Supporting Information

Process Investigations on the One-Pot Synthesis of Rifamycin S Avoiding Chlorinated Solvents

Sebastian A. Löw, Bettina M. Nestl, Martin J. Weissenborn, Ferdinand Zepeck, and Bernhard Hauer *

^a Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany. E-mail: bernhard.hauer@itb.uni-stuttgart.de; Fax: +49 711 68563196; Tel: +49 711 68563193

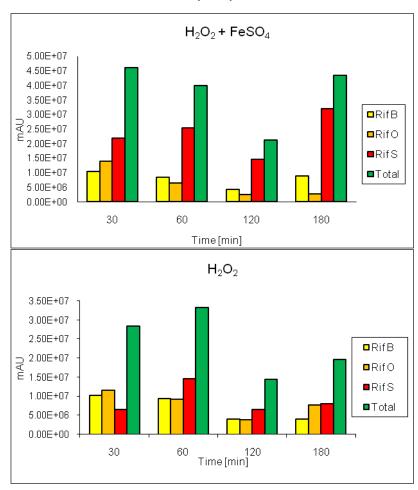
^b Sandoz GmbH, Biocatalysis Lab, Biochemiestraße 10, 6250 Kundl, Austria.

Contents 1.1 Chemicals and of

	1.1	Chemicals and enzymes	S2
	1.2	LC/MS and HPLC sample preparation	S2
	2.1 De	termination of oxidation reaction using Fenton's reagent	S2
	2.2 De	termination of the oxidation reaction using ammonium persulfate (APS)	\$3
3	Solv	ent System	S3
4	Read	ction Conditions	S4
	4.1	Rifamycin O acetal cleavage to form rifamycin S	S4
	4.1.1	Reaction under mild alkaline conditions	S4
	4.1.2	Variation of buffer concentration and pH	S4
	4.1.3	Reaction temperature	S5
	4.2	Process options	S5
	4.2.	Minimal methanol content (process 1)	S5
	4.2.2	Further investigation of methanol content	S6
	4.2.3	High methanol content (process 2)	S6
	4.2.4	Rifamycin B oxidation in absolute methanol under argon	S6
	4.2.5	Rifamycin B to rifamycin S reaction in different solvent systems	S7

Materials and Methods

1.1 Chemicals and enzymes


Solvents, buffer components, APS, H_2O_2 and $FeSO_4$ were obtained from Sigma-Aldrich (Schnelldorf, Germany) and Roth (Karlsruhe, Germany). Rifamycin B, rifamycin O and rifamycin S were kindly provided by Sandoz (Kundl, Austria). Analysis was carried out on a Shimadzu LC/MS-2010 system or on an Agilent 1200 series HPLC system using a Chromolith Performance RP-18 endcapped 100-4.6 HPLC column (Merck KGaA, Darmstadt, Germany). The measurements were performed at room temperature with 10 mM ammonium acetate (pH 6.5)/MeOH in a ratio of 2/3 as mobile phase and a flow rate of 1 mL min $^{-1}$. The analytes were detected and quantified using mass spectrometry or the DAD area.

1.2 LC/MS and HPLC sample preparation

The organic phase obtained after extraction was evaporated under a nitrogen stream to yield a dry product mixture. 400 μ L of MeOH were added and thoroughly shaken to ensure solubilisation. Then 600 μ L of ammonium acetate buffer (10 mM, pH 6.5) were added and 1 μ L of the sample was analyzed via LC/MS or HPLC. The conversions were determined by LC/MS based on the response in the mass spectrometer.

2.1 Determination of oxidation reaction using Fenton's reagent

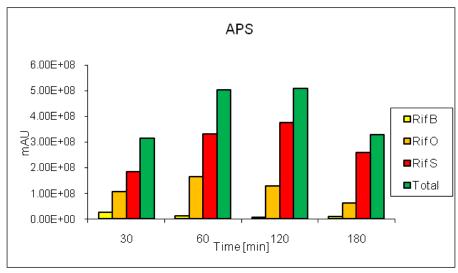

20 mg rifamycin B (0.026 mmol) were dissolved in 9.5 mL KPi buffer (10 mM, pH 8) containing 0.5 mL methanol and 0.6 mL H_2O_2 (0.15 % m/v). The reaction was per-formed in presence and absence of 0.5 mL 0.54 mM FeSO₄ solution (final concentration 0.027 mM) and was analyzed by LC/MS after 30, 60, 120 and 180 min (see figure S1).

