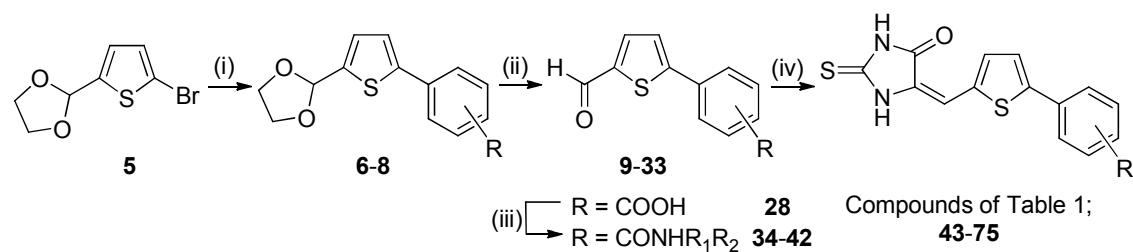
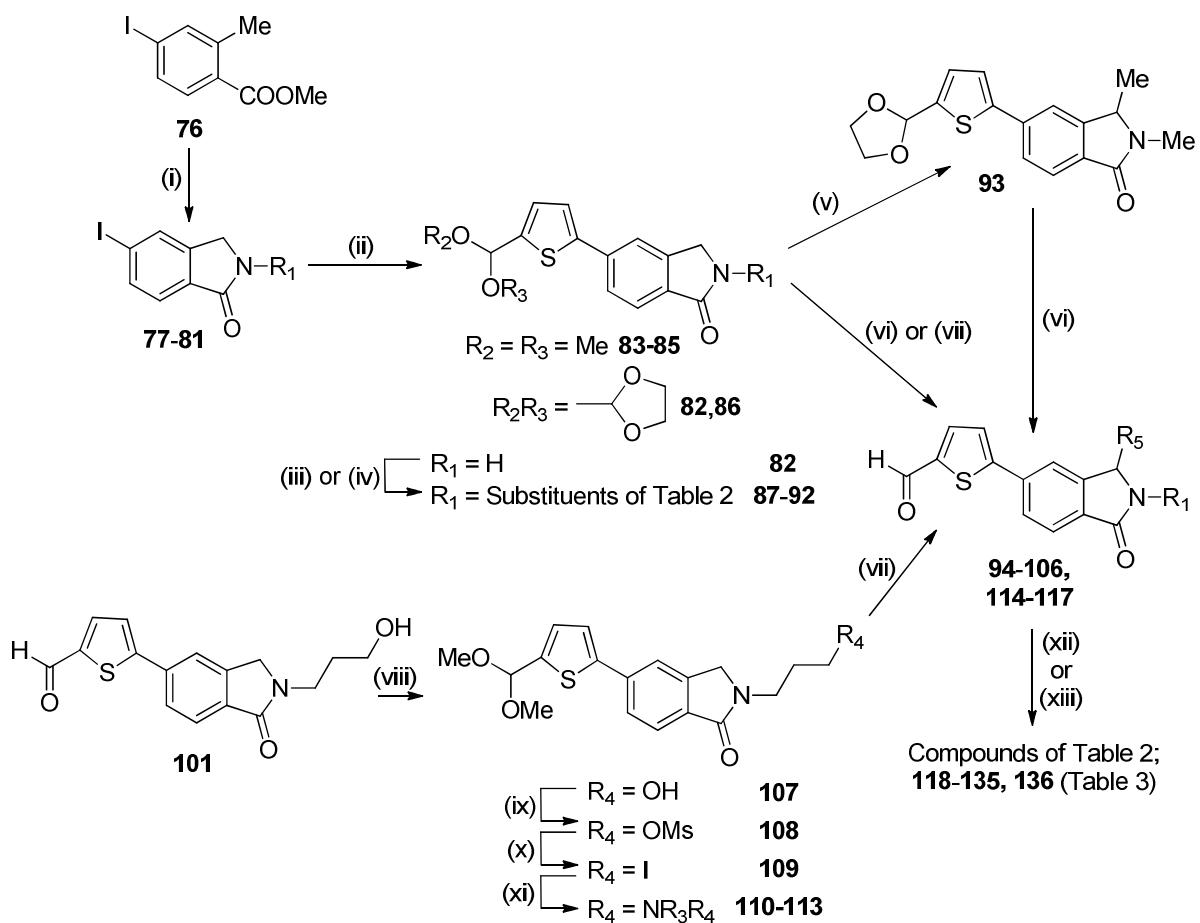


