Supporting Information

Design, Synthesis, and Biological Activity of Sulfonamide Analogues of Antofine and Cryptopleurine as Potent and Orally Active Antitumor Agents

Yongseok Kwon,^{†,I} Jayoung Song,^{‡,I} Honggu Lee,[†] Eun-Yeong Kim,[§] Kiho Lee,[§] Sang Kook Lee,^{*,‡} Sanghee Kim*,[†]

[†]Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National
University, Seoul 151-742, Korea [‡]Natural Products Research Institute, College of Pharmacy,
Seoul National University, Seoul 151-742, Korea [§]College of Pharmacy, Korea University,
Sejong 339-700, Korea

Contents

1. General methods for chemistry	S1
2. Synthesis of compounds (±)- 5b , (±)- 12b , and 13–15 ·····	····· S2–S9
3. HPLC analysis ·····	····· S10–S21
4 Antitumor activity of (R)-cryptopleurine (2) ······	S22

1. General Methods for Chemistry

All chemicals were reagent grade and used as purchased. All reactions were performed under an inert atmosphere of dry nitrogen using distilled dry solvents. Reactions were monitored via TLC analysis using silica gel 60 F-254 thin-layer plates. Compounds were visualized on the TLC plates under UV light and by spraying with either KMnO₄ or anisaldehyde solutions. Flash column chromatography was conducted on silica gel 60 (230–400 mesh). Melting points were measured using a Buchi B-540 melting point apparatus without correction. ¹H NMR (400, 500, or 600 MHz) and ¹³C NMR (75, 100, 125, or 150 MHz) spectra were recorded in δ units using residual CHCl₃ (δ 7.24 ppm) and CDCl₃ (δ 77.0 ppm) as an internal standard. The IR spectra were measured on a Fourier Transform Infrared spectrometer. High-resolution mass spectra (HRMS) were recorded using FAB. All final target compounds were characterized and determined to be least >95% pure by analytical HPLC (Agilent 1200 Series, Agilent Technologies, Palo Alto, CA, USA) using the following method. Mobile phase A consisted of 0.1% formic acid in HPLC-grade water. HPLC analysis was performed using a reverse-phase Agilent Eclipse Plus C18 column (4.6 × 150 mm, 3.5 μm) at a flow rate of 0.7 mL/min (30–100% aqueous MeOH with 0.1% formic acid over 20 min and MeOH with 0.1% formic acid from 20 to 25 min).

2. Synthesis of compounds (\pm) -5b, (\pm) -12b, and 13–15

2.1. Synthesis of compounds 13

Scheme S1. Synthesis of compounds 13.^a

^aReaction conditions: (a) InCl₃, CH₂Cl₂, 92%; (b) TFA, CH₂Cl₂; (c) 4-nitrophenylacetic acid, EDCI, DMAP, CH₂Cl₂, 83% (over two steps); (d) K₂CO₃, EtOH, reflux, 76%; (e) SnCl₂, EtOH, 75 °C; (f) Sodium bis(2-methoxyethoxy)aluminum hydride, 1,4-dioxane; (g) MeSO₂Cl, pyridine, CH₂Cl₂, 51% for **13** (over three steps).

for 1 h. The reaction mixture was filtered over a Celite pad, and the filtrate was concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 2:1) to give the desired ketone **S1** (12.6 g, 92%) as a pale yellow solid. The spectral data of **S1** were identical to those of **7b**.

⁽¹⁾ Su, B.; Chen, F.; Wang, L.; Wang, Q. Design, Synthesis, Antiviral Activity, and Structure-Activity Relationships (SARs) of T wo Types of Structurally Novel Phenanthroindo/quinolizidine Analogues. J. Agric. Food Chem. 2014, 62, 1233–1239.

⁽²⁾ Brown, D. S.; Charreau, P.; Hansson, T.; Ley, S. V. Substitution reactions of 2-phenylsulphonyl-piperidines and -pyrrolidines with carbon nucleophiles: Synthesis of the pyrrolidine alkaloids norruspoline and ruspolinone. *Tetrahedron* **1991**, 47, 1311–132 8.

OMe MeO O₂N O₂N S2 1-(3,4-Dimethoxyphenyl)-2-(1-(2-(4-nitrophenyl)acetyl)piperidin-2-yl)ethan-1-one (S2). To a stirred solution of S1 (11.3 g, 31.1 mmol) in 100 mL of CH₂Cl₂ was added TFA (25 mL) at room temperature, and the reaction mixture was stirred for 2 h. The reaction mixture was basified with 1 N NaOH and extracted with EtOAc. The solvent was used for the next reaction without further purification. To a stirred

concentrated in vacuo, and the crude amine was used for the next reaction without further purification. To a stirred solution of 4-nitrophenylacetic acid (6.76 g, 37.3 mmol) in 100 mL of CH_2Cl_2 was added EDCI (6.56 g, 34.2 mmol), DMAP (4.18 g, 34.2 mmol), and the obtained crude amine at room temperature, and the reaction mixture was stirred for 15 h. The reaction was quenched with 1 N HCl at room temperature, diluted with H_2O , and extracted with CH_2Cl_2 . The organic layer was dried over $MgSO_4$ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 1:3) to give an amide S2 (11.0 g, 83%) as a white waxy solid. The spectral data of S2 were identical to those of S3.

