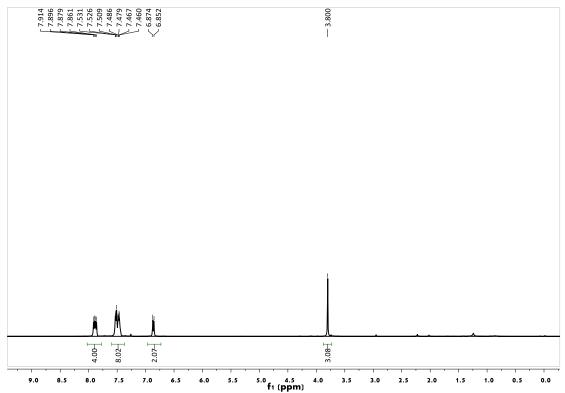


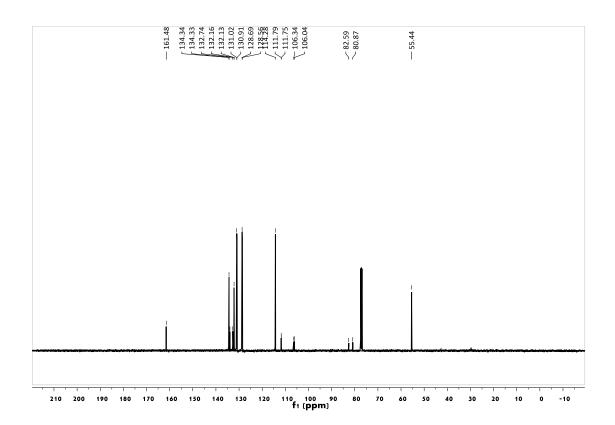


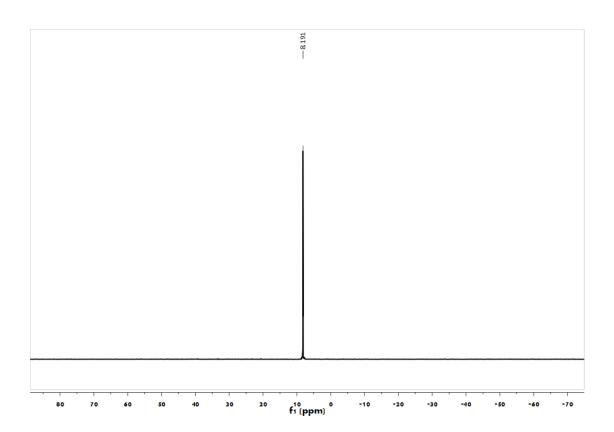


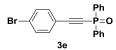


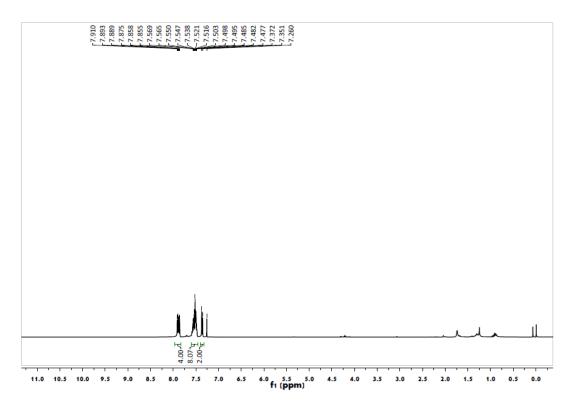


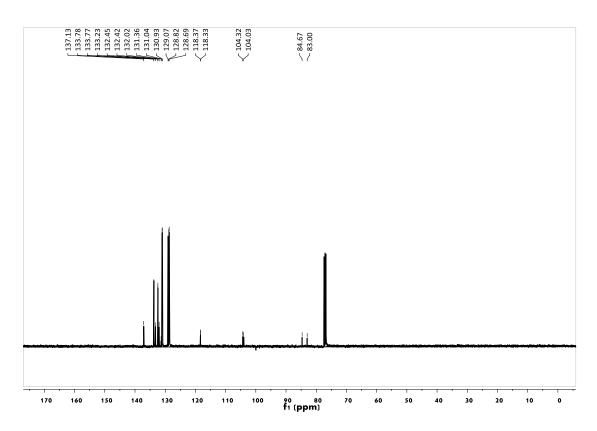


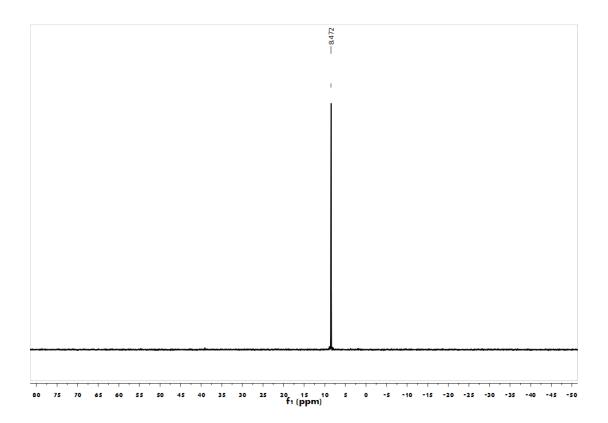


