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Table S1. Experimental SLE data for the GlyGly—Copper(Il) acetate system; where, weight of the
reactants= x, temperature= 7, and pressure= p ( 0.1 MPa)*

Mole fraction Weight of Copper (II) Weight of GlyGly T/°C Solid Phases
of Cu(Il) acetate acetate (in gm) (in gm)

0 0.0000 0.0132 264 GlyGly

0.1 0.0018 0.0119 236 GlyGly

0.2 0.0036 0.0106 204 AB

0.3 0.0054 0.0092 212 AB

0.4 0.0073 0.0079 212 AB

0.5 0.0091 0.0066 208 AB

0.6 0.0110 0.0053 196 AB

0.7 0.0127 0.0040 160 AB

0.8 0.0145 0.0026 110 AB

0.9 0.0163 0.0013 115 Cu(Il)acetate
1 0.0182 0.0000 120 Cu(Il)acetate

“Standard uncertainties u are u(T) = 1.0 °C, u(x) = 0.0005 gm, u(p) = 0.5 kPa; "AB represents the
compound formed.

Table S2. Kinetic parameters for the solid-phase interactions of GlyGly and Cu(II) acetate
at temperature= T, and pressure= p ( 0.1 MPa)“

T/K k(cm/h) n
353 (4042 = 0.01) 0.197 £ 0.01
363 (3.121 £ 0.02) 0.172 £ 0.01
373 (2.455+0.01) 0.155 £ 0.01

k= apparent rate constant, n= another constant, “Standard uncertainties u are u(7) = 0.2 K,
u(p) = 0.5 kPa;



Table S3. B3LYP/6-311++G(d,p) level calculated data on ZPVE values, total electronic energies®,

Gibbs free energies as well as ZPVE corrected values (scaled with 0.9877) of total electronic

energies (E.,) and Gibbs free energies (G,,) of the systems studied in gas and aqueous phase.

Systems Phases ZPVE Total Energy  Gibbs Energy  E.,. Geomr
(E) G)
C5-GlyGly Aqueous  0.137153 -492.617972  -492.516565 -492.482506 -492.381099
GlyGly Aqueous  0.137084 -492.615344  -492.513307 -492.4799448  -492.377909
Gas 0.135990 -492.595268  -492.494561 -492.4609507  -492.360244
B-GlyGly Aqueous  0.137305 -492.613935  -492.513165 -492.4783184  -492.377549
Ni(GlyGly), Aqueous  0.254975 -2492.405353  -2492.199223  -2492.153514  -2491.947384
Gas 0.255395 -2492.364988  -2492.157668  -2492.112735  -2491.905414
Ni(GlyGly),  Aqueous 0.252866 -2492.387588  -2492.186205 -2492.137832  -2491.936449
Cu(GlyGly), Aqueous  0.254059 -2624.584579  -2624.380303  -2624.333645  -2624.129369
Gas 0.253741 -2624.545441 -2624.271967 -2624.294821 -2624.091578
*Cu(GlyGly), Aqueous 0.261286 -2623.950162 -2623.738905 -2623.692090 -2623.480833
Gas 0.264645 -2623.889023 -2623.673811  -2623.627633  -2623.412421
Zn(GlyGly), Aqueous  0.253887 -2763.478965 -2763.275312  -2763.228200 -2763.024548
Gas 0.254404 -2763.433159 -2763.227107 -2763.181884  -2762.975832

“Energies in Hartrees; ‘Triplet; *BHandHLYP



Table S4. NPA charges calculated at B3LYP/6-311++G(d,p) level for some of the chemically significant atoms in the metal complexes.

Gas phase values are given in parentheses.

