Supporting Information

Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China

Ting Ruan¹, Yongfeng Lin¹, Thanh Wang², Runzeng Liu¹, Guibin Jiang¹*

¹State Key Laboratory of Environmental Chemistry and Ecotoxicology,

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

Beijing, 100085

²Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro,

Sweden

*Corresponding author

Prof. Guibin Jiang

Research Center for Eco-Environmental Sciences,

Chinese Academy of Sciences

Tel: 8610-6284-9334

Fax: 8610-6284-9179

E-mail: gbjiang@rcees.ac.cn

Experimental:

Laboratory-purification of the 6:2 Cl-PFAES and 8:2 Cl-PFAES standards from the commercial F-53B mist suppressant product.

Figure and Tables:

- **Table S1.** Detailed information on the wastewater treatment plant characteristics.
- **Table S2.** Measured accurate mass and corresponding theoretical mass of the molecular ion and characteristic fragmentation ion for each PFAES analogues in the sludge samples by liquid chromatography-high resolution mass spectrometry.
- **Table S3.** LC-MS/MS instrument parameters and method quantification limits for the separation and quantification of the target analytes.
- **Table S4.** Details of the "fragment constant" methodology in the KOWWIN model (PFOS as negative sulfonate ion), which clearly illustrate the contributions of the functional groups in the molecular structure to the total hydrophobic property of the target chemical.
- **Table S5.** Details of the "fragment constant" methodology in the KOWWIN model (6:2 Cl-PFAES as negative sulfonate ion), which clearly illustrate the contributions of the functional groups in the molecular structure to the total hydrophobic property of the target chemical.
- **Figure S1.** Sampling locations, spatial concentrations and composition profiles of Cl-PFAES homologues in municipal sewage sludge samples in China (mean concentration values of each analyte were present for WWTP samples collected in the same provinces/municipalities).
- **Figure S2.** MS² characteristic fragmentation ions of the 6:2 Cl-PFAES standard in the HCD mode (collision energy: 35%, spiked at 20 ng/mL).
- **Figure S3.** Instrument responses (n = 3) of $[M(^{35}Cl)]^{-}$ molecular ions for 6:2 and 8:2 Cl-PFAESs in the HRMS full scan spectrum at spiked calibration concentrations (0.1–10 ng/mL).
- **Figure S4.** The score plots (PC1 versus PC2) of fluoroalkyl sulfonate concentrations (log-transformed data of PFOS, 6:2 FTS, 8:2 FTS, 6:2 Cl-PFAES and 8:2 Cl-PFAES, analytes with detection ratio less than 70% in the sludge samples were not taken into account) in the sewage sludge samples grouped by WWTP treatment techniques

(AAO, anaerobic-anoxic-oxic; AO, anoxic/oxic; OD, oxidation ditch; SBR, sequencing batch reactor) for further visualization of potential relationships from the principal component analysis (varimax rotation method, statistical significant level set as p < 0.05).

Figure S5. Separation and collection of the eluate fractions of the 6:2 and 8:2 Cl-PFAES in the Autopurification system. (A). Retention behavior of 8:2 Cl-PFAES in the LC column. (B). Retention behavior of 6:2 Cl-PFAES in the LC column. (C). Fraction collection window for each analyte in the purification cycles.

Figure S6. Detailed ¹⁹F-NMR result of the laboratory-purified 6:2 Cl-PFAES standard.

Figure S7. Detailed ¹²C-NMR result of the laboratory-purified 6:2 Cl-PFAES standard.

Figure S8. Detailed information on the purity of the 6:2 Cl-PFAES standard based on the LC-ELSD method.

Figure S9. Detailed ¹⁹F-NMR result of the laboratory-purified 8:2 Cl-PFAES standard.

Figure S10. Detailed ¹²C-NMRresult of the laboratory-purified 8:2 Cl-PFAES standard.

Figure S11. Detailed information on the purity of the 8:2 Cl-PFAES standard based on the LC-ELSD method.

Experimental

Laboratory-purification of the 6:2 Cl-PFAES and 8:2 Cl-PFAES standards from the commercial F-53B mist suppressant product.