Supporting Information


Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin

Julie A. Spicer, Gersande Lena, Dani M. Lyons, Kristiina M. Huttunen, Christian K. Miller, Patrick D. O'Connor, Matthew Bull, Nuala Helsby, Stephen M. F. Jamieson, William A. Denny, Annette Ciccone, Kylie A. Browne, Jamie A. Lopez, Jesse Rudd-Schmidt, Ilia Voskoboinik, Joseph A. Trapani.

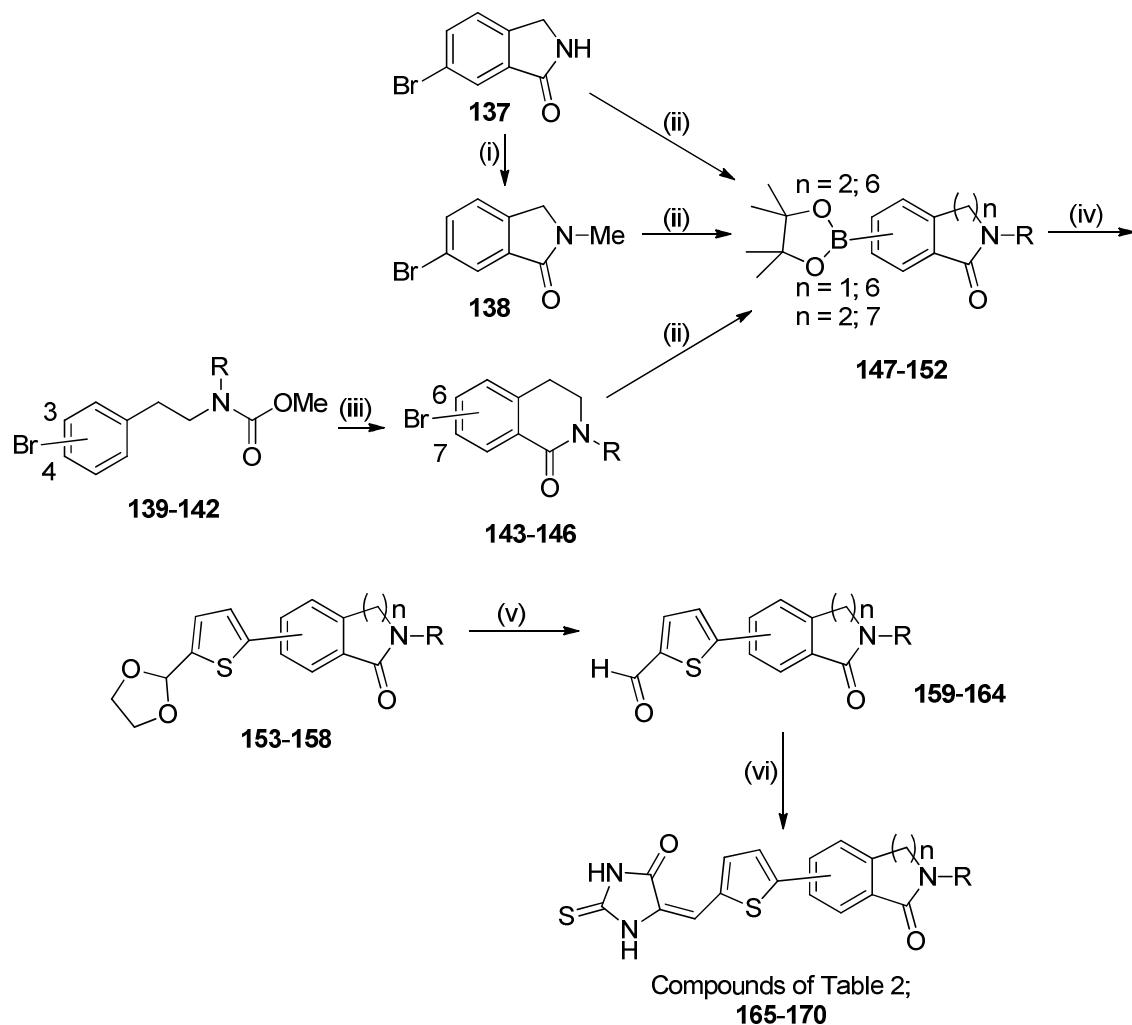
Contents:


