

Supporting Information
for

**Harnessing Excited-State Intramolecular Proton Transfer Reaction via a
Series of Amino-Type Hydrogen Bonding Molecules**

Huan-Wei Tseng,[†] Jun-Qi Liu,[‡] Yi-An Chen,[†] Chi-Min Chao,^{*,‡,§} Kuan-Miao Liu,^{*,‡,§}
Chi-Lin Chen,[†] Tzu-Chieh Lin,[†] Cheng-Hsien Hung,[‡] Yen-Lin Chou,[‡] Ta-Chun Lin,[‡]
Tian-Lin Wang,[†] and Pi-Tai Chou^{*,†}

[†] *Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan*

[‡] *School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, 40201, Taiwan*

[§] *Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan*

Contents	Page
Detailed Synthesis and Characterizations	S-3
Table S1 Computed frontier orbitals for the titled compounds in their normal form involved in the first singlet excitation	S-6
Table S2 The computed corresponding energy differences (ΔE and ΔE^* , in kcal/mol) between the normal form and tautomer form species in the ground (S_0) and the lowest excited state (S_1) for the titled compounds	S-7
Table S3 Computed energy differences (ΔE^*), experimental ^1H NMR chemical shifts of the N–H hydrogens in CDCl_3 , and computed N–H bond distances in the S_0 and S_1 states for the titled compounds	S-8
Table S4 Observed emission lifetimes (τ_{obs}) by uPL for CN-PBT-NHMe and CN-PBT-NDMe in CH_2Cl_2 at room temperature	S-9
Figure S1 Comparisons between the uPL kinetic traces of CN-PBT-NHMe and CN-PBT-NDMe in dry CH_2Cl_2	S-9
Figure S2 Normalized steady-state absorption and emission spectra for CN-PBT-NHMe in aprotic solvents at room temperature	S-10
Figure S3 Steady-state emission spectrum for the powder of CN-PBT-NHMe excited at 380 nm	S-10

Detailed Synthesis and Characterizations

All reactions were carried out in oven- or flame-dried glassware under a positive pressure of argon. *N,N*-dimethylacetamide (DMAc), pyridine, chlorobenzene were distilled over calcium hydride. All reagents were purchased commercially and used without further purification. TLC was performed on Merck 5735 DC-plastikfolien Kieselgel 60 F254 precoated plates. Flash column chromatography was performed on silica gel (Merck 7736 Kieselgel 60H). ¹H-NMR (7.24 ppm for residual CHCl₃ in the CDCl₃ solvent as internal standard) and ¹³C-NMR (77.0 ppm for CDCl₃ as internal standard) spectra were recorded on a Varian Unity-400 MHz or -600 MHz instrument. Coupling constants were reported in Hertz. IR spectra were recorded using a Bomen MB-100FT spectrometer. HRMS data was obtained from an FOEL JMS-HX110 spectrometer. Single crystal structure was determined on a Bruker AXS SMART-1000 instrument.

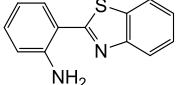
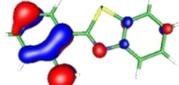
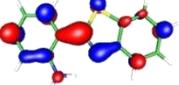
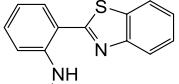
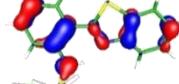
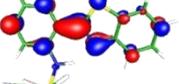
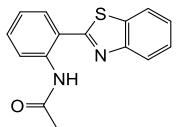
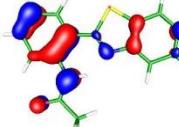
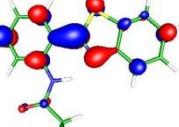
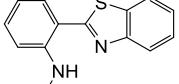
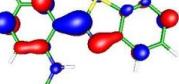
2-(2'-aminophenyl)benzothiazole (PBT-NH₂). To a solution of isatoic anhydride (1.0 g, 6.13 mmol) in chlorobenzene (6 mL) was added ZnCl₂ (297 mg, 1.84 mmol) and 2-aminothiophenol (0.85 mL, 7.97 mmol). After refluxing for 5 h, the solvent was removed under reduced pressure. The crude product was purified on silica gel to provide 943 mg (4.17 mmol, 68% yield) of **PBT-NH₂** as a yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm) 7.95 (dd, *J* = 8.8, 0.4 Hz, 1H), 7.86 (dd, *J* = 8.0, 0.4 Hz, 1H), 7.69 (dd, *J* = 8.0, 0.4 Hz, 1H), 7.46-7.41 (m, 1H), 7.36-7.31 (m, 1H), 7.25-7.18 (m, 1H), 6.79-6.71 (m, 2H), 6.38 (bs, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) 169.1, 153.6, 146.6, 133.1, 131.4, 130.2, 125.9, 124.7, 122.3, 121.1, 116.8, 116.7, 115.1. IR (KBr, cm⁻¹) 3466, 3290, 1612, 1596, 1582, 1555, 1493, 1454, 1250, 1223, 744, 728. HRMS (EI, m/z) calcd for C₁₃H₁₀N₂S, 226.0565; found, 226.0568.