Purification of the 6:2 Cl-PFAES and 8:2 Cl-PFAES analytical standards from the commercial F-53B product (with 6:2 Cl-PFAES content of 77.6%) was performed on an Waters Autopurification HPLC/MS System (Waters Inc., Milford, MA), including a System Fluids Organizer, a 2545 Binary Gradient Module, a 2767 Sample Manager, a 515 Makeup Pump and an ACQUITY SQD single-quadrupole MS detector. An XBridge C18 column (Waters, 19 mm i.d. × 250 mm length, 5 μm) was chosen for the analyte separation. Flow gradient initiated at a composition of 30:70 (acetonitrile/water,v/v, both containing 1 g/L ammonium bicarbonate additive) with a flow rate of 20 mL/min and then linearly increased to 80% acetonitrile in 15 min. Product solution was prepared at 100 mg/mL, and 500 µL was injected in each separation cycle. The single-quadrupole MS detector was used to direct the fraction collection. Analyte eluates with the retention time in the range of 8.3–11.3 min and 12.8-13.8 min were confirmed and collected as the 6:2 Cl-PFAES and 8:2 Cl-PFAES fractions, respectively (Figure S5). Then, both the two eluate fractions were lyophilized, and white solid crystals were obtained. The structure and purity of the 6:2 Cl-PFAES and 8:2 Cl-PFAES standards were further validated by an nuclear magnetic resonance spectrometer (12C-NMR and 19F-NMR, Bruker AVANCE III 500WB, Billerica, MA) and a high performance liquid chromatography coupled with an evaporative light-scattering detector (Shimadzu LC20A-ELSD II, Kyoto, Japan) with detailed information shown in Figure S6-S11. No obvious organic impurity was found for the purified 6:2 Cl-PFAES standard (purity: ~ 100% from the LC-ELSD chromatography), while the major impurity of the 8:2 Cl-PFAES standard was the 6:2 Cl-PFAES component ($\sim 2.7\%$).

Table S1. Detailed information on the wastewater treatment plant characteristics.

		Processing	WWTP			Processing	WWTP
Sampling ID	TOC ^a (%)	Volume	Biotreatment	Sampling ID	TOC ^a (%)	Volume	Biotreatment
		$(10^4 \text{ m}^3/\text{d})$	Techniques b			$(10^4 \text{m}^3/\text{d})$	Techniques b
BJ-1	35.5	40	AAO	HF-1	32.4	30	OD
BJ-2	18.5	1.0	SBR	HF-2	28.1	18	OD
BJ-3	37.0	35	OD	HF-3	25.8	6.0	SBR
BJ-4	40.6	8.0	SBR	GD-1	28.8	10	OD
BJ-5	39.1	60	AAO	XA-1	39.1	25	AAO
BJ-6	37.4	4.0	AO	XA-2	29.9	8.0	OD
SH-1	45.0	6.0	PASF	XY-1	36.0	10	OD
CQ-1	16.1	2.0	SBR	HN-1	34.4	7.0	OD
CS-1	43.3	4.0	OD	HN-2	27.0	9.0	AO
CS-2	37.9	3.0	OD	WH-1	13.6	15	AAO
CS-3	40.2	16	AO	WH-2	7.0	25	AO
TA-1	25.7	7.0	AAO	HEB-1	35.5	20	OD
TA-2	19.4	7.0	OD	HZ-1	25.5	20	AAO
JN-1	13.9	20	OD	HZ-2	36.1	40	AO
LW-1	21.5	4.0	AO	NB-1	16.8	3.0	AO
LW-2	20.0	3.0	AO	NB-2	23.7	10	AAO
LW-3	20.2	2.0	AO	HB-1	26.5	16	AO
DZ-1	10.4	2.0	AO	FJ-1	21.2	10	SBR
DZ-2	16.2	2.0	AAO	ZGE-1	12.9	2.0	CAST
QD-1	35.8	10	AAO	CD-1	28.9	10	AAO
QD-2	34.8	3.0	OD	QH-1	24.2	8.5	AAO
DY-1	30.7	3.0	AO	XJ-1	12.3	20	AAO
RZ-1	34.0	5.0	SBR	YN-1	23.0	4.0	OD
LY-1	29.6	10	OD	YN-2	26.0	10	AAO
LY-2	20.8	15	AAO	YN-3	20.2	4.3	OD
YT-1	24.0	25	AAO	YN-4	28.9	12	OD
YT-2	31.1	10	AAO	YN-5	24.5	7.2	AO
GS-1	31.1	20	AAO	YN-6	34.0	10	AAO