Scheme 1/Table 1. Individual compound numbering	S2
Scheme 2/Table 2. Individual compound numbering	S3
Scheme 3/Table 3. Individual compound numbering	S5
Scheme 4. Individual compound numbering	S6
Scheme 5/Table 4. Individual compound numbering	S7
Figure 1. Comparison of lactone and lactam activities	S8
Figure 2. Binding of compounds 135 and 167 to perforin protein by SPR	S9
Figure 3. SPR binding and dose-response curve of compound 135	S10
Experimental for target compounds	S11
References	S51
Biological activity of other selected compounds	S53
Table 5. <i>in vitro</i> Perforin-inhibitory activity for other selected compounds	S53
Table 6. Effect of double bond reduction	S53
Further experimental for other selected target compounds	S54
Table 7. Elemental analysis results for target compounds	S58
Table 8. HRMS and HPLC for target compounds	S59
HPLC Traces for compounds 71, 63, 121, 123, 130, 132, 133, 204, 218	S60

Scheme 1/ Table 1. Individual Compound Numbering

Substituent	Dioxolanes (6-8)	Aldehydes (9-42)	Final Compounds
4-CH ₂ OH	6	9	58
3-CO NH ₂	7	10	60
4-CO NH ₂	8	11	61
H		12	43
2-Cl		13	44
3-Cl		14	45
4-Cl		15	46
3-F		16	47
4-F		17	48
3,4-diF		18	49
3-CF ₃		19	50
4-CF ₃		20	51
3-CN		21	52
4-OH		22	53
3-CF ₃ ,4-Cl		23	54
4-Br		24	55
4-SMe		25	56
4-Ac		26	57
4-COOMe		27	59
4-COOH		28	
3-Me,4-COOMe		29	62
4-SO ₂ Me		30	63
4-NHSO ₂ Me		31	64
3-pyridyl		32	65
4-pyridyl		33	66
4-CONHMe		34	67
4-CONMe ₂		35	68
4-COmorph		36	69
4-CONH(CH ₂) ₂ morph		37	70
4-CONH(CH ₂) ₃ morph		38	71
4-CONH(CH ₂) ₂ OH		39	72
4-CONH(CH ₂) ₃ OH		40	73
4- CONHCH ₂ CH(CH ₃)OH		41	74
4-CONHCH ₂ CH(OH)CH ₂ OH		42	75

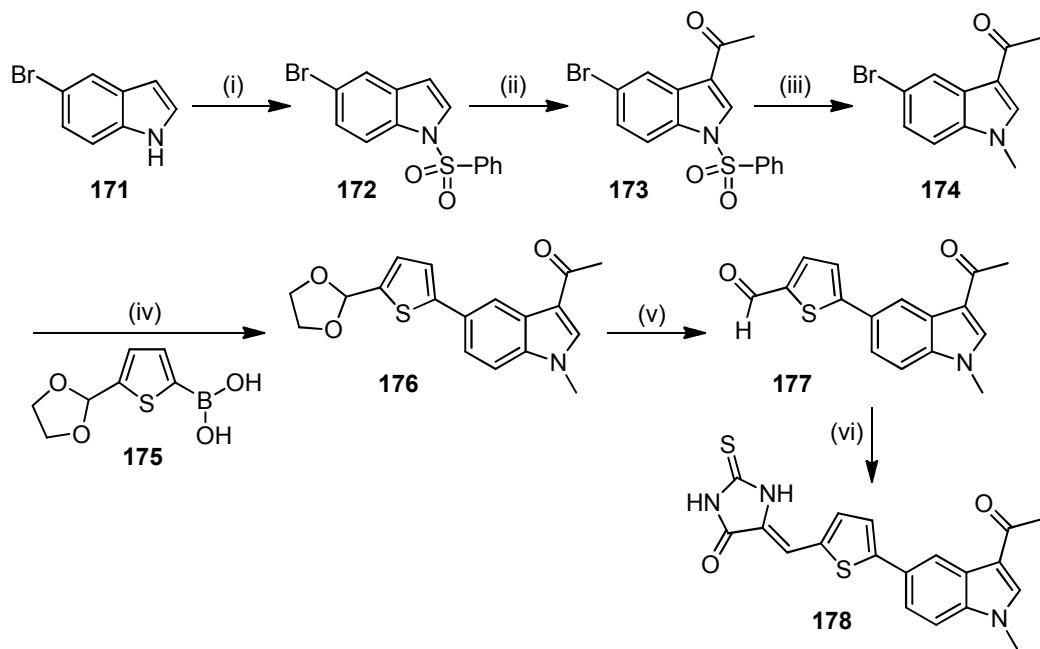
Scheme 2/ Table 2. Individual Compound Numbering.