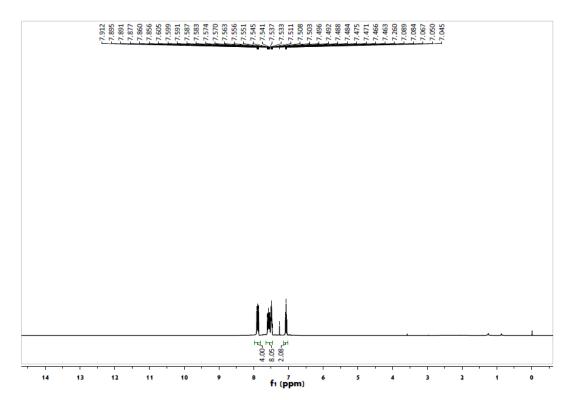


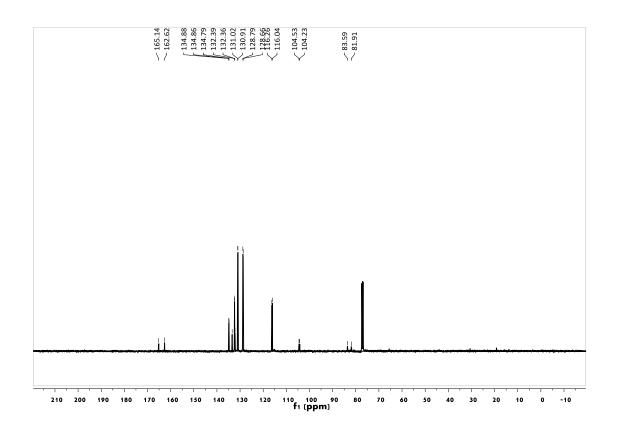


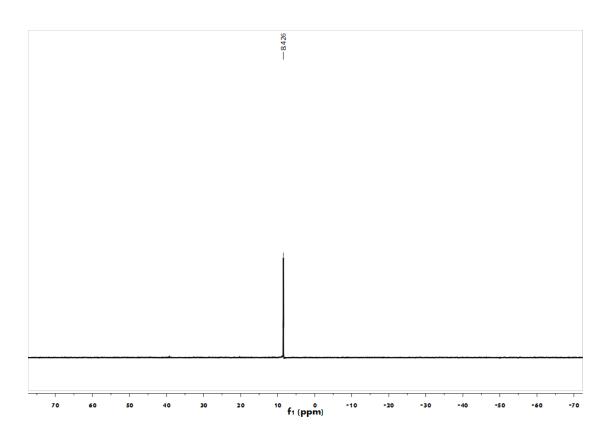


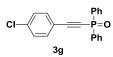


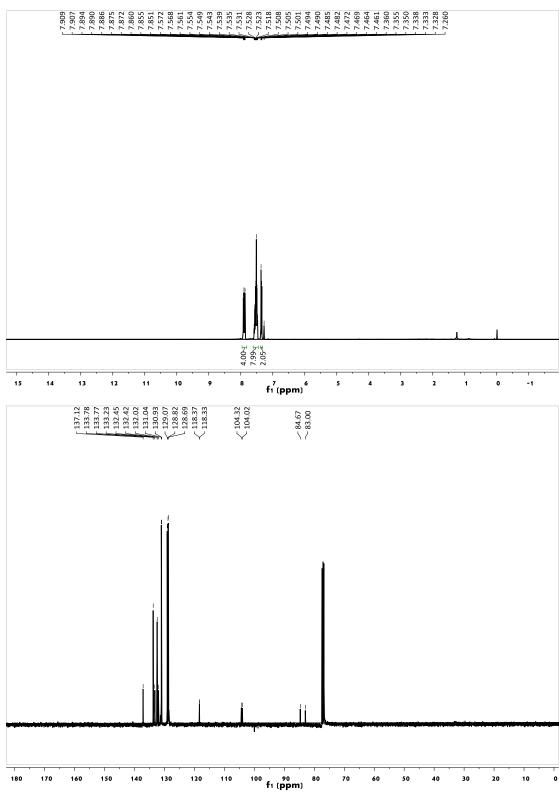


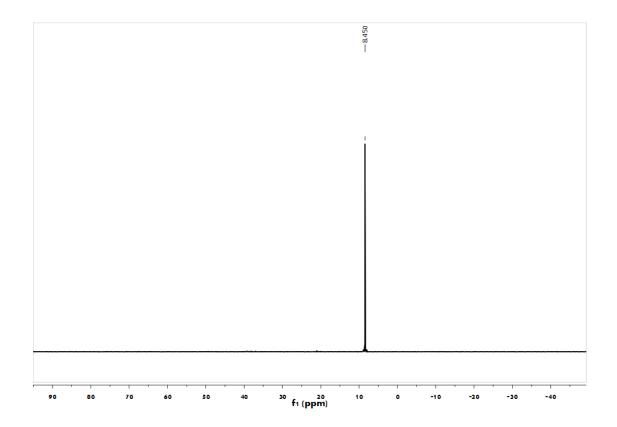


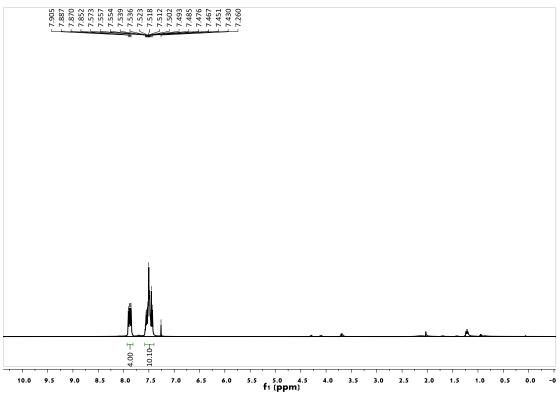