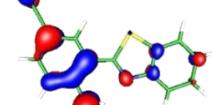
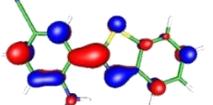
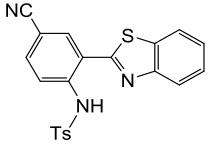
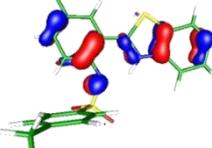
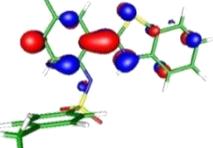
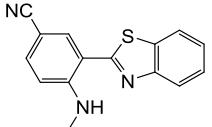
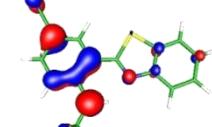
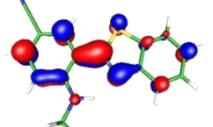
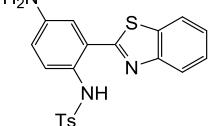
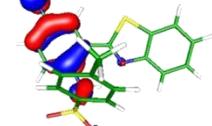
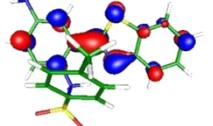
2-(2'-tosylaminophenyl)benzothiazole (PBT-NHTs). A mixture of **PBT-NH₂** (80 mg, 0.35 mmol) and tosyl chloride (101 mg, 0.53 mmol) in pyridine (2.5 mL) was stirred at room temperature for 15 h. Aqueous HCl was added and the mixture was extracted with dichloromethane. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified on silica gel to give 128 mg (0.34 mmol, 95% yield) of **PBT-NHTs** as a yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm) 12.20 (s, 1H), 8.11 (dd, *J* = 8.8, 0.4 Hz, 1H), 7.87 (dd, *J* = 8.0, 0.4 Hz, 1H), 7.75 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.70 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.64-7.61 (m, 2H), 7.56-7.51 (m, 1H), 7.45-7.41 (m, 1H), 7.38-7.33 (m, 1H), 7.12-7.07 (m, 1H), 7.04-7.01 (m, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 167.8, 152.5, 143.5, 136.9, 136.4, 133.1, 131.7, 129.8, 129.4, 127.0, 126.7, 125.9, 123.7, 123.0, 121.2, 120.3, 120.2, 21.4. IR (KBr, cm⁻¹) 3061, 2918, 1580, 1507, 1487, 1437, 1343, 1295, 1212, 1106, 1091, 912, 813, 758. HRMS (EI, m/z) calcd for C₂₀H₁₆N₂O₂S₂, 380.0653; found, 380.0659.

2-(2'-acetylaminophenyl)benzothiazole (PBT-NHAc). A mixture of **PBT-NH₂** (112 mg, 0.50 mmol) and acetyl anhydride (0.11 mL, 1.0 mmol) in dichloromethane (5.0 mL) was stirred at room temperature for 40 min. The solvent was removed and the crude product was washed with ethylacetate to give 128 mg (0.48 mmol, 96% yield) of **PBT-NHAc** as a white solid. ¹H NMR (400 MHz, CDCl₃, ppm) 12.42 (s, 1H), 8.76 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.51-7.37 (m, 3H), 7.10 (dd, *J* = 7.6, 7.6 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 169.2, 168.7, 152.7, 138.0, 133.2, 131.9, 129.7, 126.5, 125.7, 123.0, 122.5, 121.4, 120.6, 118.7, 25.5. IR (KBr, cm⁻¹) 3060, 2850, 1697, 1592, 1492, 1443, 1303, 758. HRMS (EI, m/z) calcd for C₁₅H₁₂N₂OS, 268.0670; found, 268.0667.

