

**CO<sub>2</sub> Absorption in an Alcoholic Solution of Heavily Hindered Alkanolamine: The Reaction Mechanism of 2-(*tert*-butylamino)-ethanol with CO<sub>2</sub> Revisited**

Hong-Bin Xie<sup>†</sup>, Xiaoxuan Wei<sup>†</sup>, Pan Wang<sup>†</sup>, Ning He<sup>‡</sup>, Jingwen Chen<sup>†\*□</sup>

<sup>†</sup>Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

<sup>‡</sup>State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

*Four texts, three Tables and one Figure.*

## 1. Computational details for global minimum search

Density functional theory (DFT) with the BLYP-D functional along with the SVP basis set within the resolution-of-the-identity approximation<sup>1</sup> was used to carry out the AIMD calculations. The temperature was set to 500 K in order to sample a large number of different configurations. A time step of 2 fs was used. The total length of AIMD simulation was 10 ps (5000 time steps). The calculation was carried out using the TURBOMOLE package.<sup>2</sup> The configurations from the AIMD run were used as starting points to obtain the global minimum of TBAE at the B3LYP/6-311++G(d,p) level with the SMD solvation model. Single point energy calculation was then performed at the B3LYP-D/6-311++G(3df,2pd) level to obtain accurate total energies for each of the sample configurations.

## 2. Overall activation free energy for carbamate mechanism

For the carbamate pathway, we start from the following reaction scheme according to the free energy surface.



Invoking the pseudo steady-state approximation, the zwitterion concentration can be expressed as:

$$[\text{zwitterion}] = \frac{k_2[\text{amine}][\text{CO}_2]}{k_{-1} + k_{\text{Base}}[\text{amine}]} \quad (\text{S3})$$

The overall rate of consumption of CO<sub>2</sub> is therefore

$$r_{\text{CO}_2} = \frac{k_{\text{Base}}k_2[\text{amine}]^2[\text{CO}_2]}{k_{-1} + k_{\text{Base}}[\text{amine}]} \quad (\text{S4})$$

Then, it can be rewritten eq.(S4) as:

$$r_{\text{CO}_2} = k_c [\text{CO}_2] \quad (\text{S5})$$

where the pseudo-first-order reaction rate coefficient  $k_c$  is defined as:

$$k_c = \frac{k_{\text{Base}} k_2 [\text{amine}]^2}{k_{-1} + k_{\text{Base}} [\text{amine}]} \quad (\text{S6})$$

The reaction rate constant ( $k$ ) for elementary reactions was calculated by the transition state theory:

$$k = (c^\circ)^{\Delta n} \frac{k_B T}{h} \exp\left(-\frac{\Delta G^+}{RT}\right) \quad (\text{S7})$$

where  $c^\circ$  is the standard-state concentration (1 mol L<sup>-1</sup>),  $\Delta n$  is the change of the number of moles from reactants to the transition states,  $h$  is the Planck constant,  $\Delta G^+$  (activation free energies) is the difference in the Gibbs free energy between the reactants and the transition states, and  $R$  is the gas constant.

In the carbamate channel, the  $\Delta G^+$  of pathway that zwitterion returns back to reactants is much smaller than that of the second step (eq. S2). Therefore,  $k_{-1}$  is  $\gg k_{\text{Base}}$ . Then, we can approximate eq.(S6) as:

$$k_c = \frac{k_{\text{Base}} k_2 [\text{amine}]^2}{k_{-1}} \quad (\text{S8})$$

When  $k_{\text{Base}}$ ,  $k_2$  and  $k_{-1}$  are presented by eq.S7, respectively, we can rewrite eq.(S8) as:

$$k_c = (c^\circ)^{\Delta n} \frac{k_B T}{h} \exp\left(-\frac{\Delta G_{\text{all}}^+}{RT}\right) [\text{amine}]^2 \quad (\text{S9})$$

Where  $\Delta G_{\text{all}}^+$  is the overall activation free energy, which is equal to the sum of activation free energy ( $\Delta G_{\text{sec}}^+$ ) for the second step (eq.S2) and the relative free energy of zwitterion.