 $\begin{array}{c} \text{OMe} \\ \text{MeO} \\ \\ \text{O}_2 \\ \text{N} \\ \\ \text{S3} \\ \end{array}$

2-(3,4-Dimethoxyphenyl)-3-(4-nitrophenyl)-1,6,7,8,9,9a-hexahydro-4H-quinolizin-4-one (S3). To a stirred solution of amide S2 (6.31 g, 14.8 mmol) in 100 mL of EtOH was added K_2CO_3 (900 mg) at room temperature, and the reaction mixture was refluxed for 1.5 h. The reaction mixture was cooled to room temperature and concentrated in vacuo.

The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 1:1) to give an unsaturated amide **S3** (4.59 g, 76%) as a yellow solid. The spectral data of **S3** were identical to those of **9b**.

N-(4-(8-(3,4-Dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro-2H-quinolizin-7-

yl)phenyl)methanesulfonamide (13). To a stirred solution of S3 (75 mg, 0.18 mmol) in 4 mL of EtOH was added $SnCl_2$ (171 mg, 0.902 mmol) at room temperature, and the reaction mixture was stirred for 3 h at 75 °C. The reaction mixture was quenched

with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S4** as a yellow waxy solid. To a stirred solution of crude aniline **S4** in 10 mL of 1,4-dioxane was carefully added Red-Al (170 μ L, 0.54 mmol, > 60 wt. % in toluene) at 0 °C, and

the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched by successive addition of H_2O , a 15% NaOH aq. soln., and H_2O . The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S5** as a brown solid. To a stirred solution of crude quinolizidine **S5** in 3 mL of CH_2CI_2 was added pyridine (22 µL, 0.27 mmol) and methanesulfonyl chloride (21 µL, 0.27 mmol) at 0 °C, and the reaction mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H_2O , and extracted with CH_2CI_2 . The organic layer was dried over $MgSO_4$ and concentrated in vacuo. The crude product was separated by silica gel column chromatography ($CH_2CI_2/MeOH$, 15:1) to give an sulfonamide **13** (41 mg, 51%) as a yellow waxy solid. ¹H NMR (500 MHz, $CDCI_3$) δ 6.99 (dd, J = 8.8 Hz, 11.7 Hz, 4H), 6.61 (q, J = 8.4 Hz, 2H), 6.40 (d, J = 1.2 Hz, 1H), 3.76 (s, 3H), 3.60 (d, J = 16.6 Hz, 1H), 3.51 (s, 3H), 3.09 (d, J = 11.2 Hz, 1H), 3.04 (d, J = 16.6 Hz, 1H), 2.90 (s, 3H), 2.50 (d, J = 16.8 Hz, 1H), 2.41 (d, J = 9.4 Hz, 1H), 2.35 (d, J = 13.2 Hz, 1H), 2.11 (dd, J = 11.0 Hz, 15.0 Hz, 1H), 1.83 (d, J = 8.5 Hz, 2H), 1.70 (brs, 2H), 1.38–1.31 (m, 2H); ¹³C NMR (125 MHz, $CDCI_3$) δ 147.9, 147.4, 138.0, 134.9, 133.9, 132.5, 130.7, 130.3 (2C), 120.6, 120.4 (2C), 112.8, 110.5, 59.7, 57.8, 55.7, 55.5, 55.4, 39.3, 39.2, 33.0, 25.6, 24.1; IR ($CHCI_3$) v_{max} 3256, 2933, 2255, 1510, 1325, 1253, 1151, 1025, 910, 728 (cm⁻¹); HRMS (FAB): calcd. for $C_{24}H_{31}N_2O_4$ S [M+H]+ 443.2005, found 443.2006.

2.2. Synthesis of compounds (\pm) -5b, (\pm) -12b, 14, and 15

Scheme S2. Synthesis of compounds (\pm) -5b, (\pm) -12b, 14, and 15.

"Reaction conditions: (a) PIFA, BF₃·OEt₂, CH₂Cl₂, -10 °C, 95%; (b) SnCl₂, EtOH, 75 °C; (c) MeSO₂Cl, pyridine, CH₂Cl₂, 62% (d) LiAlH₄, THF, reflux, 77% for (\pm)-**5b**; (e) PrSO₂Cl, pyridine, CH₂Cl₂, 57% for **14a** (over three steps); (f) PhSO₂Cl, pyridine, CH₂Cl₂, 62% for **14b** (over three steps) (g) AcCl, CH₂Cl₂, 55% for **15a** (over three steps); (h) MeCO₂Cl, pyridine, CH₂Cl₂, 49% for **15b** (over three steps).

2,3-Dimethoxy-6-nitro-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-9-one (S6). To a stirred solution of S3 (2.10 g, 5.14 mmol) in 40 mL of CH₂Cl₂ was added phenyliodine(III) bis(trifluoroacetate) (PIFA) (2.66 g, 6.17 mmol) and BF₃·OEt₂ (950 μ L, 7.70 mmol) at -10 °C, and the reaction mixture was stirred for

30 min at –10 °C. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/EtOAc, 10:1) to give an amide **S6** (1.98 g, 95%) as a yellow solid. The spectral data of **S6** were identical to those of **10b**.