^a total organic carbon content; ^b WWTP activated sludge biotreatment techniques. AAO: anaerobic-anoxic-oxic process, OD: oxidation ditch process, AO: anoxic/oxic process, SBR: sequencing batch reactor process, PASF: phosphorus and nitrogen removal combined with active sludge and biofilm process, CAST: cyclic activated sludge technology. PASF and CAST were treated as analogous AAO and SBR processes respectively in the statistics analysis.

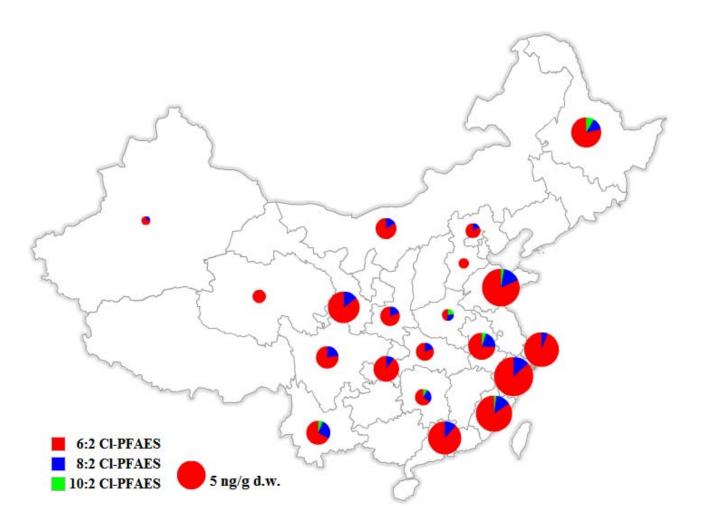
Table S2. Measured accurate mass and corresponding theoretical mass of the molecular ion and characteristic fragmentation ion for each PFAES analogues in the sludge samples by liquid chromatography-high resolution mass spectrometry.

Acronym	Accurate mass (m/z)	Theoretical mass (m/z)	Error (ppm)				
Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFAESs):							
Molecular Ion [M	$(^{35}Cl)]^{-}$:						
4:2 Cl-PFAES	N.D. ^a	430.90197	N.D.				
6:2 Cl-PFAES	530.89557	530.89558	-0.021				
8:2 Cl-PFAES	630.88950	630.88919	0.485				
10:2 Cl-PFAES	730.88482	730.88281	2.754				
Characteristic Fr	agmentation Ion [M(³⁵ Cl)-	$C_2F_4SO_3$]:					
4:2 Cl-PFAES	N.D.	250.95154	N.D.				
6:2 Cl-PFAES	350.94516	350.94515	0.017				
8:2 Cl-PFAES	450.93869	450.93877	-0.171				
10:2 Cl-PFAES	550.93250	550.93238	0.218				
Perfluoroalkyl ether sulfonates (F-PFAESs):							
Molecular Ion [M	'] ⁻ :						
4:2 F-PFAES	N.D.	414.93152	N.D.				
6:2 F-PFAES	N.D.	514.92513	N.D.				
8:2 F-PFAES	N.D.	614.91874	N.D.				
10:2 F-PFAES	N.D.	714.91236	N.D.				
Characteristic Fr	agmentation Ion [M- C_2F_4	$SO_3]^{-}$:					
4:2 F-PFAES	N.D.	234.98109	N.D.				
6:2 F-PFAES	N.D.	334.97470	N.D.				
8:2 F-PFAES	N.D.	434.96832	N.D.				
10:2 F-PFAES	N.D.	534.96193	N.D.				
^a N.D.: Not detect	ed.						

Table S3. LC-MS/MS instrument parameters and method quantification limits for the separation and quantification of the target analytes.