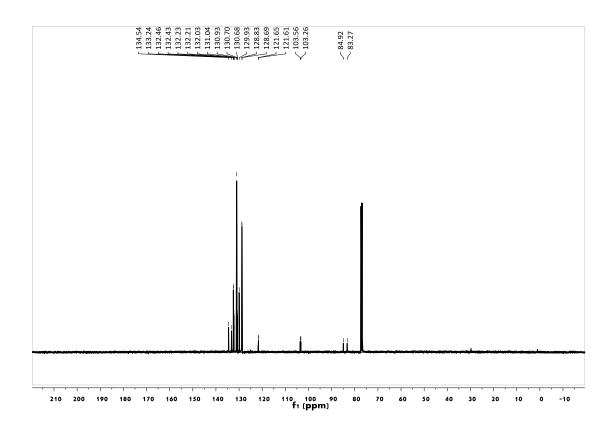


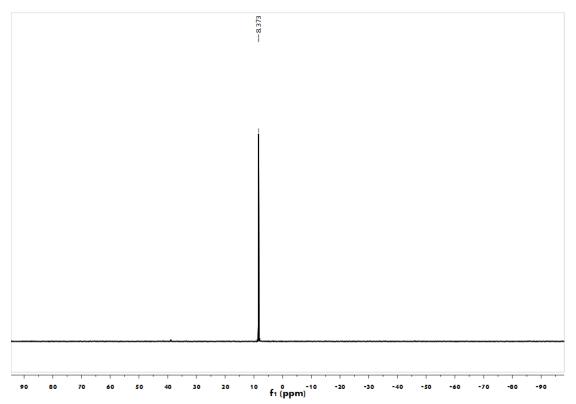


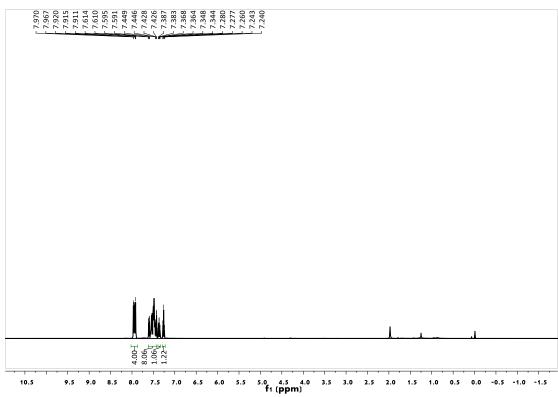


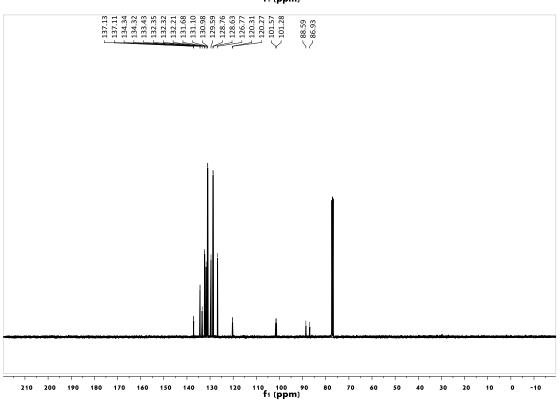


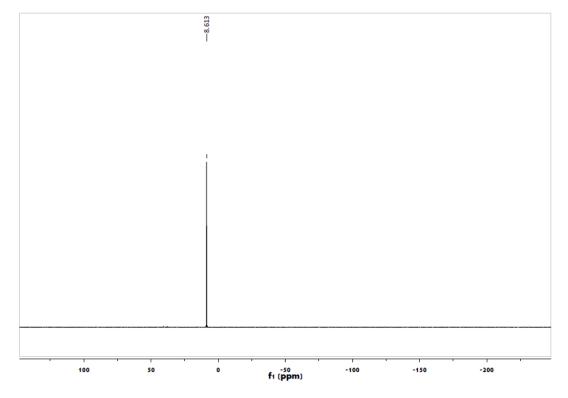


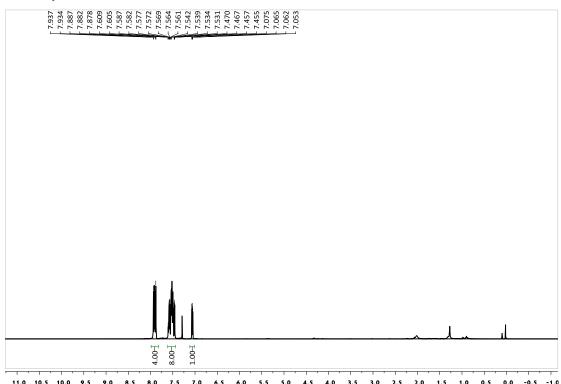


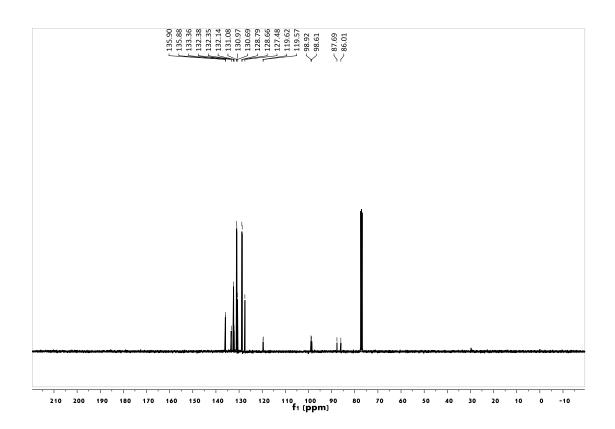