N-(2,3-Dimethoxy-9-oxo-11,12,13,14,14a,15-hexahydro-9H-

dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide $((\pm)-12b)$. To a stirred solution of **S6** (95 mg, 0.23 mmol) in 8 mL of EtOH was added SnCl₂ (218 mg, 1.15 mmol) at room temperature, and the reaction mixture was stirred for 6 h at

75 °C. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow solid. To a stirred solution of crude aniline **S7** in 3 mL of CH₂Cl₂ was added pyridine (28 μL, 0.35 mmol) and methanesulfonyl chloride (27 μL, 0.35 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 40:1) to give **14** (65 mg, 62%) as a pale yellow solid. The spectral data of (±)-**12b** were identical to those of **12b**.

MeO OMe
N
O O
Me
S
N
H
(+)-5b

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide ((\pm)-5b). To a stirred solution of (\pm)-12b (60 mg, 0.13 mmol) in 6 mL of THF was added LiAlH₄ (200 μ L, 0.20 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 2 h. The reaction mixture

was quenched by successive addition of H_2O , a 15% NaOH aq. soln., and H_2O . The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give the desired product **5b** (44 mg, 77%) as a pale yellow solid. The spectral data of (\pm)-**5b** were identical to those of **5b**.

MeO OMe

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)propane-2-sulfonamide (14a). To a stirred solution of S6 (81 mg, 0.20 mmol) in 4 mL of EtOH was added SnCl₂ (190 mg, 1.00 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H_2O , and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow waxy solid. To a stirred solution of crude aniline **S7** in 10 mL of THF was carefully added LiAlH₄ (400 μ L, 0.40 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H_2O , a 15% NaOH aq. soln., and H_2O . The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S8** as a brown solid. To a stirred solution of crude

quinolizidine S8 in 3 mL of CH₂Cl₂ was added pyridine (32 μ L, 0.40 mmol) and 2-propanesulfonyl chloride (45 μ L, 0.40 mmol) at 0 °C, and the reaction mixture was stirred for 8 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a sulfonamide **14a** (53 mg, 57%) as a pale yellow solid. mp 255.1–257.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.67 (s, 1H), 7.63 (d, J = 8.7 Hz, 1H), 7.27–7.22 (m, 2H), 4.32 (d, J = 15.3 Hz, 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.55 (d, J = 15.3 Hz, 1H), 3.36–3.25 (m, 2H), 3.10 (dd, J = 2.9 Hz, 16.4 Hz, 1H), 2.98–2.91 (m, 1H), 2.42–2.37 (m, 1H), 2.34–2.28 (m, 1H), 2.04 (d, J = 10.0 Hz, 1H), 1.90 (d, J = 12.7 Hz, 1H), 1.88–1.81 (m, 2H), 1.67–1.58 (m, 2H), 1.40 (dd, J = 4.1 Hz, 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 148.5, 134.3, 129.2, 128.7, 127.2, 126.2, 125.9, 125.7, 123.4, 120.0, 115.2, 103.5 (2C), 57.8, 56.2, 55.9, 55.7, 55.6, 52.4, 34.3, 33.1, 25.5, 24.1, 16.7, 16.5; IR (CHCl₃) ν _{max} 2932, 2864, 2087, 1736, 1609, 1513, 1416, 1304, 1256, 1134, 1036, 967, 785, 688 (cm⁻¹); HRMS (FAB): calcd. for C₂₆H₃₃N₂O₄S [M+H]⁺ 469.2161, found 469.2157.

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)benzenesulfonamide (**14b**). To a stirred solution of **S6** (81 mg, 0.20 mmol) in 4 mL of EtOH was added SnCl₂ (190 mg, 1.00 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow waxy solid. To a stirred solution of crude aniline **S7** in 10 mL of THF was carefully added LiAlH₄ (400 μ L, 0.40 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S8** as a brown solid. To a stirred solution of crude quinolizidine **S8** in 3 mL of CH₂Cl₂ was added pyridine (32 μ L, 0.40 mmol) and benzenesulfonyl chloride (51 μ L, 0.40 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a sulfonamide **14b** (62 mg, 62%) as a white solid. mp 272.8–273.9 °C; ¹H NMR