Atoms GlyGly Ni(GlyGly), Cu(GlyGly), *Cu(GlyGly), Zn(GlyGly),
M e 1.072 (1.055) 1.343 (1.334) 1.272 (1.243) 1.650 (1.644)
Ne -0.724 (-0.871) -0.808 (-0.814) -0.879 (-0.877) -0.879 (-0.882) -0.968 (-0.959)
O -0.830 (-0.700) -0.832 (-0.834) -0.878 (-0.879) -0.881 (-0.888) -0.928 (-0.941)
Ci 0.789 (0.785) 0.808 (0.795) 0.811 (0.792) 0.872 (0.864) 0.807 (0.787)
C, -0.300 (-0.300) -0.293 (-0.285) -0.292 (-0.284) -0.267 (-0.260) -0.301 (-0.283)
Os -0.780 (-0.575) -0.707 (-0.653) -0.721 (-0.663) -0.753 (-0.706) -0.733 (-0.663)
H, (NH>) 0.450 (0.371) 0.419 (0.383) 0.420 (0.382) 0.407 (0.385) 0.428 (0.422)
Hy (NHy) 0.447 (0.373) 0.420 (0.431) 0.422 (0.433) 0.425 (0.439) 0.424 (0.417)
N; -0.625 (-0.650) -0.634 (-0.633) -0.626 (-0.626) -0.642 (-0.648) -0.611 (-0.610)
Cy 0.668 (0.668) 0.679 (0.670) 0.676 (0.662) 0.735 (0.725) 0.666 (-0.671)
Cs -0.250 (-0.259) -0.262 (-0.260) -0.262 (-0.258) -0.230 (-0.232) -0.257 (-0.247)

aM=Ni2+, Cu’' or Zn2+; Atomic charges in a. u; *Calculated at BHandHLYP/6-311++G(d,p) level



Table S5. Calculated bond lengths (in angstrom) and bond indices of some structurally significant
bonds for GlyGly and its metal complexes in gas and aqueous phase at B3LYP/6-311++G(d,p) level

(gas phase values are given in parentheses)

Systems GlyGly Ni(GlylGly),  Cu(GlyGly), Zn(GlyGly), “Ni(GlylGly),
C,C, 1.559 (1.541)  1.549 (1.548)  1.549 (1.549) 1.549 (1.552)  1.547
C,N; 1.457 (1.450)  1.460 (1.464)  1.459 (1.464) 1450 (1.466)  1.451
N3-Cy 1.359(1.375)  1.366(1.380)  1.360 (1.373) 1350 (1.361)  1.353
N;-H; 1.011(1.010)  1.011(1.011)  1.010(1.010) 1.010(1.010)  1.017
C4=0, 1.224(1216)  1.226(1.214)  1.228(1.218) 1234 (1.226)  1.232
CyCs 1.530(1.528)  1.527(1.533)  1.525(1.531) 1.524(1.529)  1.524
Cs-Njg 1.512(1.480)  1.503 (1.505)  1.499 (1.497) 1499 (1.488)  1.493
C-0; 1273 (1.346)  1.297(1.304)  1.293 (1.300) 1.286(1.302)  1.296
C-Oy 1.243(1.201)  1.229(1.224)  1.232(1.226) 1.233(1.222) 1231
Ne-H, 1.020 (1.014)  1.018(1.017)  1.017 (1.016) 1.017(1.022)  1.024
M-0; e 1.883 (1.868)  1.953 (1.936); *1.948 (1.919)  1.969(1.932)  1.907
M-Ng 1.975(1.979)  2.077 (2.086); *2.070 (2.083)  2.147 (2.149)  1.969
FM-0; e 0.301 (0.322)  0.165 (0.178); *0.256 (0.275)  0.133 (0.152) -
FAMNg  oeoee 0.365(0.352)  0.198 (0.183); *0.241 (0.233)  0.156 (0.136)  —-emv

*Calculated using BHandHLYP/6-311++G(d,p) method; **bond indices; "Ni(GlylGly),=water complex



Table S6. Calculated bond angles (in degrees) for GlyGly and its metal complexes in gas and

aqueous phase at B3LYP/6-311++G(d,p) level (gas phase values are given in parentheses)

