•	Supporting Information for
}	Uptake and Metabolism of Phthalate Esters by Edible Plants
ļ	Jianqiang Sun, ^{†‡} Xiaoqin Wu, [†] Jay Gan ^{†*}
;	
j	† Department of Environmental Sciences, University of California, Riverside, California 92521,
,	United States
3	[‡] College of Biological and Environmental Engineering, Zhejiang University of Technology,
)	Hangzhou 310032, China
)	
-	
2	
}	
ļ	
•	
•	
j	

One figure (Figure S1), seven tables (Table S1-S7), 13 pages.

Content **Supplemental Materials and Methods** Instrumental analysis on GC-MS Instrumental analysis on UPLC-MS/MS **Supplemental Tables and Figures** Table S1. Table S2. Table S3. Table S4.

Table S5.

Table S6.

Table S7.

Figure S1.

References

GC-MS Instrumental analysis for PAEs

In this study, concentrations of PAEs were quantified using an Agilent 6890GC-5973 MSD gas chromatograph-mass spectrometer and a 30 m \times 0.25 mm \times 0.25 µm DB-5MS capillary column (J&W Scientific, Folsom, CA). Samples (1.0 µL) were injected in splitless mode with an inlet temperature of 300 °C. The initial oven temperature was 80 °C for 1.0 min, ramped at 10 °C/min to 180 °C (hold 1 min), then at 2 °C/min to 260 °C (hold 1 min), and finally ramped at 10 °C/min to 300 °C (hold 5 min). Helium (purity \times 99.999%) gas was used as a carrier with a constant flow rate of 0.8 mL min⁻¹. The mass selective detector was operated in in electron impact (EI) and selective ion monitoring (SIM) mode. The temperatures of the ion source, quadrupole and transfer line were 230 °C, 150 °C and 280 °C, respectively. The m/z = 149 was used to quantify both DnBP and DEHP, and the m/z = 153 was used to quantify their deuterated surrogate standards. The m/z = 233 and the m/z =267 were used for the qualitative analysis of DnBP and DEHP, respectively. The chromatograms were processed on the software of MSD ChemStation E.02.01.1177 (Agilent Technologies).

UPLC-MS/MS Instrumental analysis for MPEs

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

The concentrations of MPEs were analyzed on a Waters ACOUITY ultra-performance liquid chromatography (UPLC) in combination with a Waters Micromass electrospray ionization tandem mass spectrometer (ESI-MS/MS). Chromatographic separation of compounds was performed at 40 °C, using ACQUITY UPLC BEH C18 column (2.1×100 mm, 1.7 µm particle size, Waters). Mobile phase A was 0.001% formic acid in water/methanol (95/5, v/v) and mobile phase B was pure acetonitrile. The following gradient program (with respect to mobile phase A) was used: 0 0.5 min, 90 to 60% A; 0.5 4 min, 60 to 5% A; 5 6 min, 90% A; 6 7 min, reequilibrate with 90% A. The flow rate was 0.2 ml/min, and the sample injection volume was 5 µl. Mass analysis was carried out using a Waters Micromass triple quadrupole detector equipped with an electrospray ionization (ESI) source. Data acquisition was performed in negative ESI modes and the optimized mass spectrometry (MS) parameters were as follows: source temperature, 120°C; desolvation temperature, 350 °C; capillary voltage, 3.2 kV; cone voltage, 30 V: desolvation gas flow, 600 L h⁻¹ and cone gas flow, 50 L h⁻¹. The collision gas (Argon, 99.999%) flow in the collision cell was kept at 0.2 ml min⁻¹. Quantitative analysis was performed in the multiple reaction monitoring (MRM) mode and the optimized parameters are listed in Table S2. A dwell time of 0.02 s per ion pair was used. All data were acquired and processed using the MassLynx 4.1 software.