Figure S1: LC/MS Analysis of the conversion of rifamycin B (rif B) to rifamycin O (rif O) and rifamycin S (rif S) with fenton's reagent FeSO₄ and hydrogen peroxide (top) and only hydrogen peroxide (bottom). Total shows the sum of all rifamycin compounds.

2.2 Determination of the oxidation reaction using ammonium persulfate (APS)

20 mg rifamycin B (0.026 mmol) were dissolved in 10 mL KPi buffer (10 mM, pH 8) containing 0.5 mL methanol. Then 6 mg ammonium persulfate (APS, 0.026 mmol) were added. The reaction was analyzed after 30, 60, 120 and 180 min.

Figure S2: LC/MS Analysis of the conversion of rifamycin B (rif B) to rifamycin O (rif O) and rifamycin S (rif S) with APS. Total shows the sum of all rifamycin compounds.

3 Solvent System

Investigation of solvent systems. To 10 mg rifamycin B (0.013 mmol) 500 μ L of the first solvent (acetone, acetonitrile, γ -butyrolactone, dioxane, methanol, THF, DMSO or DMF) were added and after intense mixing 500 μ L of the corresponding second solvent (vide supra) were added which led to a final rifamycin B concentration of 13 mM. After repeated mixing the sample was analyzed by eye and rated on a scale from -- (-2, insoluble) to +++ (+3, completely soluble) (see table S1).

	Table S1: Matrix	of investigated	solvent	combinations f	for diss	olving	rifamyo	cin B.
--	------------------	-----------------	---------	----------------	----------	--------	---------	--------

	Acetone	Acetonitrile	γ-Butyro- lactone	Dioxane	Methanol	THF	DMSO	DMF
Acetone	-2	-2	-1	-1	0	-2	2	2
Acetonitrile	-2	-2	-1	-2	0	-2	2	2
γ-Butyrolactone	1	1	1	-1	1	-1	2	3
Dioxane	-1	-1	1	-1	-1	-1	1	1
Methanol	1	-1	2	1	2	1	1	3
THF	-2	-2	1	-2	1	1	3	3
DMSO	2	2	2	2	2	2	2	3
DMF	2	2	2	2	2	2	2	3

4 Reaction Conditions

4.1 Rifamycin O acetal cleavage to form rifamycin S

4.1.1 Reaction under mild alkaline conditions

To 7.4 mL KPi buffer (100 mM, pH 7.5) 600 μ L rifamycin O solution (DMSO, 36 mM) were added to obtain a final concentration of 2.7 mM. The mixture turned orange and was stirred for 60 minutes at 60 °C. The products were extracted with 4 mL of ethyl acetate and analyzed by HPLC.

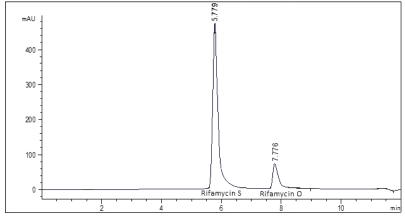
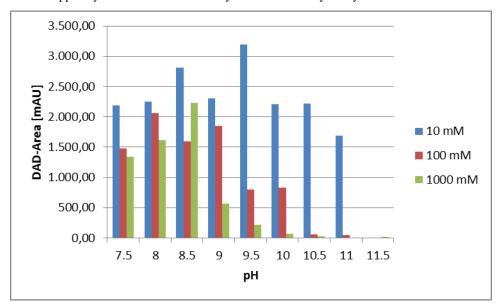



Figure S3: HPLC chromatogram after 1 hour treatment of rifamycin O with alkaline solution