Bond GlyGly Ni(GlyGly), Cu(GlyGly), Zn(GlyGly),  “Ni(GlylGly),
Angles

C-C,-N; 1123 (1147) 1103 (109.9) 110.6(110.4) 114.9(1102) 1123
HyNy—Cs 1160 (116.7) 115.7(114.1) 116.5(115.3) 117.8(115.1) 11638
Ni—C—Cs  113.9(113.4) 116.8(117.0) 117.0 (117.2) 1148 (117.5) 114.6
04 C4Cs 121.2(122.6) 120.8(120.4) 120.4(120.1) 121.3(119.2) 121.9
CiCsNe 1048(1052) 1103 (111.4) 1084 (108.8) 107.1(105.7) 1088
C-C=0;, 117.9(118.1) 113.7(112.7) 1145(113.7) 1193 (113.7) 1187
0sC1-0; 1264 (121.4) 125.7(125.6) 125.5(125.7) 124.4(1263) 1238
Cr-C1—0s  115.7(120.6) 120.6 (121.7) 120.0 (120.6) 1164 (119.9) 117.4
H-NeCs 111.7(111.7) 109.8 (110.1) 109.6(110.3) 109.6 (112.1)  109.3
HyNeCs 110.8(110.2) 107.8 (108.3) 109.8 (111.3) 110.5(110.3)  108.7
H,NeH, 107.3(107.1) 107.0(108.0) 106.5(106.9) 106.0(106.1)  107.1

“Ni(GlylGly),=water complex



Table S7. DNA binding-affinities* of the three metal-GlyGly complexes

System Single point energies at UFF level (kcal/mol) FERinding-atfinity (kcal/mol)
DNA -9082.96611048

Ni(GlyGly), -147.29328388

Zn(GlyGly), -141.62183126

Cu(GlyGly), -157.72699825

DNA-Ni(GlyGly), -9733.17368358 -502.914
DNA-Zn(GlyGly), -9413.11386072 -188.526
DNA-Cu(GlyGly), -9258.56574555 -17.873

*The theoretical DNA binding-affinity order of the three metal-GlyGly complexes were determined
by performing single point energy calculations at UFF level' inbuilt in ARGUSLAB 4.0.1 program’
on the molecular geometries of the highest ranking docked poses of the Ni(GlyGly),, Zn(GlyGly),
and Cu(GlyGly), with the classical d(CGCGAATTCGCG), B-DNA sequence, aqueous phase
optimized structures of the three metallic complexes of GlyGly (Gaussian 09 program) and the
d(CGCGAATTCGCG), B-DNA sequence generated by AVOGADRO 1.1.1 package. The DNA

binding-affinities were calculated using the equation (S1) below:

EBinding-afﬁnity = EDocked pose ~ (EDNA + EMetal—dipeptide complex) (Sl)



Figure S1. Experimental UV-vis spectrum of CT-DNA in aqueous phase
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Figure S2. The 3D plots of HOMO and LUMO of GlyGly and its complexes in aqueous phase
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Figure S3. Experimental FT-IR spectra for GlyGly and its metal complexes

Experimental FT-IR spectrum for GlyGly in Solid state
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Figure S3. Continued

Experimental FT-IR spectrum for Ni(GlyGly), complex (Co-precipitation technique)
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Figure S3. Continued

Experimental FT-IR spectrum for Cu(GlyGly), complex (Co-precipitation technique)
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Figure S3. Continued

Experimental FT-IR spectrum for Zn(GlyGly), complex (Co-precipitation technique)
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Figure S4. Theoretical IR spectra for GlyGly and its metal complexes in gas and in aqueous phases
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Figure S5. Theoretical UV-vis spectra of GlyGly and its metal complexes in gas and aqueous phase
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Figure S6. Mass spectra of the metal complexes prepared by solid state technique

Mass spectrum of Ni(GlyGly), in DMSO solution
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Figure S6. Continued........

Mass spectrum of Zn(GlyGly), in DMSO solution
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Figure S7. Experimental TG/DTA curves of the metal complexes prepared in solid state

TG/DTA curve for Ni(GlyGly), (Solid state technique)
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Figure S7. Continued........

TG/DTA curve for Zn(GlyGly), (Solid state technique)
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