(500 MHz, (CD₃)₂SO) δ 8.20 (s, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.72 (d, J = 9.1 Hz, 1H), 7.70 (s, 1H), 7.59–7.52 (m, 3H), 7.33 (d, J = 8.8 Hz, 1H), 7.23 (s, 1H), 4.25 (d, J = 15.9 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.36 (d, J = 15.8 Hz, 1H), 3.11 (d, J = 10.7 Hz, 1H), 3.04 (d, J = 15.4 Hz, 1H), 2.67 (dd, J = 10.7 Hz, 16.2 Hz, 1H), 2.22–2.16 (m, 1H), 2.12 (t, J = 11.1 Hz, 1H), 1.91 (d, J = 10.1 Hz, 1H), 1.76 (d, J = 9.9 Hz, 1H), 1.68 (d, J = 12.2 Hz, 1H), 1.57 (q, J = 11.1 Hz, 1H), 1.38–1.29 (m, 2H); ¹³C NMR (125 MHz, (CD₃)₂SO) δ 149.4, 148.4, 139.7, 135.2, 132.9, 129.3 (2C), 128.5, 126.7 (2C), 126.0, 125.7, 125.2, 124.9, 123.8, 122.4, 119.0, 112.8, 104.2, 103.2, 57.0, 55.5 (2C), 55.3, 55.2, 33.9, 33.0, 25.4, 23.9; IR (CHCl₃) υ _{max} 2930, 1738, 1611, 1513, 1256, 1154, 1090, 1041, 970, 869, 690 (cm⁻¹); HRMS (FAB): calcd. for C₂₉H₃₁N₂O₄S [M+H]⁺ 503.2005, found 503.2018.

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)acetamide (15a). To a stirred solution of S6 (74 mg, 0.18 mmol) in 4 mL of EtOH was added SnCl₂ (171 mg, 1.90 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction mixture was quenched

with sat. NaHCO3 solution, diluted with H2O, and extracted with EtOAc. The organic layer was dried over MgSO4 and concentrated in vacuo to afford crude aniline S7 as a yellow waxy solid. To a stirred solution of crude aniline S7 in 10 mL of THF was carefully added LiAlH₄ (360 μL, 0.36 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine S8 as a brown solid. To a stirred solution of crude quinolizidine S8 in 3 mL of CH₂Cl₂ was added acetyl chloride (26 μL, 0.36 mmol) at 0 °C, and the reaction mixture was stirred for 5 h at room temperature. The reaction mixture was quenched with sat. NaHCO3 solution, diluted with H2O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give an amide 15a (40 mg, 55%) as a pale yellow solid. mp 208.7–209.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.81 (s, 1H), 7.89 (s, 1H), 7.72 (d, J = 8.7Hz, 1H), 7.56 (brs, 1H), 7.47 (d, J = 9.2 Hz, 1H), 7.22 (s, 1H), 4.45 (d, J = 15.5 Hz, 1H), 4.07 (s, 3H), 4.04 (s, 3H), 3.62 (d, J = 15.5 Hz, 1H), 3.31 (d, J = 11.0 Hz, 1H), 3.10 (d, J = 13.3 Hz, 1H), 2.92 (dd, J = 10.6 Hz, 16.0 Hz, 1H), 2.45 (t, J = 10.1 Hz, 1H), 2.31 (td, J = 4.1 Hz, 11.0 Hz, 1H), 2.25 (s, 3H), 2.04 (d, J = 14.2 Hz, 1H), 1.88 $(d, J = 12.8 \text{ Hz}, 1\text{H}), 1.81 - 1.75 \text{ (m, 2H)}, 1.61 - 1.41 \text{ (m, 2H)}; {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3 + \text{CD}_3 \text{COOD}) \delta 170.3,$ 149.2, 148.9, 136.3, 128.9, 124.4, 124.0, 123.6, 123.4, 122.3, 118.7, 117.4, 111.9, 103.5, 103.4, 66.4, 65.2, 58.1,

55.8 (2C), 35.9, 30.9, 29.3, 27.0, 23.9; IR (CHCl₃) υ_{max} 2983, 2234, 1733, 1301, 1031, 985, 911, 731 (cm⁻¹); HRMS (FAB): calcd. for $C_{25}H_{29}N_2O_3$ [M+H]⁺ 405.2178, found 405.2183.

Methyl (2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-

dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)carbamate (15b). To a stirred solution of **S6** (74 mg, 0.18 mmol) in 4 mL of EtOH was added SnCl₂ (171 mg, 1.90 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline S7 as a yellow waxy solid. To a stirred solution of crude aniline S7 in 10 mL of THF was carefully added LiAlH₄ (360 µL, 0.36 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine S8 as a brown solid. To a stirred solution of crude quinolizidine S8 in 3 mL of CH₂Cl₂ was added pyridine (29 μL, 0.36 mmol) and methyl chloroformate (28 μL, 0.36 mmol) at 0 °C, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a carbamate **15b** (37 mg, 49%) as a pale yellow solid. mp 215.2–216.5 °C; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.52 \text{ (brs, 1H)}, 7.84 \text{ (s, 1H)}, 7.67 \text{ (d, } J = 8.8 \text{ Hz, 1H)}, 7.41 \text{ (dd, } J = 1.7 \text{ Hz, } 8.8 \text{ Hz, 1H)}, 7.18 \text{ (do)}$ (s, 1H), 7.07 (brs, 1H), 4.37 (d, J = 15.5 Hz, 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.81 (s, 3H), 3.55 (d, J = 15.6 Hz, 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.81 (s, 3H), 3.811H), 3.26 (d, J = 11.0 Hz, 1H), 3.04 (dd, J = 3.2 Hz, 16.4 Hz, 1H), 2.85 (dd, J = 10.5 Hz, 16.1 Hz, 1H), 2.38-2.30(m, 1H), 2.30-2.23 (m, 1H), 2.01 (d, J = 13.3 Hz, 1H), 1.87 (d, J = 15.2 Hz, 1H), 1.80-1.71 (m, 2H), 1.59-1.37(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 149.4, 148.4, 135.3, 129.4, 126.2, 125.5. 125.2 (2C), 123.6, 123.3, 117.8, 111.2, 103.9, 103.7, 57.5, 56.2, 55.94, 55.89, 55.8, 52.4, 34.6, 33.6, 25.8, 24.3; IR (CHCl₃) v_{max} 2985, 2936, 1732, 1373, 1238, 1044, 910, 727 (cm⁻¹); HRMS (FAB): calcd. for C₂₅H₂₉N₂O₄ [M+H]⁺ 421.2127, found 421.2133.