### 3. The possible reason that inter-molecular proton transfer of TBAE (pathway

**E) is a little more favorable than its intra-molecular proton transfer (pathway B).**

A possible reason could be the stabilization of hydrogen bond between HO- of TBAE and O-atom of the other TBAE (TS-5) on the transition state of inter-molecular proton transfer of TBAE in pathway E. We also try to consider the role of a hydrogen bond on the intra-molecular proton transfer in pathway B by introducing an EG molecule to form an inter-molecular hydrogen bond with -OH of TBAE (as shown in Figure 1S). The computed  $\Delta G^{\ddagger}$  value that  $\text{CO}_2$  attack on -OH of TBAE is 16.3 kcal/mol, which is lower than that (19.9 kcal/mol) of pathway B by taking the structure in Figure 1S as the reactant. This indicates that the formation of hydrogen bond does stabilize the transition state. Even though, the  $\Delta G^{\ddagger}$  values for the pathways via the attack of  $\text{CO}_2$  on -OH of TBAE is about 2 kcal/mol higher than that of most favorable pathway C.

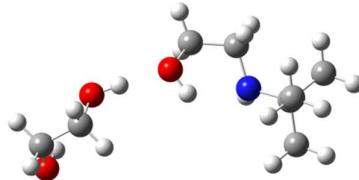



Figure 1S. The hydrogen bond complex between TBAE and EG.

**4. Reliability evaluation calculations**

We have carried out additional calculations to confirm the revealed the reaction mechanism of  $\text{CO}_2$  with TBAE in EG solution. High-level quantum chemical methods, B3LYP-D/6-311++G(3df,2pd) and MP2/aug-cc-pVDZ method with the SMD solvent model were firstly used to calculate the single point energies based on the geometries at the B3LYP/6-311++G(d,p) level with the SMD model. Reliability evaluation

calculations were performed on all the pathways except pathway A because it has no any competition with the others due to its high  $\Delta G^{\ddagger}$ . As shown in Table S1, the  $\Delta G^{\ddagger}$  values at the B3LYP-D/6-311++G(3df,2pd) and MP2/aug-cc-pVDZ levels are generally 3~6 kcal/mol lower than those at the B3LYP/6-311++G(d,p) level for pathways B~F. In addition, the trend in the  $\Delta G^{\ddagger}$  values at the B3LYP/6-311++G(d,p) level for these pathways agree well with that obtained at the B3LYP-D/6-311++G(3df,2pd)//B3LYP/6-311++G(d,p) and MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level. More importantly, pathway C is still the most favorable at the B3LYP-D/6-311++G(3df,2pd)//B3LYP/6-311++G(d,p) and MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level. Therefore, the B3LYP/6-311++G(d,p) method provides a qualitatively accurate picture of the reaction mechanism with an acceptable level of computational cost.

Table S1. Activation free energies (kcal/mol) for pathways B~F at the B3LYP/6-311++G(d,p), B3LYP-D/6-311++G(3df,2pd) and MP2/aug-cc-pVDZ level.

|                           | B    | C    | D    | E    | F    |
|---------------------------|------|------|------|------|------|
| B3LYP/6-311++G(d,p)       | 19.9 | 14.2 | 19.2 | 16.2 | 18.7 |
| B3LYP-D/6-311++G(3df,2pd) | 16.4 | 9.3  | 15.8 | 11.3 | 15.7 |
| MP2/aug-cc-pVDZ           | 15.3 | 8.0  | 16.0 | 9.4  | 15.8 |

The conductor-like polarizable continuum model (CPCM)<sup>3,4</sup> formalism with Bondi and Pauling atomic radii, which was proved to reliably predict the reaction mechanism of MEA with CO<sub>2</sub>,<sup>5</sup> was also used to calculate the  $\Delta G^{\ddagger}$  for pathways B~F at the B3LYP/6-311++G(d,p) level, to confirm the reliability of the SMD model. As shown in Table S2, the CPCM model with Bondi and Pauling atomic radii predicts that the  $\Delta G^{\ddagger}$  values for pathways C and E are lower than those of pathways B, D and F, and the  $\Delta G^{\ddagger}$  values of pathways B, D and F are close to each other. This trend agrees

well with the findings using the SMD solvent model at the B3LYP/6-311++G(d,p) level, although the  $\Delta G^\ddagger$  values from the Bondi and Pauling atomic radii are systematically higher than those from the SMD model. Therefore, the SMD model can reasonably treat the reaction of CO<sub>2</sub> with EG solution of TBAE. All in all, the theoretical method used here can reliably reveal the reaction mechanism of the titled reaction.