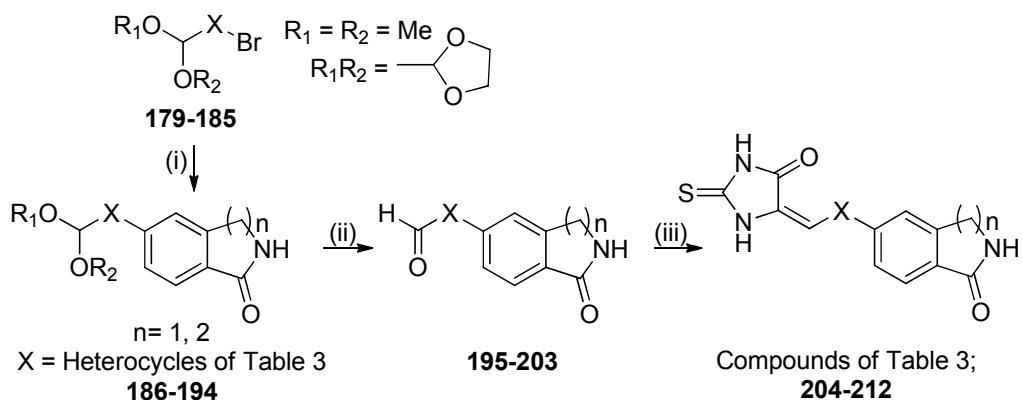


Compound	R ₁	R ₂	R ₃	R ₄	R ₅
77	H				
78	(CH ₂) ₂ OH				
79	(CH ₂) ₃ OH				
80	CH ₂ CH(OH)CH ₂ OH				
81	(CH ₂) ₂ morph				
82	H		dioxolane		
83	(CH ₂) ₂ OH	Me	Me		
84	(CH ₂) ₃ OH	Me	Me		
85	CH ₂ CH(OH)CH ₂ OH	Me	Me		
86	(CH ₂) ₂ morph		dioxolane		
87	Me		dioxolane		
88	Et		dioxolane		
89	nPr		dioxolane		
90	nBu		dioxolane		
91	Ac		dioxolane		
92	C(O)OEt		dioxolane		
93	Me		dioxolane		Me
94	H				
95	Me				

Compound	R ₁	R ₂	R ₃	R ₄	R ₅
96	Et				
97	nPr				
98	nBu				
99	iPr				
100	(CH ₂) ₂ OH				
101	(CH ₂) ₃ OH				
102	CH ₂ CH(OH)CH ₂ OH				
103	Ac				
104	C(O)OEt				
105	(CH ₂) ₂ morph				
106	Me				Me
107	(CH ₂) ₃ R ₄	Me	Me	OH	
108	(CH ₂) ₃ R ₄	Me	Me	OMs	
109	(CH ₂) ₃ R ₄	Me	Me	I	
110	(CH ₂) ₃ R ₄	Me	Me	NMe ₂	
111	(CH ₂) ₃ R ₄	Me	Me	Piperidine	
112	(CH ₂) ₃ R ₄	Me	Me	NMepiperazine	
113	(CH ₂) ₃ R ₄	Me	Me	pyrrolidine	
114	(CH ₂) ₃ NMe ₂				
115	(CH ₂) ₃ piperidine				
116	(CH ₂) ₃ NMepiperazine				
117	(CH ₂) ₃ pyrrolidine				
118	H				
119	Me				
120	Et				
121	nPr				
122	nBu				
123	iPr				
124	(CH ₂) ₂ OAc				
125	(CH ₂) ₂ OH				
126	(CH ₂) ₃ OH				
127	CH ₂ CH(OH)CH ₂ OH				
128	Ac				
129	C(O)OEt				
130	(CH ₂) ₂ morph				
131	(CH ₂) ₃ NMe ₂				
132	(CH ₂) ₃ piperidine				
133	(CH ₂) ₃ NMepiperazine				
134	(CH ₂) ₃ pyrrolidine				
135	Me				Me
136*	H				