4.1.2 Variation of buffer concentration and pH

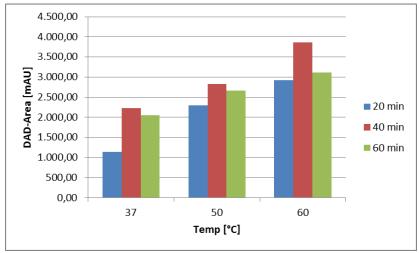

10 μL rifamycin O stock solution (DMSO, 100 mM) were mixed with 590 μL KPi buffer (for pH and concentration see Figure S4) to a final concentration of 1.7 mM. The mixtures were stirred at 37 °C for 60 minutes. The reactions were stopped by the addition of 1 mL ethyl acetate and analyzed by HPLC.

Figure S4: HPLC analysis of the rifamycin O to rifamycin S reaction at different KPi concentrations (10 mM, 100 mM and 1 M) and different pH values (7.5 to 11.5). The bars show the formation of rifamycin S.

4.1.3 Reaction temperature

 $10~\mu L$ of a rifamycin O stock solution (DMSO, 100~mM) were mixed with $590~\mu L$ of KPi buffer (pH 7.5 100~mM) to a final concentration of 1.7 mM. The mixtures were stirred at the temperatures and for the times corresponding Figure S5. The reactions were stopped by the addition of 1~mL ethyl acetate and analyzed by HPLC.

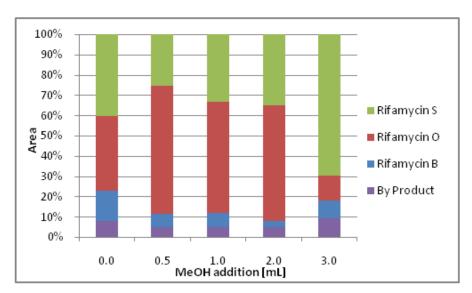


Figure S5: HPLC analysis of the rifamycin O to rifamycin S reaction at different temperatures and reaction times. The bars show the formation of rifamycin S.

4.2 Process options

4.2.1 Minimal methanol content (process 1)

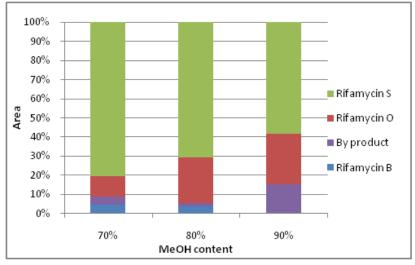

30 mg Rifamycin B (0.039 mmol) were dissolved in different amounts of methanol (see figure S6). The obtained solutions were mixed with 9 mg APS (0.039 mmol) and 5 mL KPi buffer (10 mM, pH 9.5). The mixtures were stirred at 60 °C for 4 h. Then 500 μ L of sample were extracted with 500 μ L ethyl acetate and analyzed by LC/MS. 5.6 mM (70 % yield) rifamycin S were obtained.

Figure S6: LC/MS analysis of reactions with varying MeOH content. 3.0 mL correspond to 37.5 % MeOH and shows a significant higher rifamycin S amount compared to 2.0 mL due to an improved solubilisation and hence hydrolysis of rifamycin O.

4.2.2 Further investigation of methanol content

150 mg Rifamycin B (0.198 mmol) were dissolved in 7, 8 or 9 mL MeOH. After addition of KPi (pH 9.5, 10 mM) to a final volume of 10 mL (19.8 mM final concentration of rifamycin B) and 45 mg APS the reaction was performed at 60 °C for 4 h and analyzed by LC/MS (see figure S7).

Figure S7: Product distribution at 70, 80 and 90 % v/v MeOH. The oxidation improves but hydrolysis decreases with higher MeOH content.

4.2.3 High methanol content (process 2)

40 mg rifamycin B (0.052 mmol) and 12 mg of APS (0.052 mmol) were added to 400 μ L MeOH and 4 μ L of KPi buffer (10 mM, pH 9.5, 1 % ν/ν). The obtained suspension was heated for 20 min at 60 °C. Then 40 μ L of the sample were quenched with 100 μ L KPi buffer (pH 9.5, 10 mM) and analyzed by LC/MS. 89.8 mM (68 % yield) rifamycin S were obtained (see figure S8).