Instrument:	MA) with API	Itrahigh performar 5500 triple-quad electrospray sour ing mode.	lrupole mass sp	pectrometer (A	AB SCIEX	Inc., Frami	ngham, MA					
Analytical Column:	ACQUITY BEH C18 analytical column (2.1 mm i.d. × 100 mm length, 1.7 um, Agilent)											
Column Temperature:	35°C											
Mobile Phases:	A: 1mM NH ₄ Ac B: 1mM NH ₄ Ac											
Gradient Profile:		Time (min)	Percentage A (%)	Percentage I	Flow F (mL/m							
		0.0	60	40	0.30)						
		1.0	60	40	0.30)						
		6.0	100	0	0.30)						
		8.0	100	0	0.30)						
		8.1	60	40	0.30)						
		13.0	60	40	0.30							
Injection Volume:	5μL											
Monitored Ion	Analytes	Ion Transitions ^a	Declustering Potential (V)	Collision Energy (V)	Surrogate Standard	MQL ^b (pg/g dw)	IDL ^c (pg/mL)					
Transitions:	Perfluoroalkyl sulfonates (PFSAs):											
	PFBS	299>99	-63	-64								
	1125	299>80 (*)	-63	-37	MPFHxS	135	13					
	PFHxS	399>99	-59	- 90		150	10					
	-	399>80 (*)	-59	-76	MPFHxS	125	7.6					
	PFHpS	449>99	-88	-110								
		449>80 (*)	-88	-83	MPFOS	143	13					
	PFOS	499>99	-60	-117								
		499>80 (*)	-60	-95	MPFOS	127	8.1					
	PFDS	599>99	-62	-141								
			(2)	-127	MPFOS	101	8.0					
		599>80 (*)	-62	-12/	Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFAESs):							
	Chlorinated pol	` ,				101						
	Chlorinated pol 6:2 Cl-PFAES	` ,				101						

	8:2 Cl-PFAES	631>83	-94	-93			
		631>451 (*)	-94	-43	MPFOS	65.2	5.2
	<u>Fluorotelomer</u> s	sulfonates (FTSs):					
	4:2 FTS	327>81	-103	-53			
		327>307 (*)	-103	-29	M2-6:2 FTS	43.2	3.8
	6:2 FTS	427>81	-129	-77			
		427>407 (*)	-129	-31	M2-6:2 FTS	25.2	3.0
	8:2 FTS	527>81	-129	-95			
		527>507 (*)	-129	-39	M2-6:2 FTS	31.6	7.2
	Isotope-labeled	internal standards	<u>s:</u>				
	MPFHxS	403>99	-59	-90			
		403>80 (*)	-59	-76			
	MPFOS	503>99	-60	-117			
		503>80 (*)	-60	-95			
	M2-6:2 FTS	429>81	-129	-77			
		429>409 (*)	-129	-31			
	M3PFHxS	402 >99	-59	-90			
		402 >80 (*)	-59	-76			
	M8PFOS	507>99	-60	-117			
		507>80 (*)	-60	-95			
	quantification lim	represents the qualits, calculated as t as the signal/noise	he signal/noise	ratio at 10 for	r each analyte. ^c II	DL: Instrun	
LC/MS/MS		Ion Spray Volta	ge: -4500 V;				
Analog		Curtain Gas: 40	psi;				
Parameters:		Collision Gas: 7	7 psi;				
		Temperature: 50	00°C;				
		Ion Source Gas	1: 45 psi;				
		Ion Source Gas	2: 50 psi				
	-						


Table S4. Details of the "fragment constant" methodology in the KOWWIN model (PFOS as negative sulfonate ion), which clearly illustrate the contributions of the functional groups in the molecular structure to the total hydrophobic property of the target chemical.

TYPE	NUM	LOGKOW FRAGMENT DESCRIPTION	COEFFICIENT	VALUE
Frag	8	C [aliphatic carbon - No H, not tert]	0.9723	7.7784
Frag	17	-F [fluorine, aliphatic attach]	-0.0031	-0.0527
Frag	1	-SO2-O [sulfonate, aliph att]	-0.7250	-0.7250
Frag	1	SO-C(polyhalo) structure correction	1.4790	1.4790
Frag	1	S-O-{Na,K,Li}, [coef*(1+0.3*(NUM-1))]	-4.5800	-4.5800
Frag	6	-CF2(-CF2)(-CF2) (linear -CF2- core)	-0.2970	-1.7820
Const		Equation Constant		0.2290
			Log Kow:	2.3467

Table S5. Details of the "fragment constant" methodology in the KOWWIN model (6:2 Cl-PFAES as negative sulfonate ion), which clearly illustrate the contributions of the functional groups in the molecular structure to the total hydrophobic property of the target chemical.