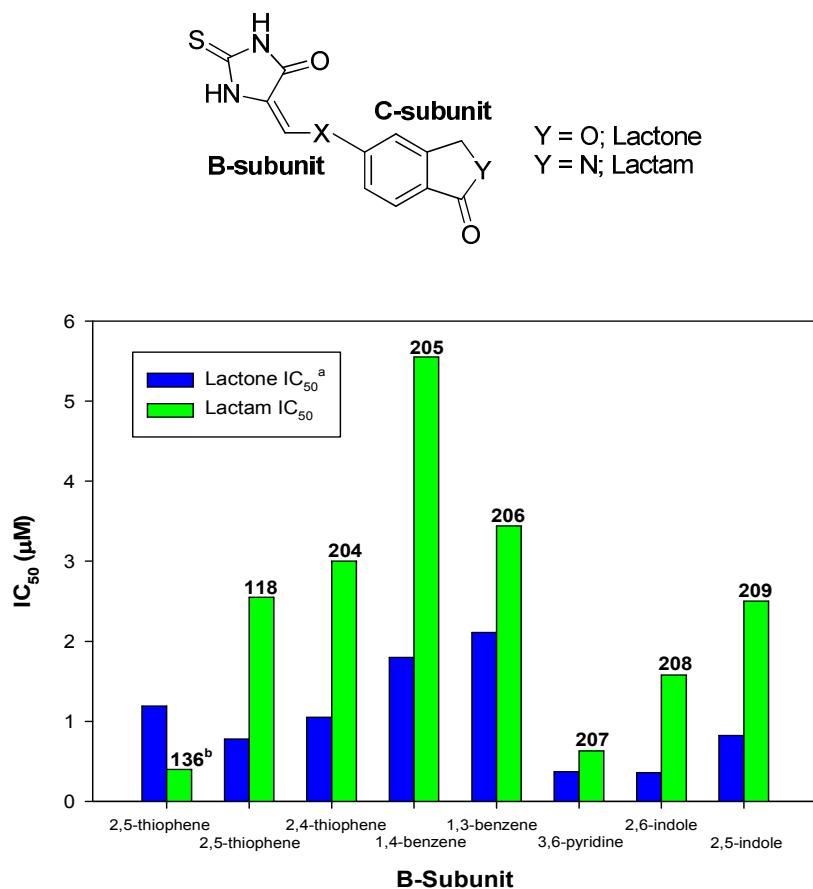
* Imidazolidine-2,4-dione A-subunit


Scheme 3/ Table 3. Individual Compound Numbering.


Compound	Substituent Position	R	n
139	3-Br	H	
140	4-Br	H	
141	3-Br	Me	
142	4-Br	Me	
143	6-Br	H	2
144	7-Br	H	2
145	6-Br	Me	2
146	7-Br	Me	2
147	6-boronate	H	1
148	6-boronate	Me	1
149	6-boronate	H	2
150	7-boronate	H	2
151	6-boronate	Me	2
152	7-boronate	Me	2
153	6-(thiophene-dioxolane)	H	1
154	6-(thiophene-dioxolane)	Me	1

Compound	Substituent Position	R	n
155	6-(thiophene-dioxolane)	H	2
156	7-(thiophene-dioxolane)	H	2
157	6-(thiophene-dioxolane)	Me	2
158	7-(thiophene-dioxolane)	Me	2
159	6-(thiophene-aldehyde)	H	1
160	6-(thiophene-aldehyde)	Me	1
161	6-(thiophene-aldehyde)	H	2
162	7-(thiophene-aldehyde)	H	2
163	6-(thiophene-aldehyde)	Me	2
164	7-(thiophene-aldehyde)	Me	2
165	6-	H	1
166	6-	Me	1
167	6-	H	2
168	7-	H	2
169	6-	Me	2
170	7-	Me	2

Scheme 4. Individual Compound Numbering.



Scheme 5/ Table 4. Individual Compound Numbering.