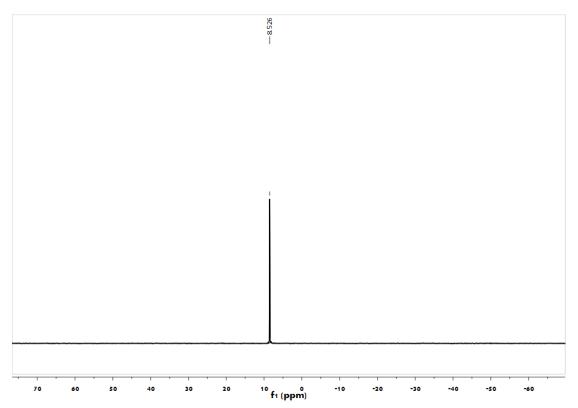


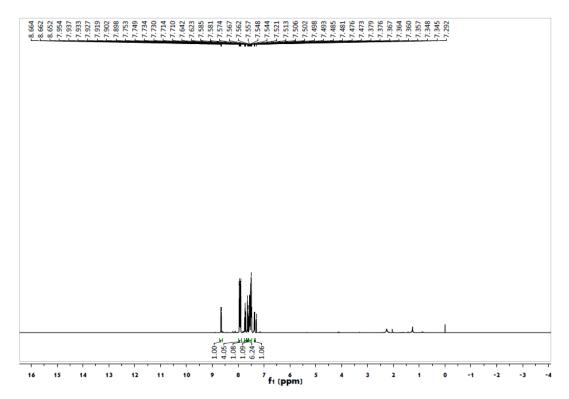


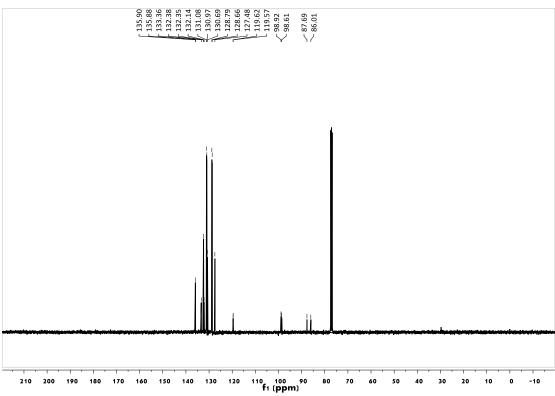


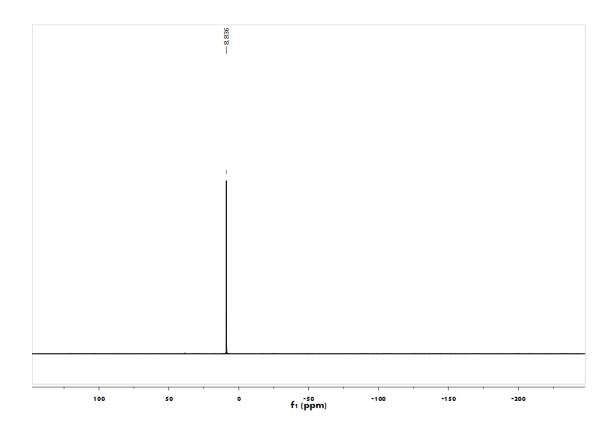


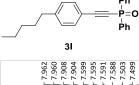


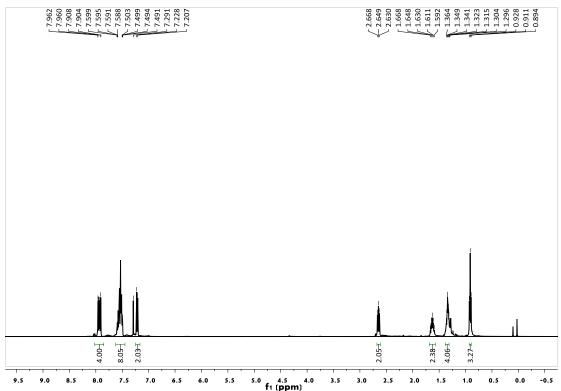


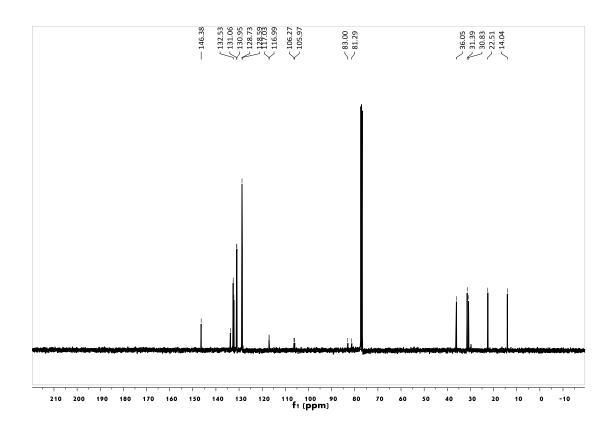