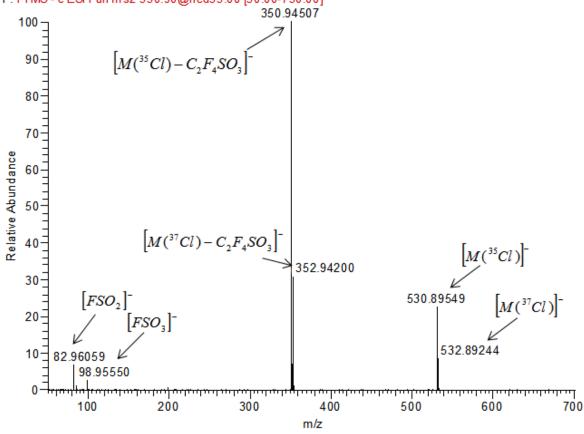

TYPE	NUM	LOGKOW FRAGMENT DESCRIPTION	COEFFICIENT	VALUE
Frag	8	C [aliphatic carbon - No H, not tert]	0.9723	7.7784
Frag	1	-O- [oxygen, aliphatic attach]	-1.2566	-1.2566
Frag	1	-CL[chlorine, aliphatic attach]	0.3102	0.3102
Frag	16	-F [fluorine, aliphatic attach]	-0.0031	-0.0496
Frag	1	-SO2-O [sulfonate, aliph att]	-0.7250	-0.7250
Factor	1	SO-C(polyhalo) structure correction	1.4790	1.4790
Factor	2	-O-C(F)For-S-C(F)Fcorrection	0.5500	1.1000
Frag	1	S-O-{Na,K,Li}, [coef*(1+0.3*(NUM-1))]	-4.5800	-4.5800
Factor	4	-CF2(-CF2)(-CF2) (linear -CF2- core)	-0.2970	-1.1880
Const		Equation Constant		0.2290
			Log Kow:	3.0974

Figure S1. Sampling locations, spatial concentrations and composition profiles of Cl-PFAES homologues in municipal sewage sludge samples in China (mean concentration values of each analyte were present for WWTP samples collected in the same provinces/municipalities).