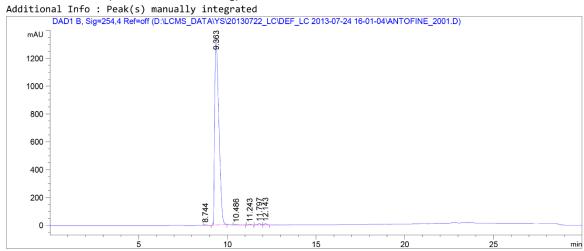
3. HPLC analysis

HPLC analysis used an Agilent 1200 Series HPLC (Agilent Technologies, Palo Alto, CA, USA). Mobile phase A consisted of 0.1% formic acid in HPLC grade water. The HPLC analysis was performed using a reversed-phase Agilent Eclipse Plus C18 column (4.6×150 mm, 3.5 μ m) at a flow rate of 0.7 mL/min (30-100% aqueous MeOH with 0.1% formic acid over 20 min and MeOH with 0.1% formic acid from 20 to 25 min).

Table S1. Purity of all biologically evaluated compounds.

Compound	Retention Time, t_R (min)	Purity (%)
(R)-antofine (1)	9.363	98.6
(R)-cryptopleurine (2)	9.606	99.6
5a	6.708	97.7
5b	7.166	98.0
(±)- 5b	7.205	97.8
(\pm) -12b	16.926	99.9
13	7.392	98.8
14a	7.426	96.0
14b	9.300	98.2
15a	9.340	96.1
15b	9.599	97.1

(R)-Antofine (1)


Seq. Line: 9 Acq. Operator : SYSTEM Acq. Instrument : Agilent_HPLC Location : Vial 45 Injection Date : 7/25/2013 4:30:17 AM Inj : 1

Inj Volume : 10.000 μl

: C:\CHEM32\1\DATA\DEF_LC 2013-07-24 16-01-04\DEFAULT.M

Last changed : 7/24/2013 4:01:04 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M : 3/26/2015 5:10:56 PM Last changed

(modified after loading)

_____ Area Percent Report

Sorted By Signal : Multiplier 1.0000 Dilution 1.0000 :

Use Multiplier & Dilution Factor with ISTDs

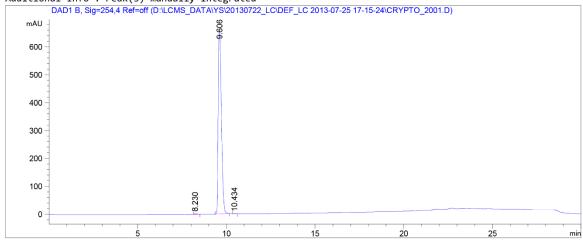
Signal 1: DAD1 B, Sig=254,4 Ref=off

Pe	eak	RetTime	Type	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	%
	1	8.744	BB	0.1308	35.57224	3.96080	0.1613
	2	9.363	BB	0.2582	2.17394e4	1333.47498	98.5748
	3	10.486	BB	0.1548	32.25402	3.06459	0.1463
	4	11.243	BB	0.1527	58.20122	6.02334	0.2639
	5	11.797	BB	0.1620	104.48985	9.83407	0.4738
	6	12.143	BB	0.1434	83.78770	9.45482	0.3799

Totals : 2.20537e4 1365.81260

(R)-Cryptopleurine (2)

Acq. Operator : SYSTEM Seq. Line : 9
Acq. Instrument : Agilent_HPLC Location : Vial 66
Injection Date : 7/26/2013 5:45:06 AM Inj : 1


Inj Volume : 10.000 μ l

Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2013-07-25 17-15-24\DEFAULT.M

Last changed : 7/25/2013 5:15:24 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 3/26/2015 5:10:56 PM

(modified after loading)

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

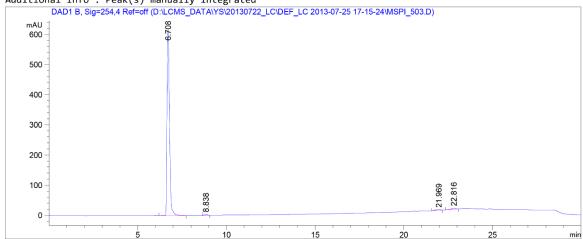
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.230	BB	0.1140	23.16213	2.75635	0.2767
2	9.606	BB	0.2004	8341.59766	664.58508	99.6360
3	10.434	BB	0.1127	7.31297	1.03186	0.0873