3j

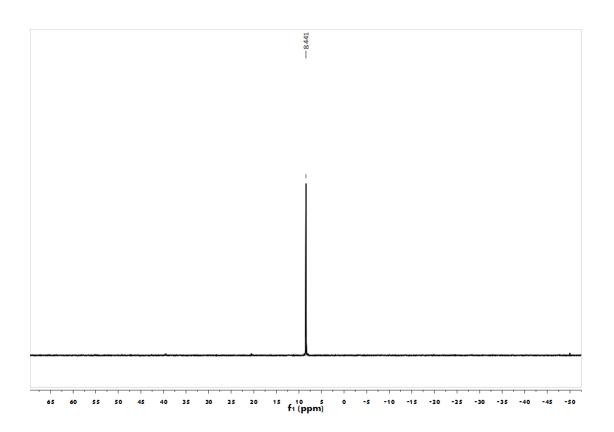


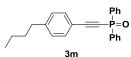


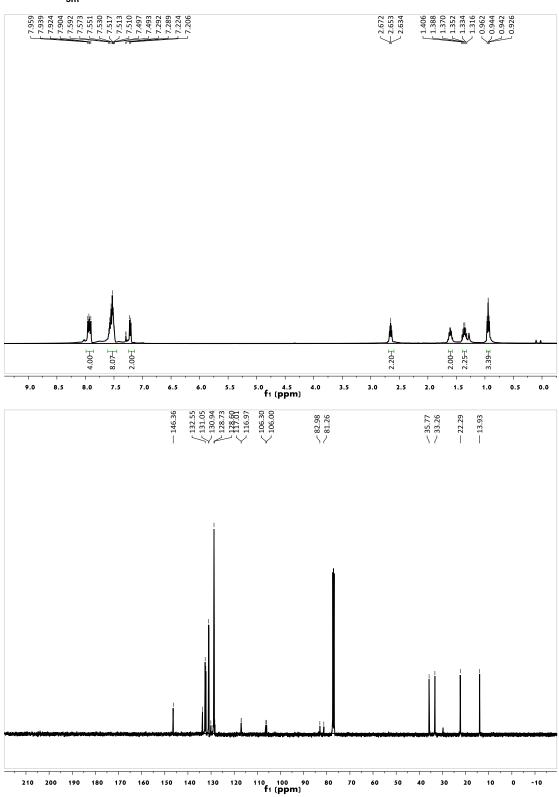


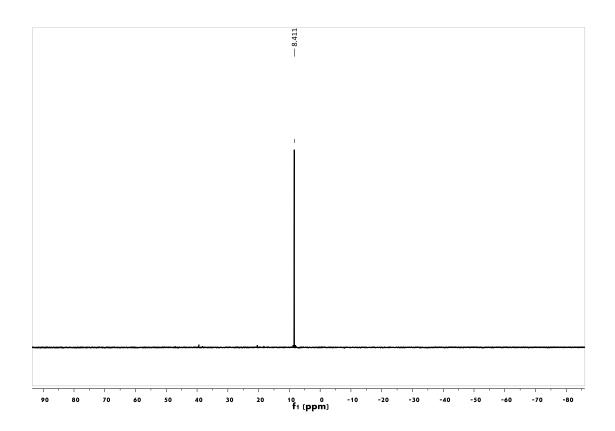

$$\begin{array}{c}
 & \stackrel{\text{Ph}}{=} \\
 & \stackrel{\text{P}}{=} \\
 & \stackrel{\text{Ph}}{=} \\$$