Table S2. Activation free energies for pathways B~F at the B3LYP/6-311++G(d,p) level using SMD, CPCM with Bondi and Pauling atomic radiiis.

| Solvent models | B    | C    | D    | E    | F    |
|----------------|------|------|------|------|------|
| SMD            | 19.9 | 14.2 | 19.2 | 16.2 | 18.7 |
| CPCM(Bondi)    | 24.1 | 18.9 | 24.0 | 21.0 | 24.2 |
| CPCM(Pauling)  | 23.7 | 18.9 | 25.0 | 19.6 | 24.2 |

References:

1. Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R., Auxiliary basis sets to approximate Coulomb potentials. *Chem. Phys. Lett.* **1995**, *240*, (4), 283-290.
2. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C., Electronic structure calculations on workstation computers: The program system turbomole. *Chem. Phys. Lett.* **1989**, *162*, (3), 165-169.
3. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* **1998**, *102*, (11), 1995-2001.
4. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* **2003**, *24*, (6), 669-681.
5. Xie, H.-B.; Zhou, Y.; Zhang, Y.; Johnson, J. K., Reaction Mechanism of Monoethanolamine with CO<sub>2</sub> in Aqueous Solution from Molecular Modeling. *J. Phys. Chem. A* **2010**, *114*, (43), 11844-11852.

**Table S3.** Accurate mass measurements for TABE, EG and their CO<sub>2</sub> absorption products.

| Compound | Proposed formula                                                | Experimental mass (m/z) | Calculated mass (m/z) | Error (ppm) | DBE <sup>a</sup> |
|----------|-----------------------------------------------------------------|-------------------------|-----------------------|-------------|------------------|
| TABE     | [C <sub>6</sub> H <sub>15</sub> NO + H] <sup>+</sup>            | 118.1220                | 118.1226              | 5.47        | 0                |
| EG       | [C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> - H] <sup>-</sup> | 61.0297                 | 61.0295               | -3.18       | 0                |
| Product  | [C <sub>3</sub> H <sub>6</sub> O <sub>4</sub> - H] <sup>-</sup> | 105.0194                | 105.0193              | -0.64       | 1                |
|          | [C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> - H] <sup>-</sup> | 61.0296                 | 61.0295               | -1.56       | 0                |
|          | [C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> - H] <sup>-</sup> | 59.0140                 | 59.0139               | -2.45       | 1                |

<sup>a</sup> DBE stands for double bond equivalents.

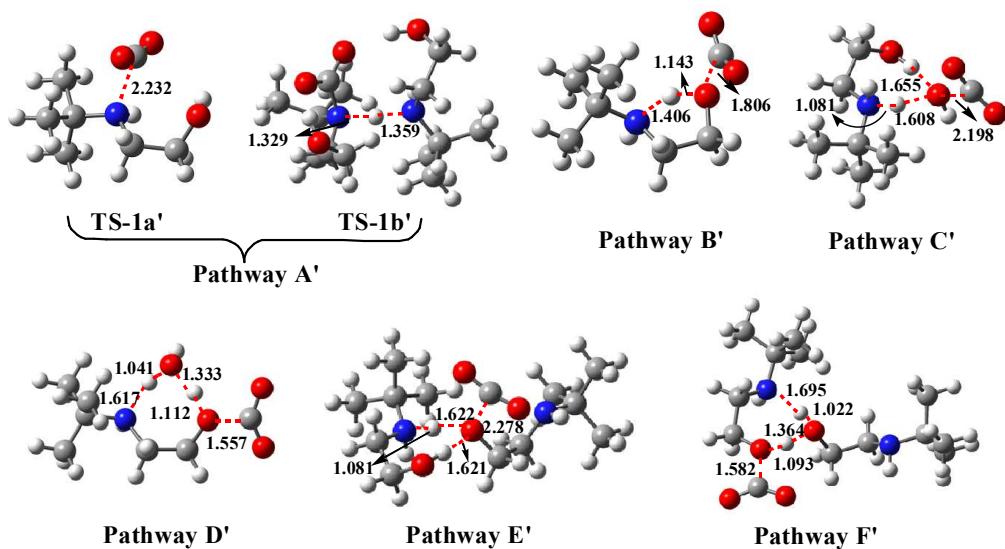



Figure S1. B3LYP/6-311++G(d,p)-optimized geometries for the transition states of pathways A'~F' for the reaction of CO<sub>2</sub> with TBAE in aqueous solution (The distances are in Å)