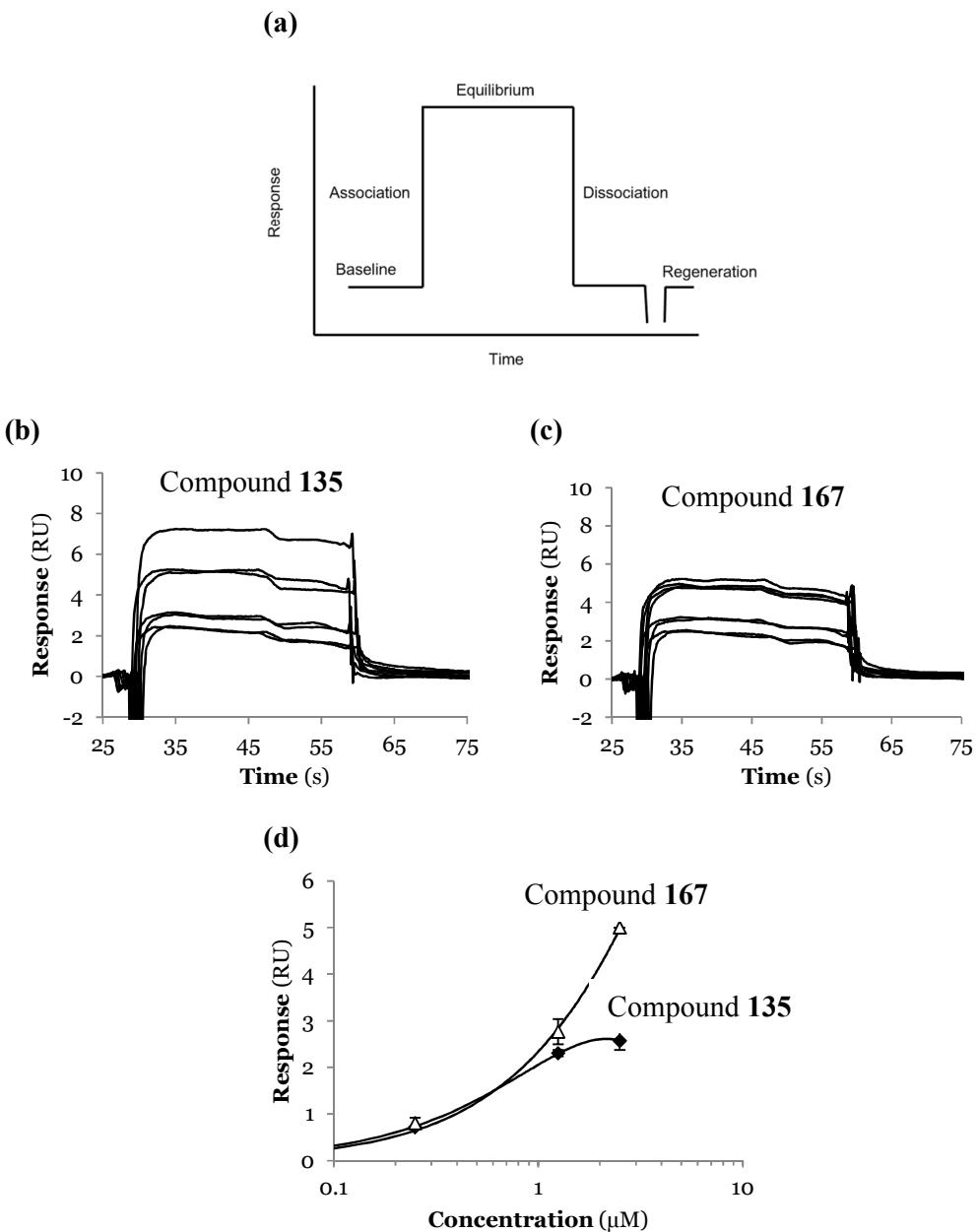
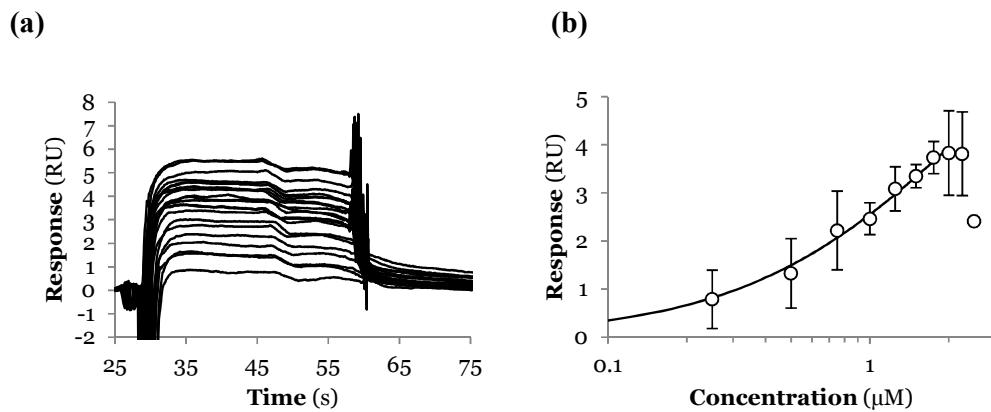