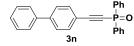


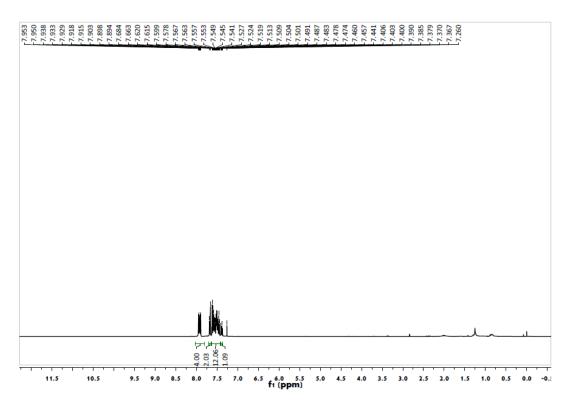


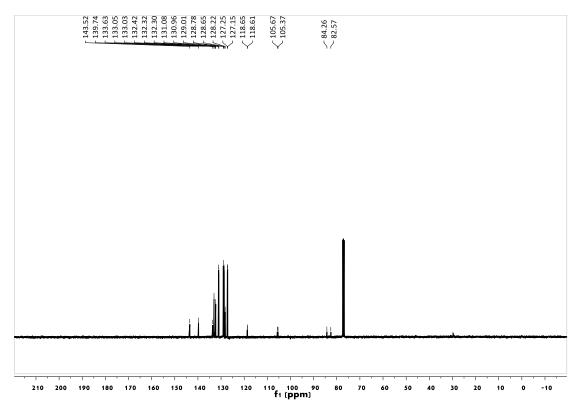




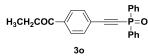


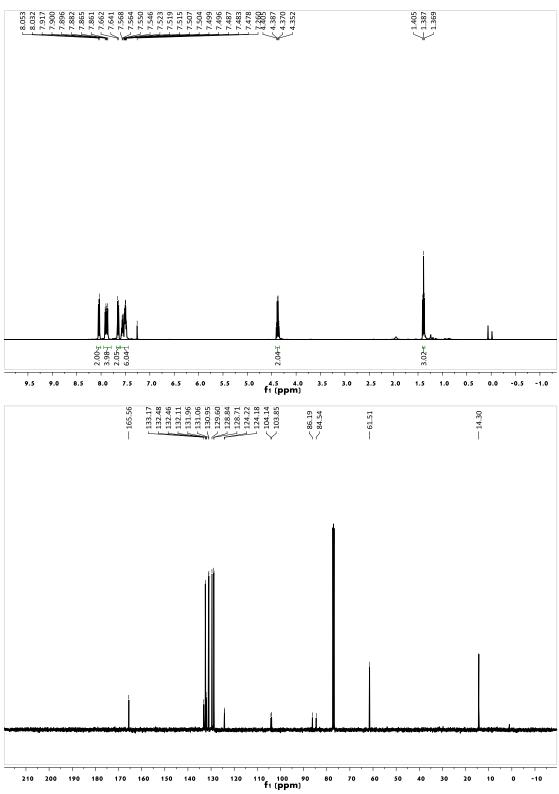


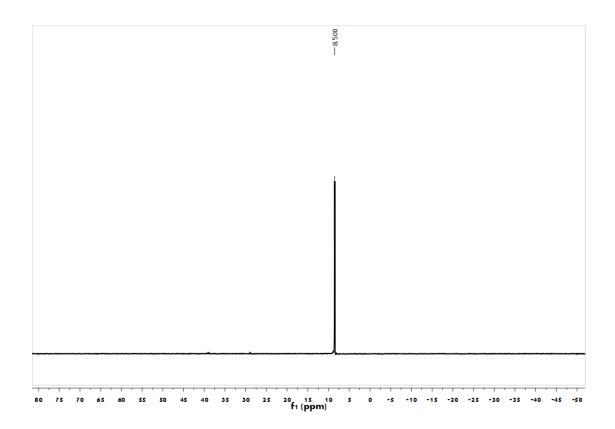