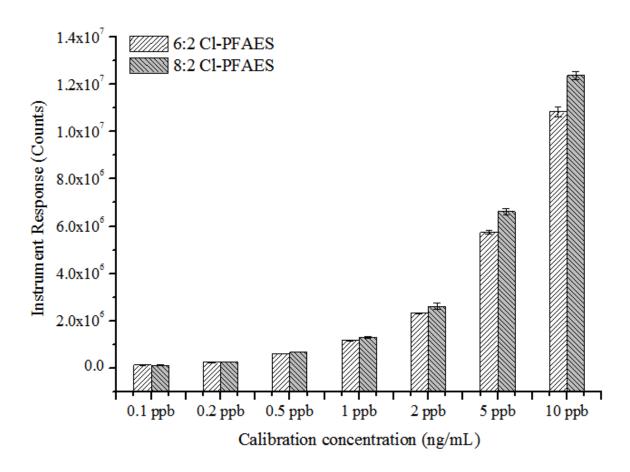
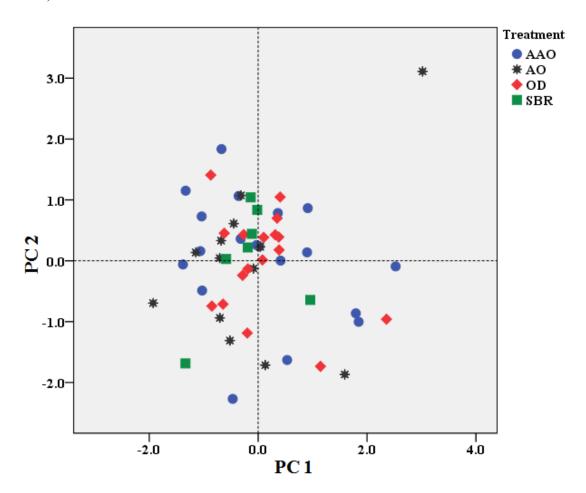
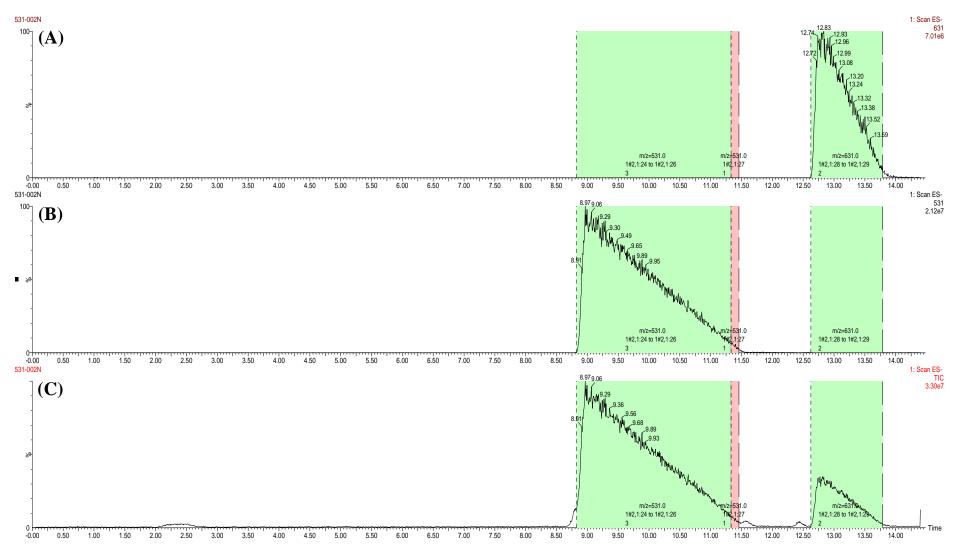
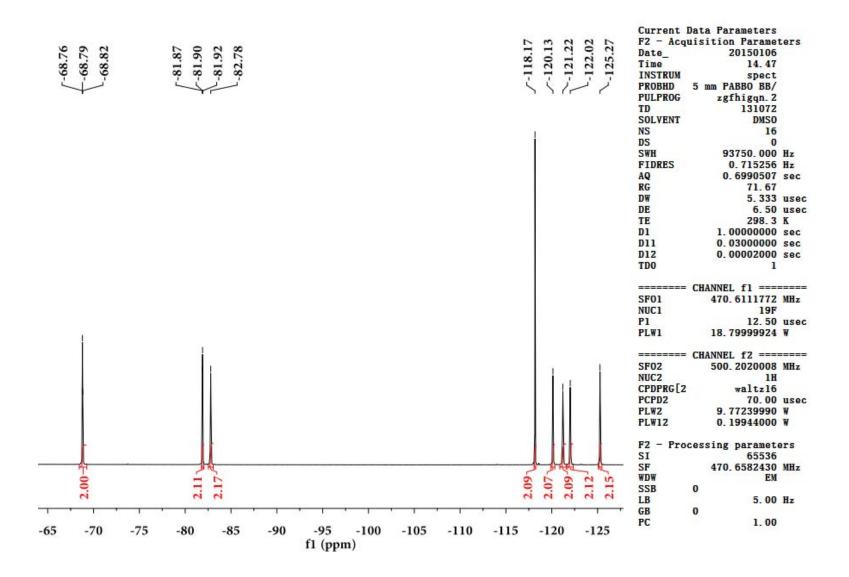
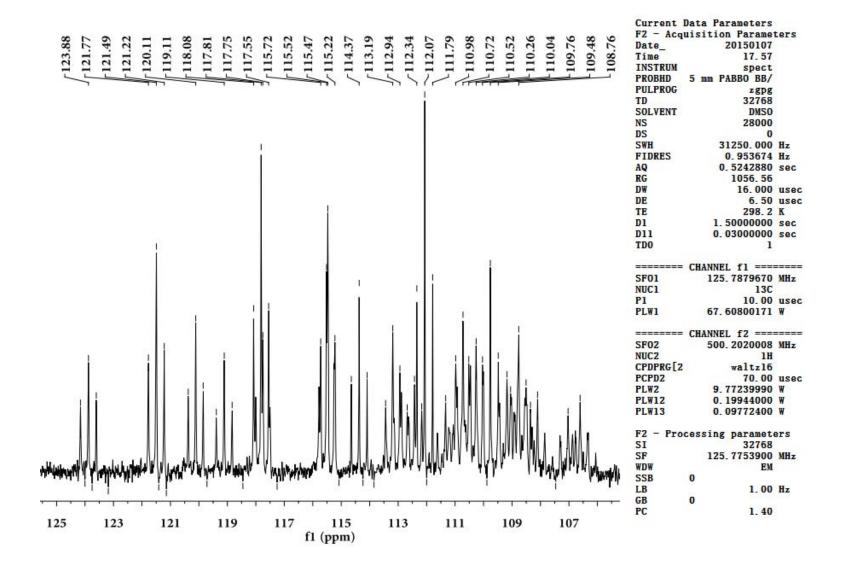