Compound	X	R ₁	R ₂	n
179	2,4-thiophene	Me	Me	
180	1,4-benzene	Me	Me	
181	1,3-benzene	Me	Me	
182	3,6-pyridine	Me	Me	
183	2,6-(1 <i>H</i> -indole)	Me	Me	
184	2,5-(1 <i>H</i> -indole)	Me	Me	
185	2,6-quinoline		dioxolane	
186	2,4-thiophene	Me	Me	1
187	1,4-benzene	Me	Me	1
188	1,3-benzene	Me	Me	1
189	3,6-pyridine	Me	Me	1
190	2,6-(1 <i>H</i> -indole)	Me	Me	1
191	2,5-(1 <i>H</i> -indole)	Me	Me	1
192	2,6-(1 <i>H</i> -indole)	Me	Me	2
193	2,5-(1 <i>H</i> -indole)	Me	Me	2
194	2,6-quinoline		dioxolane	2
195	2,4-thiophene			1
196	1,4-benzene			1
197	1,3-benzene			1
198	3,6-pyridine			1
199	2,6-(1 <i>H</i> -indole)			1
200	2,5-(1 <i>H</i> -indole)			1
201	2,6-(1 <i>H</i> -indole)			2
202	2,5-(1 <i>H</i> -indole)			2
203	2,6-quinoline			2
204	2,4-thiophene			1
205	1,4-benzene			1
206	1,3-benzene			1
207	3,6-pyridine			1
208	2,6-(1 <i>H</i> -indole)			1
209	2,5-(1 <i>H</i> -indole)			1
210	2,6-(1 <i>H</i> -indole)			2
211	2,5-(1 <i>H</i> -indole)			2
212	2,6-quinoline			2

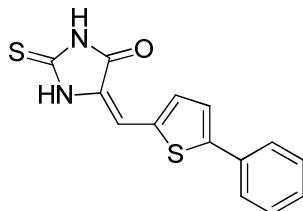
Figure 1. Comparison of Lactone and Lactam Activities

^a IC_{50} s for corresponding lactones (blue) previously reported in reference 30. ^bCompound 136 contains a imidazolidine-2,4-dione A-subunit, while all others (118, 204-209) contain a 2-thioxoimidazolidin-4-one A-subunit.

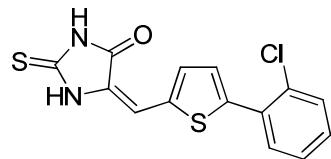

Figure 2. Binding of Compounds **135** and **167** to Perforin Protein by SPR^a

^a(a) Features of a typical sensorgram for low molecular weight analytes: The association phase of the interaction, when the analyte binds to the immobilised biomolecular target, generates an increase in response. Equilibrium is then achieved as association and dissociation occur at an equal rate. Following the end of injection, the dissociation of the complex can be measured and information on the stability of the complex collected. After this the surface is regenerated by disrupting any ligand-analyte complexes by mild acidic or basic washing conditions, which yields a fully functional surface that can be re-used. (b), (c) SPR binding response of compounds **135** and **167** (0, 0.25, 1.25 and 2.5 μ M) and (d) resulting dose-response curves of binding to surface immobilised wildtype perforin monomers (4,257 RU), fitted to a single site specific binding model ($R^2 = 0.5943$). Samples were injected in duplicate at a flow rate of 50 μ l/min at 25°C. Data are as mean \pm standard deviation. The calculated R_{max} for binding of **135** was 1.23 ± 0.10 RU and the calculated K_D was 1.79 ± 0.55 μ M.