Totals: 8372.07275 668.37330

$(R)-N-(2,3-{\rm Dimethoxy}-9,11,12,13,13a,14-{\rm hexahydrodibenzo}[f,h] {\rm pyrrolo}[1,2-b] {\rm isoquinolin-6-line}(f,h) {\rm pyrrolo}[1,2-b] {\rm py$ yl)methanesulfonamide (5a)


Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : Agilent_HPLC Location : Vial 56 Injection Date : 7/25/2013 6:18:48 PM Inj: 3 Inj Volume : 10.000 μl

: C:\CHEM32\1\DATA\DEF_LC 2013-07-25 17-15-24\DEFAULT.M Acq. Method : 7/25/2013 5:15:24 PM by SYSTEM Last changed

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 3/26/2015 5:10:56 PM

(modified after loading)

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By Signal Multiplier 1.0000 : 1.0000

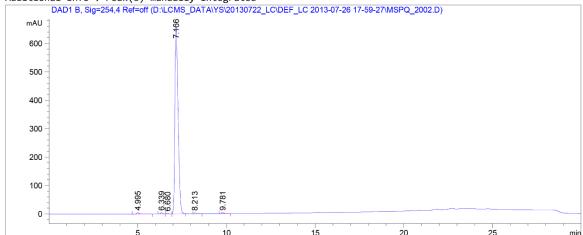
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.708	BB	0.1554	6090.07227	615.60669	97.7121
2	8.838	BB	0.1605	38.06167	3.07385	0.6107
3	21.969	BB	0.2841	44.42401	2.10574	0.7128
4	22.816	ВВ	0.2447	60.10852	3.63843	0.9644

Totals : 6232.66646 624.42471

(R)-N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide (5b)


Acq. Operator : SYSTEM Seq. Line : 8 Acq. Instrument : Agilent_HPLC Location : Vial 78 Injection Date : 7/27/2013 5:26:43 AM Inj : 2 Inj Volume : 10.000 μ l

: C:\CHEM32\1\DATA\DEF_LC 2013-07-26 17-59-27\DEFAULT.M

Last changed : 3/26/2015 5:10:56 PM (modified after loading)

Acq. Method

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Use Multiplier & Dilution Factor with ISTDs

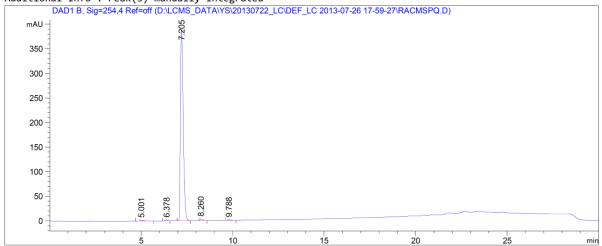
Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak RetTi	ime Type Widt	th Area	Height	Area
# [mir	n] [mir	n] [mAU*s]	[mAU]	%
1 4.9	995 BB 0.15	561 56.416	32 5.21959	0.6767
2 6.3	339 BB 0.12	231 33.452	09 4.10218	0.4012
3 6.6	580 BB 0.16	95 12.737	42 1.78007	0.1528
4 7.1	166 BB 0.18	877 8172.479	49 654.23041	98.0200
5 8.2	213 BB 0.12	222 26.788	00 2.94296	0.3213
6 9.7	781 BB 0.16	508 35.690	16 3.33533	0.4281

Totals: 8337.56348 671.61054

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide ((\pm)-5b)

Acq. Operator : SYSTEM Seq. Line : 7 Acq. Instrument : Agilent_HPLC Location : Vial 77 Injection Date : 7/27/2013 4:24:19 AM Inj : 3 Inj Volume : 10.000 μ l


Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2013-07-26 17-59-27\DEFAULT.M

Last changed : 7/26/2013 5:59:27 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 8/8/2015 3:01:36 PM

(modified after loading)

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

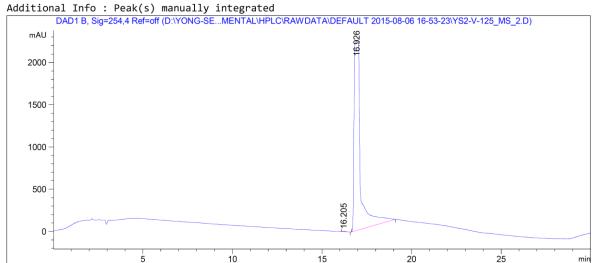
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.001	ВВ	0.1621	26.86090	2.37301	0.6370
2	6.378	ВВ	0.1218	17.20870	2.13966	0.4081
3	7.205	ВВ	0.1635	4123.65967	389.67722	97.7976
4	8.260	ВВ	0.1094	31.10304	3.88670	0.7376
5	9.788	BB	0.1615	17.69142	1.64400	0.4196

Totals: 4216.52374 399.72059

N-(2,3-Dimethoxy-9-oxo-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide ((\pm)-12b)