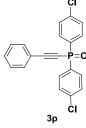


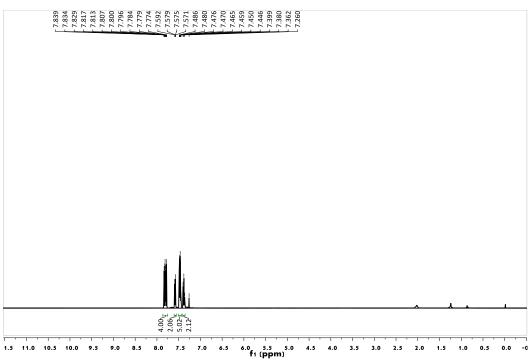


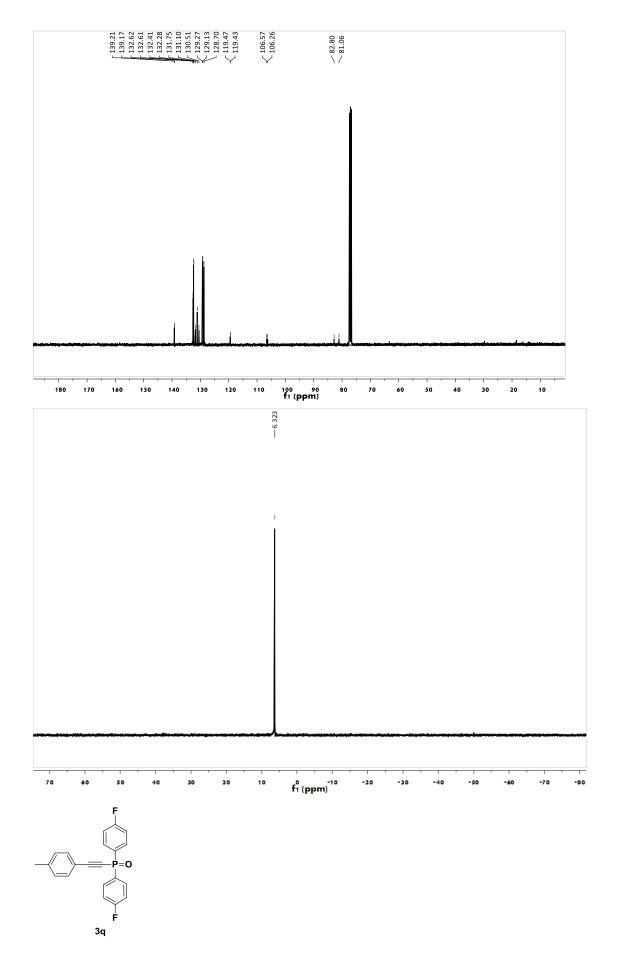


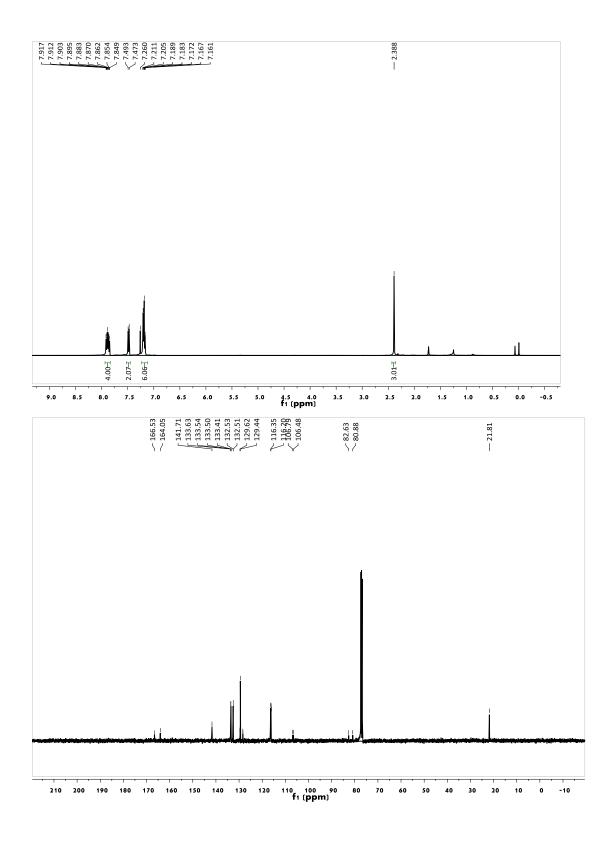


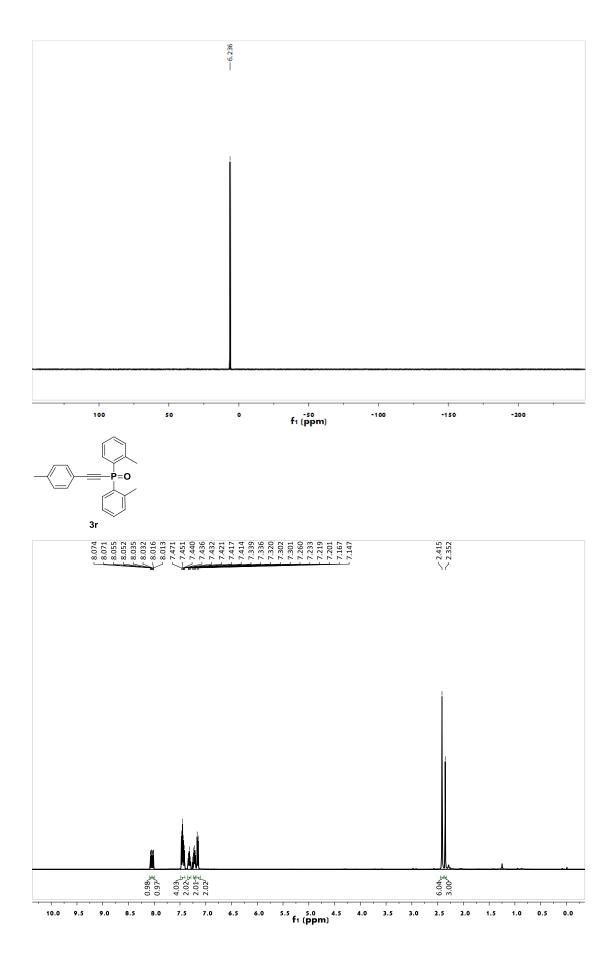


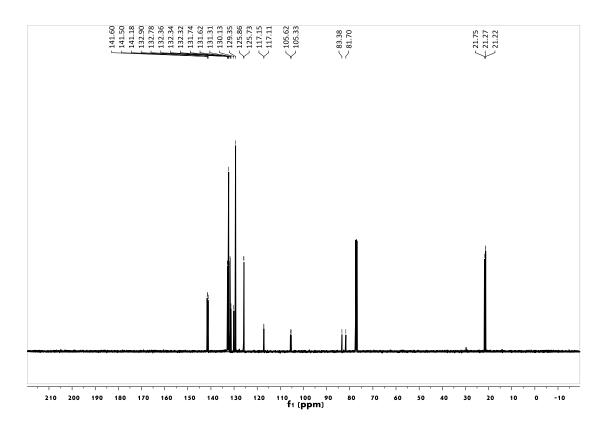


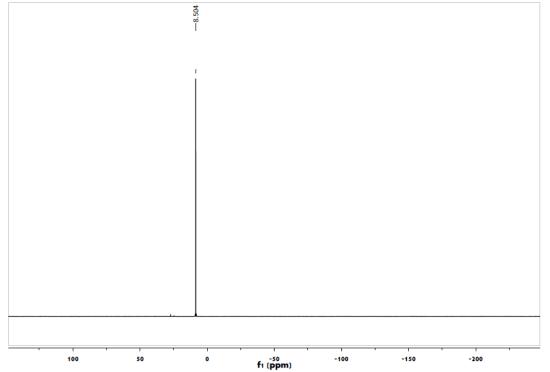