Figure S2. MS² characteristic fragmentation ions of the 6:2 Cl-PFAES standard in the HCD mode (collision energy: 35%, spiked at 20 ng/mL).




Figure S3. Instrument responses (n = 3) of $[M(^{35}Cl)]^{-}$ molecular ions for 6:2 and 8:2 Cl-PFAESs in the HRMS full scan spectrum at spiked calibration concentrations (0.1-10 ng/mL).


Figure S4. The score plots (PC1 versus PC2) of fluoroalkyl sulfonate concentrations (log-transformed data of PFOS, 6:2 FTS, 8:2 FTS, 6:2 Cl-PFAES and 8:2 Cl-PFAES, analytes with detection ratio less than 70% in the sludge samples were not taken into account) in the sewage sludge samples grouped by WWTP treatment techniques (AAO, anaerobic-anoxic-oxic; AO, anoxic/oxic; OD, oxidation ditch; SBR, sequencing batch reactor) for further visualization of potential relationships from the principal component analysis (varimax rotation method, statistical significant level set as p < 0.05).


Figure S5. Separation and collection of the eluate fractions of the 6:2 and 8:2 Cl-PFAES in the Autopurification system. (A). Retention behavior of 8:2 Cl-PFAES in the LC column. (B). Retention behavior of 6:2 Cl-PFAES in the LC column. (C). Fraction collection window for each analyte in the purification cycles.