2-(2'-methylaminophenyl)benzothiazole (PBT-NHMe). To a solution of *N*-methylisatoic anhydride (975 mg, 5.50 mmol) in chlorobenzene (6.0 mL) was added ZnCl₂ (241 mg, 1.77 mmol) and 2-aminothiophenol (0.77 mL, 7.15 mmol). After refluxing for 21 h, the solvent was removed under reduced pressure and the crude product was purified on silica gel eluting with hexane to provide 713 mg (2.97 mmol, 54% yield) of **PBT-NHMe** as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm) 8.92 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.43-7.35 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.76 (t, *J* = 7.6 Hz, 1H), 3.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 169.4, 153.4, 148.2, 133.0, 131.9, 130.4, 125.8, 124.6, 122.0, 120.9, 114.9, 114.5, 110.7, 29.5. IR (KBr, cm⁻¹) 3284, 3060, 2919, 2817, 1610, 1580, 1524, 1499, 1456, 1439, 1421, 1331, 1244, 1215, 956, 749, 726. HRMS (EI, m/z) calcd for C₁₄H₁₂N₂S, 240.0721; found, 240.0727.

2-(5'-cyano-2'-aminophenyl)benzothiazole (CN-PBT-NH₂). A mixture of 2-(5'-iodo-2'-aminophenyl)benzothiazole (168 mg, 0.48 mmol) and copper(I) cyanide (52 mg, 0.58 mmol) in DMAc (3.0 mL) was heated at 150 °C for 10 h. After removing solvent, the residual crude product was purified on silica gel to provide 72 mg (0.29 mmol, 60%) of **CN-PBT-NH₂** as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm) 8.00-7.92 (m, 2H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.50-7.43 (m, 1H), 7.42-7.36 (m, 2H), 7.02 (brs, 2H), 6.76 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) 167.0, 153.2, 149.7, 134.9, 134.0, 133.0, 126.4, 125.6, 122.7, 121.4, 119.5, 116.9, 115.1, 98.9. IR (KBr, cm⁻¹) 3412, 3286, 2924, 2852, 2216, 1624, 1599, 1510, 1438, 1314, 1252, 1175, 986, 819, 757, 724. HRMS (EI, m/z) calcd for C₁₄H₉N₃S, 251.0517; found, 251.0523.












2-(5'-cyano-2'-tosylaminophenyl)benzothiazole (CN-PBT-NHTs). A mixture of **CN-PBT-NH₂** (127 mg, 0.51 mmol) and tosyl chloride (145 mg, 0.76 mmol) in pyridine (3.0 mL) was stirred at room temperature for 22 h. Aqueous HCl was added and the mixture was extracted with dichloromethane. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to provide 203 mg (0.50 mmol, 99% yield) of **CN-PBT-NHTs** as a yellow solid. ¹H NMR (400

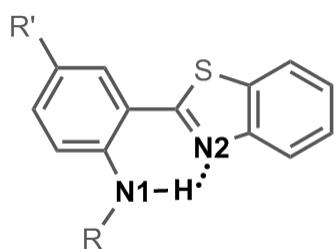
MHz, CDCl₃, ppm) 12.85 (s, 1H), 8.17-8.13 (m, 1H), 8.02 (d, *J* = 1.6 Hz, 1H), 7.95-7.92 (m, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.61-7.55 (m, 2H), 7.52-7.47 (m, 1H), 7.19 (d, *J* = 8.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 165.8, 152.2, 144.5, 140.8, 136.2, 134.5, 133.7, 133.0, 129.9, 127.3, 127.2, 126.8, 123.4, 121.5, 119.6, 118.9, 117.8, 106.4, 21.5. IR (KBr, cm⁻¹) 2923, 2862, 2229, 1506, 1499, 1458, 1437, 1398, 1347, 1300, 1260, 1220, 1164, 1090, 995, 909, 819, 759. HRMS (EI, m/z) calcd for C₂₁H₁₅N₃O₂S₂, 405.0606; found, 405.0610.