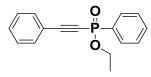


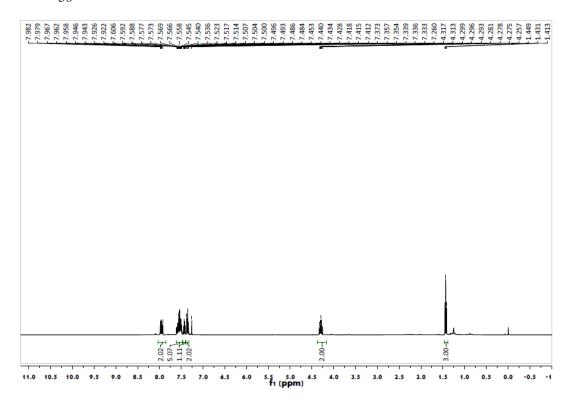


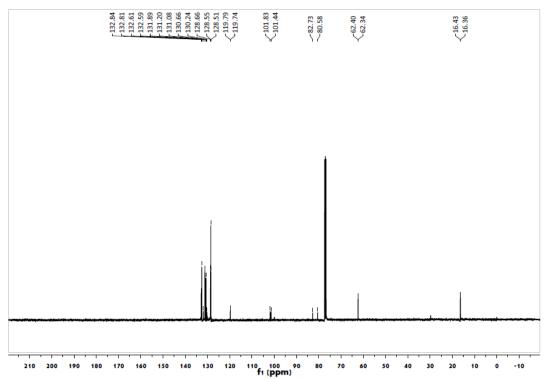


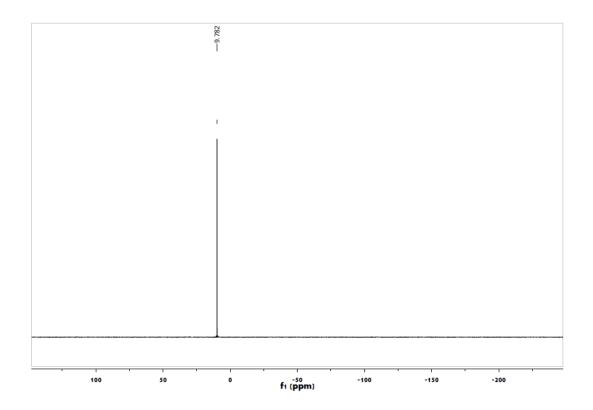


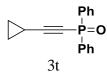


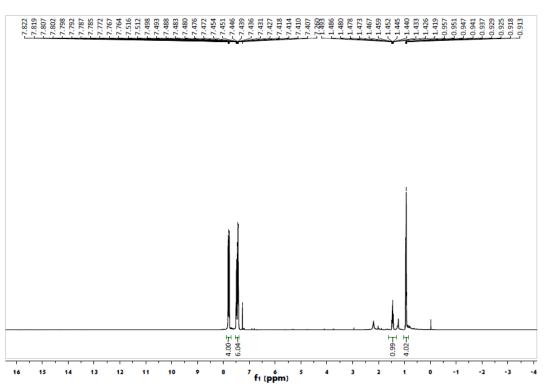











3s