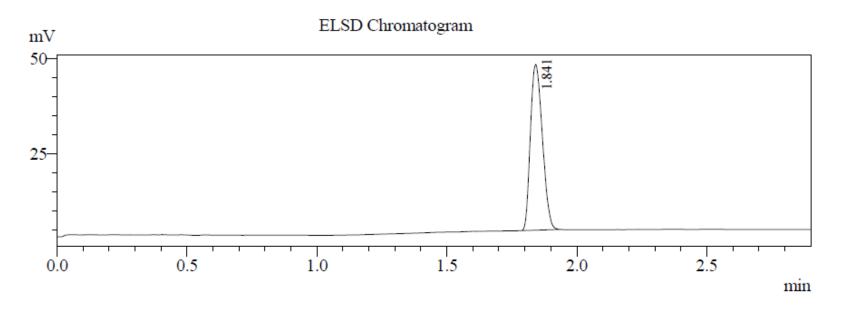
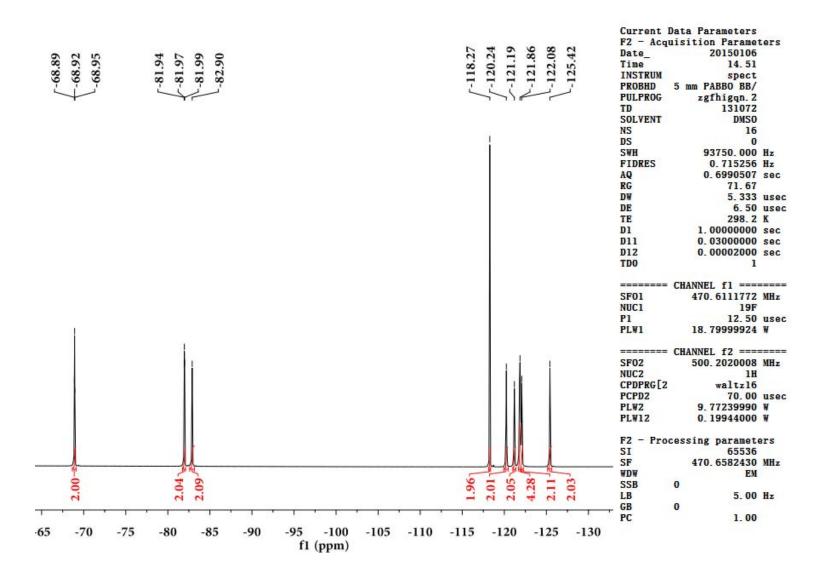
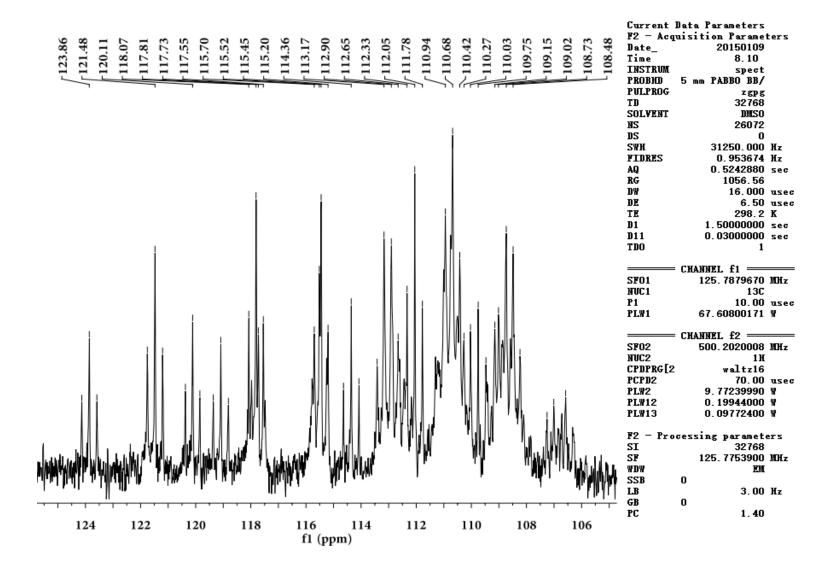

Figure S6. Detailed ¹⁹F-NMR result of the laboratory-purified 6:2 Cl-PFAES standard.

Figure S7. Detailed ¹²C-NMR result of the laboratory-purified 6:2 Cl-PFAES standard.

Figure S8. Detailed information on the purity of the 6:2 Cl-PFAES standard based on the LC-ELSD method.



PeakTable


ELSD Ch1

Peak#	Ret. Time	Height	Height %	Area	Area %
1	1.84	42853	100.00	139980	100.00
Total		42853	100.00	139980	100.00

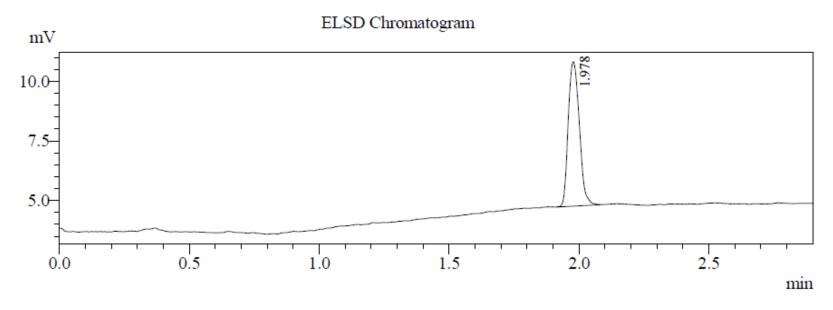

Figure S9. Detailed ¹⁹F-NMR result of thelaboratory-purified 8:2 Cl-PFAES standard.

Figure S10. Detailed ¹²C-NMRresult of the laboratory-purified 8:2 Cl-PFAES standard.

Figure S11. Detailed information on the purity of the 8:2 Cl-PFAES standard based on the LC-ELSD method.

PeakTable

ELSD Ch1

Peak#	Ret. Time	Height	Height %	Area	Area %
1	1.98	5999	100.00	18003	100.00
Total		5999	100.00	18003	100.00