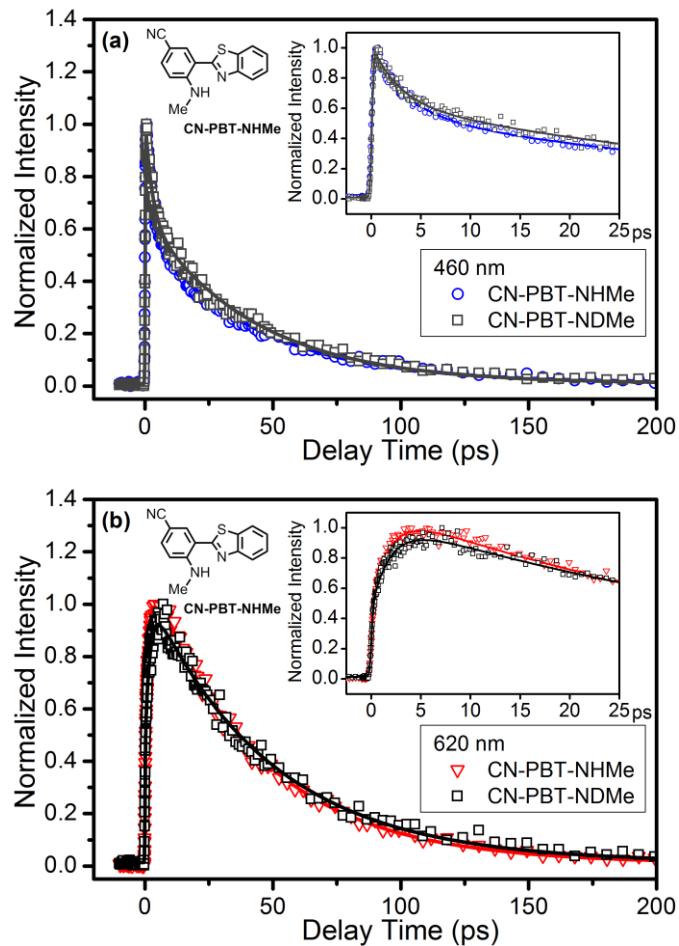
2-(5'-cyano-2'-methylaminophenyl)benzothiazole (CN-PBT-NHMe). A mixture of 2-(5'-iodo-2'-methylaminophenyl)benzothiazole (807 mg, 2.20 mmol) and copper(I) cyanide (236 mg, 2.64 mmol) in DMAc (8 mL) was heated at 150 °C for 10 h. After removing solvent, the crude product was purified on silica gel to provide 415 mg (1.56 mmol, 71%) of **CN-PBT-NHMe** as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm) 9.52 (s, 1H), 8.00-7.96 (m, 2H), 7.90-7.87 (m, 1H), 7.52 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.50-7.45 (m, 1H), 7.42-7.37 (m, 1H), 6.76 (d, *J* = 8.8 Hz, 1H), 3.08 (d, *J* = 5.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 167.2, 152.9, 150.5, 134.5, 134.4, 132.8, 126.3, 125.4, 122.4, 121.1, 119.8, 114.7, 110.1, 96.8, 29.5. IR (KBr, cm⁻¹) 3251, 2920, 2216, 1613, 1580, 1573, 1530, 1501, 1494, 1440, 1314, 1228, 1183, 986, 894, 812, 757, 726. HRMS (EI, m/z) calcd for C₁₅H₁₁N₃S, 265.0674; found, 265.0669.

2-(5'-amino-2'-tosylaminophenyl)benzothiazole (NH₂-PBT-NHTs). A mixture of **PBT-NHTs** (190 mg, 0.50 mmol), 1.5 mL of acetic acid, and 0.1 mL of nitric acid was heated at 60 °C for 4 h. Water was added and the mixture was extracted with dichloromethane. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to provide 180 mg of the crude nitro compound as a pale yellow solid. The crude product was then dissolved in THF (30 mL) under nitrogen and EtOH (30 mL), 10 % Pd/C (90 mg), and hydrazine monohydrate (0.4 mL) were added. The resulting solution was refluxed for 30 min and then cooled to room temperature. After removing solids by filtration, the solution was extracted with dichloromethane. The organic layer was washed with water several times and dried over anhydrous Na₂SO₄. The solvent was removed by rotary evaporation. The residual crude product was purified on silica gel to provide 99 mg (0.25 mmol, 50%) of **NH₂-PBT-NHTs** as a yellow solid. ¹H NMR (600 MHz, CDCl₃, ppm) 11.06 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.52 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 1H), 7.40 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 3.0 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.74 (dd, *J* = 8.4, 3.0 Hz, 1H), 3.72 (brs, 2H), 2.16 (s, 3H). ¹³C NMR (150 MHz, CDCl₃, ppm) 167.3, 152.8, 143.7, 143.0, 135.9, 133.7, 128.9, 127.7, 126.8, 126.7, 125.7, 125.4, 123.6, 123.1, 121.1, 118.6, 115.1, 21.3. IR (KBr, cm⁻¹) 3473, 2567, 1832, 1497, 1334, 1161, 1090, 995, 910. HRMS (EI, m/z) calcd for C₂₀H₁₇N₃O₂S₂, 395.0762; found, 395.0765.

