Supporting information for

Synthesis of diethyl toluene diamine by zeolite-

catalyzed ethylation of 2,4-toluene diamine

Yi Zuol, Xiaowa Niel, Min Liul, Ting Zhangl, Chengyi Dail, Fanshu Dingl, Chunshan Songz’ *,

. 1%
Xinwen Guo”

! State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research,
Department of Catalysis Chemistry and Engineering, Dalian University of Technology, Dalian

116024, P. R. China.

2 EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy

& Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA.

Corresponding Authors

*C. Song. Tel.: +1 814 8634466, fax: +1 814 8653248; E-mail: csong@psu.edu

*X. Guo. Tel.: +86 411 84986133; fax: +86 411 84986134; E-mail: guoxw@dlut.edu.cn

The analysis of products by GC-MS, characterization of the zeolites, and DFT calculation of
thermodynamic parameters, atomic charge and reaction barriers in vapor phase were settled in

the supplementary information.



1 Gas chromatograph-mass spectrum analysis of the products

Gas chromatograph-mass spectrum (GC-MS) was obtained on a HP6890GC/5973MS system
to analyse the products of 2,4-TDA ethylation. The GC profile of the reaction over nano-scaled
HZSM-5 aggregate for 5 h is shown in Fig. S1. According to the MS data and the standard
samples data obtained in GC, the peak at 17.5 min in Fig. S.1 was assigned as 3,5-DE-2,4-TDA,
while those at 16.8 and 15.5 min were 3,6-DE-2,4-TDA and 5,6-DE-2,4-TDA, respectively. The
peak at 22.1 min was TETDA. The peaks between 5.8 and 6.2 min were the disproportionation
products. The peak at 4.7 min was of 2,4-TDA, and that at 1.6 min was ethanol. Other peaks
were N-ethylation products and so on. The mass spectrum of 3,5-DE-2,4-TDA is shown in Fig.

S2.
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Figure S1. The GC-MS result of the products from ethylation of 2,4-toluenediamine over

HZSM-5.
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Figure S2. The mass spectrum of 3,5-diethyl-2,4-toluene diamine.

2 Characterization of zeolites
Figure S3 shows the XRD patterns of the zeolites, which were performed on a Rigaku
Corporation SmartLab 9 X-ray diffractrometer equipment using Cu Ko radiation. Each pattern

shows the typical characteristic peaks of the corresponding zeolite.
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Figure S3. XRD patterns of the acidic zeolites.

Figure S4 shows the pore diameter distribution curves of the samples based on the argon

physisorption. The test was carried out on a Quantachrome AUTOSORB iQ2 physical sorption

apparatus at -186 °C.
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Figure S4. Pore diameter distribution of the acidic zeolites.

The appearances of some zeolites, which were determined on a Hitachi S-4800 scanning

electron microscope, were shown in Fig. S5.
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Figure SS. SEM images of some acidic zeolites.

3 Density functional theory calculation

The thermodynamic parameters, atomic charge and reaction barriers were calculated based on
the optimized molecular geometries at a B3LYP/6-311++G(d,p) level of theory within the
framework of DFT. All calculations were performed using the Gaussian 03 package.®'

To understand the mechanism of the reaction as well as the optimal conditions that facilitate

the DETDA manufacture, DFT calculation was applied. Fig. S6 gives partial atomic Miilliken



charge of 2,4-TDA. It shows that the electrophilic attack is prone to occur on nitrogen atom (N-

ethylation) rather than on carbon atom (C-ethylation) in the benzene ring.

Figure S6. The structure and Mulliken charges of 2,4-toluene diamine.

The reaction enthalpy changing in contact with each possible product was evaluated and
presented in Table S1. The C-ethylation is thermodynamically more favored than the N-
ethylation, because the C-ethylation reactions are more exothermic. To gain fundamental insight
into the kinetics for the ethylation reaction, we further calculated the activation barriers (E,) for
the mono-ethylation products, including the 3-, 5-C-products and 2-, 4-N-products in the gaseous
phase (Fig. S7). Transition state configurations are shown in Fig. S8. E, values indicate that the
N-ethylation products formation is more preferred in kinetics with relatively lower barriers. The
relative reaction rates of N-ethylation versus C-ethylation (denoted as kn/kc) at specific reaction
temperature were evaluated in terms of the Arrhenius equation, and the results were 1154, 405

and 186 for 300, 400 and 500 °C, respectively. Presumably, the reaction temperature plays an



important role in this reaction. Increasing the temperature in a certain range would be helpful for

C-ethylation.

Table S1. Thermodynamic parameters.

Products

AH/kcal-mol™

Electronic energy/Ha

3,5-C-ethylation
3-C-ethylation
5-C-ethylation
2-N-ethylation

4-N-ethylation
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-22.4
-17.3
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Figure S7. Schematic view of the electronic energies (E) for ethylation of 2,4-toluene diamine

with ethene. The relative E values were obtained from B3LYP/6-311++G(d,p) calculations.
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Figure S8. Transition state (TS) geometries for ethylation of 2,4-TDA: (a) 2-N-ethylation; (b) 4-

N-ethylation; (c) 3-C-ethylation; (a) 5-C-ethylation.

In summary, the C-ethylation needs longer reaction time and higher temperature.
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