Table S1. Validation of extraction methods

70

Compound	LOD ^a	LOQ b	Concentration Range (µg L ⁻¹)	Linearity	Recovery in plant/cell (%, Level 1000 μg kg ⁻¹)	Recovery in sand (%, Level 500 µg kg ⁻¹)
DnBP	Plant: 1.0µg kg ⁻¹ Sand: 0.1µg kg ⁻¹ Cell: 4.1µg kg ⁻¹ Medium: 2.2µg L ⁻¹	Plant:3.3µg kg ⁻¹ Sand:0.3µg kg ⁻¹ Cell:14µg kg ⁻¹ Medium:7.9µg L ⁻¹	5.0 - 750	r^2 =0.9987	75.0 – 86.5	75.9 – 82.3
DEHP	Plant:2.2µg kg ⁻¹ Sand:0.3µg kg ⁻¹ Cell:11µg kg ⁻¹ Medium:5.0µg L ⁻¹	Plant:8.5µg kg ⁻¹ Sand:1.1µg kg ⁻¹ Cell:36µg kg ⁻¹ Medium:16µg L ⁻¹	5.0 - 750	$r^2=0.9990$	81.3 – 101.8	81.1 – 86.7
MnBP	Plant:7.3µg kg ⁻¹ Sand:0.9µg kg ⁻¹ Cell:26µg kg ⁻¹ Medium:14µg L ⁻¹	Plant:23µg kg ⁻¹ Sand:3.0µg kg ⁻¹ Cell:72µg kg ⁻¹ Medium:42µg L ⁻¹	5.0 - 1000	r^2 =0.9998	80.2 – 91.3	89.7 – 97.2
МЕНР	Plant:3.6µg kg ⁻¹ Sand:0.5µg kg ⁻¹ Cell:15µg kg ⁻¹ Medium:8µg L ⁻¹	Plant:11µg kg ⁻¹ Sand:2.0µg kg ⁻¹ Cell:46µg kg ⁻¹ Medium:27µg L ⁻¹	5.0 - 1000	r^2 =0.9989	78.1 – 85.8	81.9 – 92.5

a Limits of Detection (LOD) for individual PAEs/MPEs were calculated on the basis of 3 times the signal-to-noise in low-level spiked samples

b Limits of quantification (LOQ) for individual PAEs/MPEs were calculated on the basis of 10 times the signal-to-noise in low-level spiked samples

Table S2. Parameters for the analysis of MPEs and their deuterated compounds by UPLC-MS/MS.

Compound	RT (min)		Molecular Ion	Product Ion	Dwell Time (ms)	Cone voltage (V)	Collision energy (eV)
mono- <i>n</i> -Butyl Phthalate	3.31	A	221	77	80	-18	-26
mono-n-butyi rittiaiate	3.31	В	221	149	80	-18	-16
D (IDI) I (I)	3.29	A	225	81	80	-18	-26
mono- <i>n</i> -Butyl Phthalate- <i>d</i> 4		В	225	153	80	-18	-16
O.F.d. H. J.Dl.d. L.	5.15	A	277	77	100	-20	-15
mono-2-Ethylhexyl Phthalate		В	277	134	100	-20	-23
	5.12	A	281	81	100	-20	-15
mono-2-Ethylhexyl Phthalate-d4		В	281	138	100	-20	-23

 Table S3. Plant biomasses per pot (gram dry weight)

Plant species	PAEs spiked group	MPEs spiked group	Control	Analysis of variance
Lettuce	3.73 ± 0.22	3.76 ± 0.17	3.76 ± 0.17	Not significant (P>0.05)
Strawberry	1.90 ± 0.15	1.76 ± 0.10	1.69 ± 0.14	Not significant (P>0.05)
Carrot	2.67 ± 0.11	2.56 ± 0.13	2.54 ± 0.06	Not significant (P>0.05)

Table S4. Concentrations (μg kg⁻¹ dry weight) of Target PAEs and MEPs in Plant Tissues at the end of treatment. Values represents means and
 standard error of three replicates.

C	Let	ttuce	Stra	wberry	Carrot		
Compound	Leaf	Root	Leaf	Root	Leaf/Stem	Root	
DnBP uptake	127.5 ± 6.0	382.3 ± 42.7	171.2 ± 39.2	1306.3 ± 210.7	539.1 ± 104.3	2391 ± 293.3	
DEHP uptake	653.8 ± 205.8	872.5 ± 224.9	689.1 ± 97.0	976.3 ± 205.8	1209.1 ± 230.4	1371.4 ± 92.9	
MnBP uptake	1183.1 ± 50.8	1309.9 ± 271	846 ± 44.0	1329.2 ± 111.4	1236.7 ± 119.3	1606.5 ± 88.7	
MEHP uptake	173 ± 49.0	329.7 ± 78.7	79.1 ± 17.1	220.4 ± 13.9	217.5 ± 23.6	236.3 ± 14.3	
MnBP produced	2748.1 ± 136.5	2908.3 ± 433.2	2786.4 ± 56.2	2432.1 ± 474.2	4265.5 ± 492.4	4016.3 ± 221.9	
MEHP produced	370.3 ± 146.1	422.4 ± 116.7	479.3 ± 57.0	487 ± 16.8	701.3 ± 54.0	502.2 ± 81.6	

Table S5. Physicochemical properties of PAEs and MPEs.