Table S1. Computed frontier orbitals for the titled compounds in their normal form involved in the first singlet excitation

Compound	Structure	HOMO	LUMO
PBT-NH₂			
PBT-NHTs			
PBT-NHAc			
PBT-NHMe			
CN-PBT-NH₂			
CN-PBT-NHTs			
CN-PBT-NHMe			
NH₂-PBT-NHTs			


Table S2. The computed corresponding energy differences (ΔE and ΔE^* , in kcal/mol) between the normal form and tautomer form species in the ground (S_0) and the lowest excited state (S_1) for the titled compounds. The energies reported here correspond to optimized structures, for which the calculation showed no negative frequency.


Compound	S_0		Computed ΔE (kcal/mol)
	Normal Form (hartree)	Tautomer Form (hartree)	
PBT-NHMe	-1048.625519	#	
PBT-NH₂	-1009.310541	#	
CN-PBT-NHMe	-1140.897520	#	
CN-PBT-NH₂	-1101.581979	#	
PBT-NHAc	-1162.014385	#	
NH₂-PBT-NHTs	-1883.759131	-1883.738587	12.89
PBT-NHTs	-1828.382105	-1828.364342	11.15
CN-PBT-NHTs	-1920.649640	-1920.634068	9.77
Compound	S_1		Computed ΔE^* (kcal/mol)
	Normal Form (hartree)	Tautomer Form (hartree)	
PBT-NHMe	-1048.514415	-1048.502811	7.28
PBT-NH₂	-1009.193656	-1009.184634	5.66
CN-PBT-NHMe	-1140.783744	-1140.777227	4.09
CN-PBT-NH₂	-1101.462950	-1101.458814	2.60
PBT-NHAc	-1161.891171	-1161.889206	1.23
NH₂-PBT-NHTs	-1883.657267	-1883.659209	-1.22
PBT-NHTs	-1828.259033	-1828.268849	-6.16
CN-PBT-NHTs	-1920.526496	-1920.538078	-7.27

These computations did not converge after optimization.

Table S3. Computed energy differences (ΔE^*), experimental ^1H NMR chemical shifts of the N–H hydrogens in CDCl_3 , and computed N–H bond distances in the S_0 and S_1 states for the titled compounds

Compound	ΔE^* (kcal/mol)	N1–H Chemical Shift (ppm)	N1–H at S_0 (\AA)	N2–H at S_0 (\AA)	N1–H at S_1 (\AA)	N2–H at S_1 (\AA)
PBT-NHMe	7.28	8.94	1.01442	1.91258	1.03578	1.79051
PBT-NH₂	5.66	6.38	1.01289	1.96668	1.03156	1.83942
CN-PBT-NHMe	4.09	9.52	1.01654	1.89660	1.03762	1.77906
CN-PBT-NH₂	2.60	7.02	1.01434	1.94545	1.03197	1.83687
PBT-NHAc	1.23	12.42	1.02082	1.84862	1.04078	1.75759
NH₂-PBT-NHTs	-1.22	11.06	1.02465	1.92103	1.04992	1.73211
PBT-NHTs	-6.16	12.20	1.02757	1.85687	1.05050	1.73591
CN-PBT-NHTs	-7.27	12.85	1.02936	1.8316	1.05052	1.73125