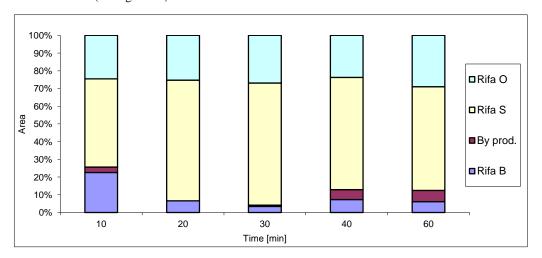


Figure S8: Analysis of the reaction from rifamycin B to rifamycin S in 99 % MeOH at different time points.

4.2.4 Rifamycin B oxidation in absolute methanol under Argon

40 mg rifamycin B (0.052 mmol) and 12 mg APS (0.052 mmol) were added under argon atmosphere to 400 μL absolute MeOH (dried with CaH₂). The obtained suspension was heated for 20 min at 60 °C. Then 40 μL of the sample were quenched with 100 μL KPi buffer (pH 9.5, 10 mM) and analyzed by LC/MS. (Data not shown)

4.2.5 Rifamycin B to rifamycin S reaction in different solvent systems

40 mg rifamycin B (0.052 mmol) and 12 mg of APS (0.052 mmol) were added to 400 μL - 1000 μL MeOH as well as to 1000 μL acetonitrile, DMSO, ethanol or isopropyl alcohol. The mixtures were shaken for 10 min at 70 °C and analyzed by LC/MS (see figure S9).

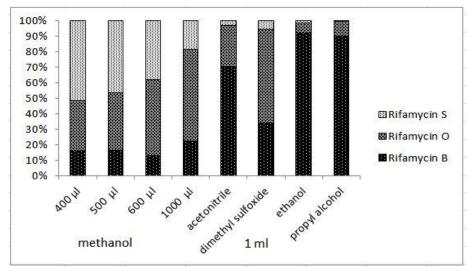


Figure S9: Product distribution of the reaction from rifamycin B to rifamycin S in different solvent systems.

Calculation of the technical process data:

Rifamycin O formation:

10,000 mL with a rifamycin B titre of 2,800 μ g/mL equals 28 g Rifamycin B After **4 h** 30.5 g product with 84 % rifamycin O equals **25.62 g Rifamycin O**. Yield = (25.62/753) / (28/755) = 91.7 %

Rifamycin S formation:

642.86 mL with a rifamycin O titre of 70,000 μ g/mL equals 45 g Rifamycin O After **1.8 h** 36 g product with 98 % rifamycin O equals **35.28 g Rifamycin S**. Yield = (35.28/695) / (45/753) = 85 %

Combined:

10,000 mL of rifamycin B broth can yield **25.62 g rifamycin O** in 4 h which can yield **20 g of rifamycin S** after **1.8 h** hydrolysis in additional 366 mL solvent. 10.366 l; 20 g product; 5.8 h \rightarrow **1.9 g L**⁻¹ and **0.33 g L**⁻¹h⁻¹ overall yield: 78 %

Calculation of process 1 data:

3.125 mL with a rifamycin B titre of 2,800 µg/mL equals 8.75 mg Rifamycin B. Addition of 1.875 mL MeOH to a final volume of 5 mL After 4 h the reaction yielded 70 % rifamycin S. ((0.00875/755)*0.7)*695 = 5.6 mg rifamycin S 0.005 l; 0.0056 g product; 4.0 h $\rightarrow 1.12$ g L⁻¹ and 0.28 g L⁻¹h⁻¹ overall yield: 70 %

Calculation of process 2 data:

0.4 mL with a rifamycin B titre of 100,000 μ g/mL equals 40 mg Rifamycin B. After **0.33 h** the reaction yielded **68 % rifamycin S**. $((0.040/755)*0.68)*695 = \mathbf{25} \text{ mg rifamycin S}$

0.0004 l; 0.025 g product; 0.33 h \rightarrow 62.5 g L⁻¹ and 189.4 g L⁻¹h⁻¹ overall yield: 68 %