Phthalate Ester	Abbreviation	CAS No.	Water Solubilities mg/L	$Log K_{ow}$	Molecular Weight	Log <i>K</i> oa	Log D (pH 6)	pKa	References
Di- <i>n</i> -butyl Phthalate	DnBP	84-74-2	11.2	4.45	278.4	8.63			1
Di(2-ethylhexyl) Phthalate	DEHP	117-81-7	0.003	7.50	390.6	10.5			1
mono-n-Butyl Phthalate	MnBP	131-70-4	125.7	2.84	222.2		0.07	4.2	2
mono-2-Ethylhexyl Phthalate	MEHP	4376-20-9	1.492	4.73	278.3		1.66	4.2	2

Table S6. PAE and MPE concentrations ($\mu g \ kg^{-1}$) in the sand at the end of treatment.

		PAE spiked	treatment			MPE spiked treatment					
Compound	Lettuce group	Strawberry group	Carrot group	Spiked unplanted control	Lettuce group	Strawberry group	Carrot group	Spiked unplanted control			
DnBP	173.2 ± 14	143.4 ± 8.6	133.6 ± 5.2	197 ± 12							
DEHP	216.2 ± 17	249.1 ± 14	289.3 ± 24	295 ± 11							
MnBP	82.7 ± 7.9	116.7 ± 29	77.8 ± 6.5	57.2 ± 4.5	38.9 ± 5.6	39.3 ± 6.2	42.3 ± 2.7	44.8 ± 4.1			
МЕНР	34.7 ± 4.3	40.0 ± 3.0	30.6 ± 2.7	27.1 ± 2.0	63.7 ± 4.2	72.1 ± 6.6	82.9 ± 6.1	90.2 ± 7.8			

	Lettuce group		Strawber	ry group	Carrot group		
Compound	Sand medium	Plant tissue	Sand medium	Plant tissue	Sand medium	Plant tissue	
	173.2 ± 14	0.88 ± 0.01	143.4 ± 8.6	1.54 ± 0.14	133.6 ± 5.2	4.17 ± 0.26	
DnBP	(34.7 %)	(0.2 %)	(28.7 %)	(0.3 %)	(26.8 %)	(0.1 %)	
	216.2 ± 17	2.81 ± 0.68	249.1 ± 14	1.61 ± 0.21	289.3 ± 24	3.47 ± 0.37	
DEHP	(43.2 %)	(0.6 %)	(49.8 %)	(0.3 %)	(57.9 %)	(0.7 %)	
	38.9 ± 5.6	4.62 ± 0.52	39.3 ± 6.2	2.00 ± 0.16	42.3 ± 2.7	3.64 ± 0.21	
MnBP	(7.8 %)	(0.9 %)	(7.8 %)	(0.4 %)	(8.5 %)	(0.7 %)	
	63.7 ± 4.2	0.91 ± 0.11	72.1 ± 6.6	0.29 ± 0.03	82.9 ± 6.1	0.58 ± 0.06	
MEHP	(12.8 %)	(0.2 %)	(14.4 %)	(0.1 %)	(16.6 %)	(0.1 %)	

Figure S1. Chemical structures of PAEs and MPEs

Supplemental References

99

- 100 1. Staples, C. A.; Peterson, D. R.; Parkerton, T. F.; Adams, W. J. The environmental fate of
- phthalate esters: A literature review. *Chemosphere* **1997**, 35, 667-749.
- 102 2. Ikonomou, M. G.; Blair, J. D.; Kelly, B. C.; Surridge, B.; Gobas, F. A. P. C., Ultra-trace
- determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized
- marine inlet by LC/ESI-MS/MS. *Environ. Sci. Technol.* **2009**, 43, 6262-6268.