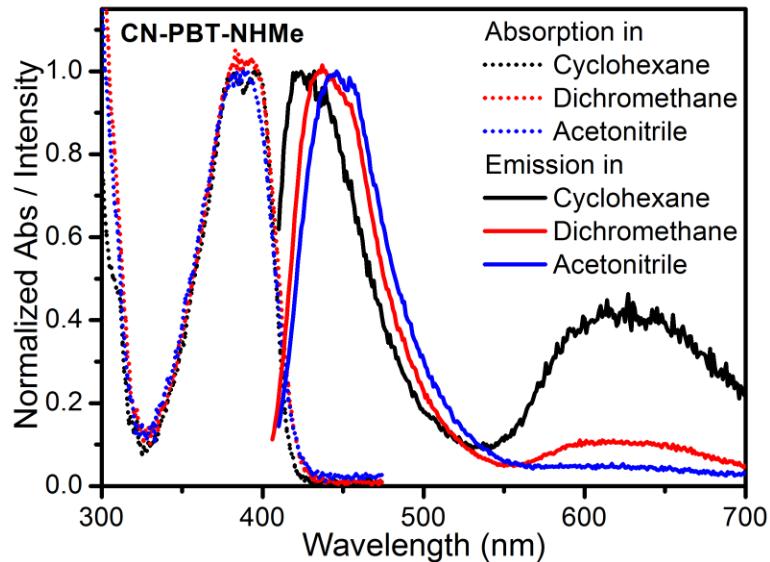
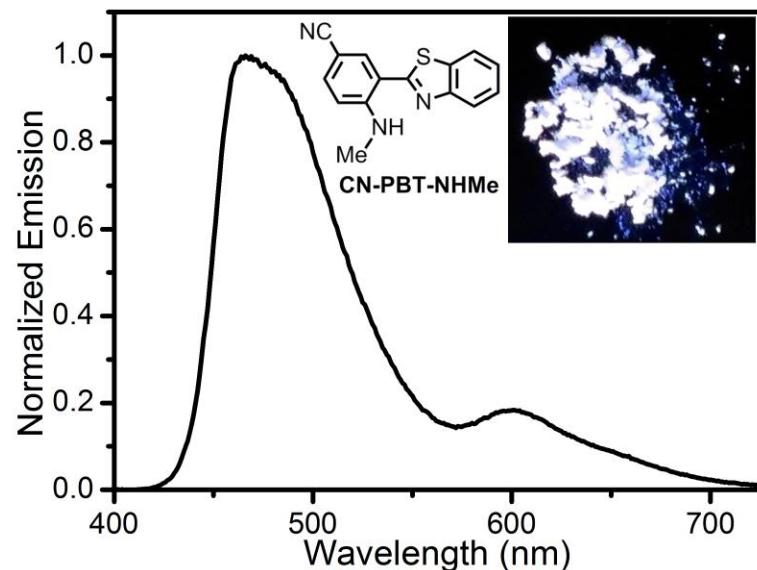


Figure S1. Comparisons between the uPL kinetic traces of **CN-PBT-NHMe** and **CN-PBT-NDMe** in dry CH_2Cl_2 . The sample was excited at 400 nm and emission kinetic data were collected at (a) 460 nm for the normal emission and (b) 620 nm for the tautomer emissions. Solid lines depict the best fits using eq. 3 in the text. The fitting data are summarized in Table S4. Insets: The enlargement of kinetic traces from 0 to 25 ps.


Table S4. Observed emission lifetimes (τ_{obs}) by uPL for **CN-PBT-NHMe** and **CN-PBT-NDMe** in CH_2Cl_2 at room temperature.

$\lambda_{\text{monitor}} / \text{nm}$	τ_{obs} by uPL (pre-exp. factor)	
	CN-PBT-NHMe	CN-PBT-NDMe
460	2.31 ps (0.44)	2.69 ps (0.37)
	43.0 ps (0.56)	42.6 ps (0.63)
620	2.10 ps (-0.39) ^a	1.88 ps (-0.37) ^a
	43.8 ps (0.61)	48.0 ps (0.63)

^a Rise kinetics.

Figure S2. Normalized steady-state absorption and emission spectra for **CN-PBT-NHMe** in aprotic solvents at room temperature.

Figure S3. Steady-state emission spectrum for the powder of **CN-PBT-NHMe** excited at 380 nm. Inset: Emission hue from the **CN-PBT-NHMe** powder under the illumination of 365-nm light from a UV lamp.