Acq. Operator : SYSTEM Seq. Line : 2
Acq. Instrument : Agilent_HPLC Location : Vial 31
Injection Date : 8/6/2015 5:25:31 PM Inj : 1

Inj Volume : 10.000 μl

Different Inj Volume from Sequence ! Actual Inj Volume : 5.000 μ l Acq. Method : D:\LC DATA\DEFAULT 2015-08-06 16-53-23\DEFAULT.M

Last changed : 8/6/2015 4:53:23 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 8/13/2015 11:14:12 AM

(modified after loading)

Area Percent Report

Sorted By : Signal

Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

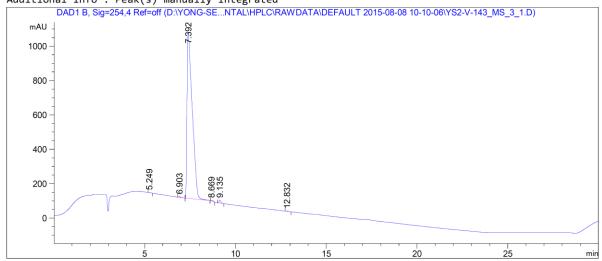
Signal 1: DAD	1 B,	Sig=254,4	Ref=off
---------------	------	-----------	---------

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.205	ВВ	0.1519	74.54596	7.50295	0.1323
2	16.926	ВВ	0.2977	5.62724e4	2250.84229	99.8677

Totals: 5.63469e4 2258.34523

N-(4-(8-(3,4-Dimethoxyphenyl)-6-oxo-1,3,4,6,9,9a-hexahydro-2*H*-quinolizin-7-yl)phenyl)methanesulfonamide (13)

Acq. Operator : SYSTEM Seq. Line : 6
Acq. Instrument : Agilent_HPLC Location : Vial 32
Injection Date : 8/8/2015 12:46:51 PM Inj : 1


Inj Volume : 10.000 μl

Acq. Method : D:\LC DATA\DEFAULT 2015-08-08 10-10-06\DEFAULT.M

Last changed : 8/8/2015 10:10:06 AM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 8/13/2015 10:44:50 AM

(modified after loading)

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

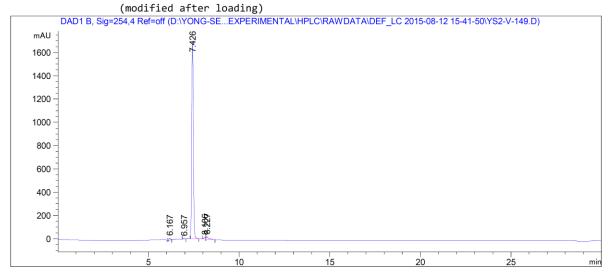
Use Multiplier & Dilution Factor with ISTDs $\,$

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.249	ВВ	0.1108	11.41037	1.60812	0.0589
2	6.903	ВВ	0.1324	36.80860	4.11376	0.1900
3	7.392	ВВ	0.2809	1.91495e4	967.74664	98.8344
4	8.669	ВВ	0.1266	37.98580	3.93621	0.1961
5	9.135	ВВ	0.1060	118.81143	17.31701	0.6132
6	12.832	BB	0.1373	20.81833	2.35164	0.1074

Totals: 1.93754e4 997.07338

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)propane-2-sulfonamide (14a)



Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : Agilent_HPLC Location : Vial 62
Injection Date : 8/12/2015 3:42:57 PM Inj : 1

Inj Volume : 10.000 μl

Different Inj Volume from Sequence ! Actual Inj Volume : 5.000 μ l Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2015-08-12 15-41-50\DEFAULT.M

Last changed : 8/12/2015 3:41:52 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 8/13/2015 11:14:12 AM

Area Percent Report

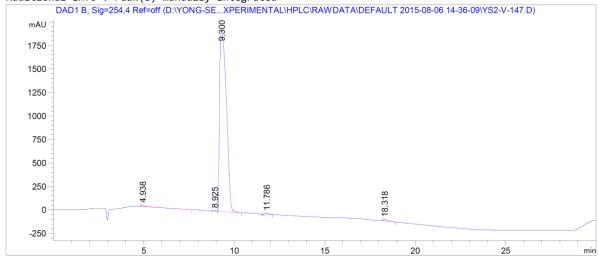
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

RetTime	Type	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
6.167	ВВ	0.0808	115.17827	21.40039	1.0240
6.957	ВВ	0.0868	27.48657	5.10595	0.2444
7.426	ВВ	0.1000	1.07931e4	1701.98499	95.9555
8.106	BV	0.0927	98.29811	15.77552	0.8739
8.227	VB	0.1381	213.96376	21.50491	1.9022
	[min] 6.167 6.957 7.426 8.106	[min] 6.167 BB 6.957 BB 7.426 BB	[min] [min]		[min] [min] [mAU*s] [mAU] 6.167 BB

Totals: 1.12480e4 1765.77176



N-(2,3-dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)benzenesulfonamide (14b)

Acq. Method : D:\LC DATA\DEFAULT 2015-08-06 14-36-09\DEFAULT.M

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

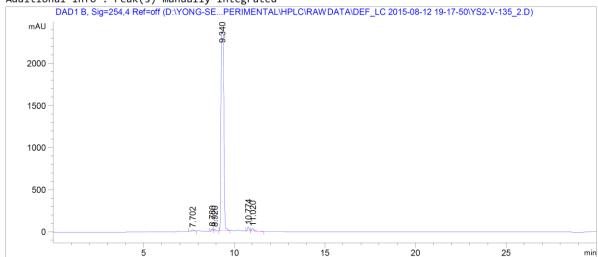
Use Multiplier & Dilution Factor with ISTDs $\,$

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.938	ВВ	0.1857	238.50041	17.64525	0.4696
2	8.925	BV	0.1118	65.58762	8.92004	0.1291
3	9.300	VB	0.4467	4.98822e4	1935.03870	98.2141
4	11.786	ВВ	0.2580	370.95477	20.60879	0.7304
5	18.318	ВВ	0.1839	232.00378	17.59076	0.4568

Totals: 5.07893e4 1999.80353

$N-(2,3-\text{Dimethoxy-}11,12,13,14,14a,15-\text{hexahydro-}9H-\text{dibenzo}[f,h] \text{pyrido}[1,2-b] \text{isoquinolin-}6-\text{yl}) \text{acetamide} \tag{15a}$



Acq. Operator : SYSTEM Seq. Line : 2
Acq. Instrument : Agilent_HPLC Location : Vial 72
Injection Date : 8/12/2015 7:50:07 PM Inj : 1

Inj Volume : 10.000 μl

Different Inj Volume from Sequence ! Actual Inj Volume : 5.000 μ l Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2015-08-12 19-17-50\DEFAULT.M

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

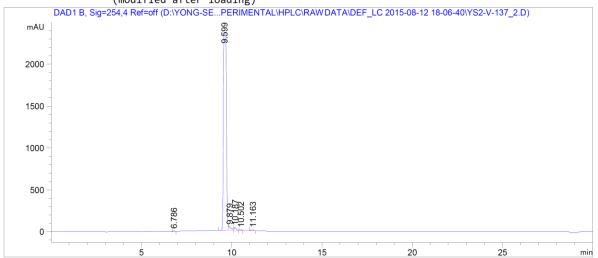
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.702	ВВ	0.1255	138.23685	15.28483	0.5233
2	8.780	BV	0.0918	160.14354	26.75917	0.6062
3	8.920	VB	0.1101	149.70096	20.27711	0.5667
4	9.340	BB	0.1753	2.53767e4	2363.65649	96.0569
5	10.774	BV	0.1011	312.07095	47.23480	1.1813
6	11.020	VB	0.1418	281.54953	29.38539	1.0657

Totals: 2.64184e4 2502.59779

Methyl (2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)carbamate (15b)


Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : Agilent_HPLC Location : Vial 52
Injection Date : 8/12/2015 6:07:44 PM Inj : 1

Inj Volume : 10.000 μl

Different Inj Volume from Sequence ! Actual Inj Volume : 3.000 μ l Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2015-08-12 18-06-40\DEFAULT.M

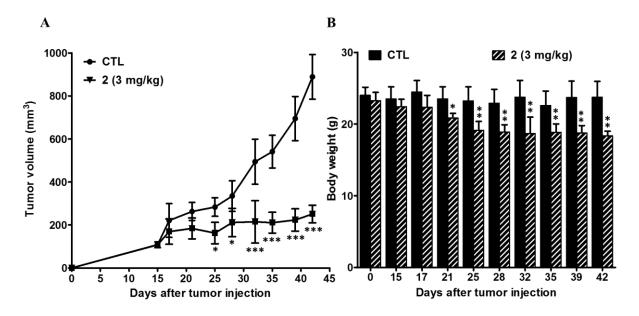
Last changed : 8/12/2015 6:06:42 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 8/13/2015 11:14:12 AM

(modified after loading)

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.786	BB	0.0973	44.09681	7.01427	0.1565
2	9.599	BV	0.1591	2.73616e4	2362.70752	97.0841
3	9.879	VV	0.1277	397.97348	43.12104	1.4121
4	10.187	VB	0.1184	243.24095	30.71501	0.8631
5	10.502	BB	0.0973	46.50497	7.40675	0.1650
6	11.163	BB	0.1089	89.99634	12.08225	0.3193

Totals: 2.81834e4 2463.04684

4. Antitumor activity of (*R*)-cryptopleurine (2)

Figure S1. Antitumor activity of **2. A**) The antitumor activity of **2.** Caki-1 cells $(1 \times 10^7 \text{ cells/mouse})$ were subcutaneously injected into the flanks of nude mice. Treatment with the test compounds was initiated when tumor volumes reached ~100 mm³. **2** (3 mg/kg body weight) was orally administered five times per week in a volume of 200 μ L. The control group was treated with an equal volume of vehicle. Tumor volumes were measured with a caliper every 2-3 days. **B**) The body weight change in the tumor xenograft model. Body weights were monitored every 2-3 days. *p < 0.05, **p < 0.01, ***p < 0.01 by t-test.