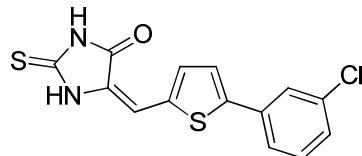
The sodium salts of compounds **135** and **167** had relatively poor solubility in running buffer containing 5% DMSO and were only soluble up to 2.5 μ M. Both compounds were injected across the immobilised perforin at 0, 0.25, 1.25 and 2.5 μ M [(b) and (c), Figure 2]. At these low concentrations there was a linear concentration response for binding of **167** to immobilised perforin. Determination of the maximum binding appears to be limited by solubility. However, at the same low concentrations, saturable binding of **135** to immobilised perforin was observed above 1 μ M. A further dilution series [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5 μ M (n=2)] was then injected over the biosensor chip (Figure 3). The sudden decrease in binding response at 2.5 μ M is suggestive of a solubility issue at this concentration. The data were then fitted to a single site specific binding model ($R^2 = 0.8506$). The calculated R_{\max} was 8.66 ± 2.81 RU and the calculated K_D was 2.39 ± 1.23 μ M.


Figure 3. SPR Binding and Dose-Response Curve of Compound **135**^a

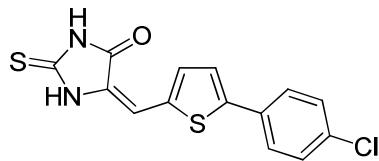
^a(a) SPR binding response and (b) the dose-response curve of compound **135** (0 – 2.5 μ M) binding to surface immobilised wildtype perforin monomers (4,257 RU), fitted to a single site specific binding model ($R^2 = 0.5943$). Samples were injected in triplicate at a flow rate of 50 μ l/min at 25°C. Data are shown as mean \pm standard deviation. The calculated R_{\max} for binding of **135** was 8.66 ± 2.81 RU and the calculated K_D was 2.39 ± 1.23 μ M ($R^2 = 0.8506$).


Experimental For Target Compounds

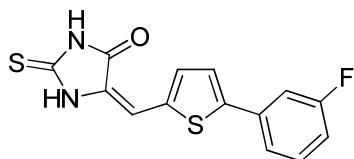
The general procedures referred to below are described in the published article. Reference numbers as in the published article and given below.


(E,Z)-5-((5-phenylthiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (43).

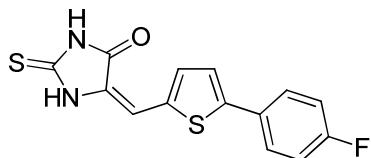
Reaction of 5-phenylthiophene-2-carbaldehyde (9) with 2-thioxoimidazolidin-4-one according to general procedure C gave **43** as a bright orange solid (89%), mp (AcOH) 290-294°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.35 (br s, 1 H), 11.95 (br s, 1 H), 7.83 (d, *J* = 4.0 Hz, 1 H), 7.69-7.75 (m, 2 H), 7.64 (d, *J* = 4.0 Hz, 1 H), 7.42-7.49 (m, 2 H), 7.33-7.39 (m, 1 H), 6.63 (s, 1 H). LRMS (APCI⁺) calcd for C₁₄H₁₁N₂OS₂ 287 (MH⁺), found 287. Anal. (C₁₄H₁₀N₂OS₂) C, H, N.

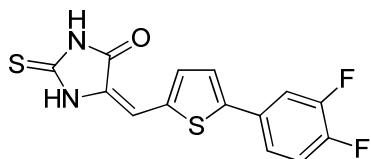

(E,Z)-5-((5-(2-chlorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (44).

Reaction of 5-(2-chlorophenyl)thiophene-2-carbaldehyde (10) with 2-thioxoimidazolidin-4-one according to general procedure C gave **44** as a dark yellow solid (41%), mp (AcOH) 269-271°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.32 (s, 1 H), 12.02 (s, 1 H), 7.85 (d, *J* = 3.3 Hz, 1 H), 7.72 (dd, *J* = 2.0, 7.5 Hz, 1 H), 7.62 (dd, *J* = 1.6, 7.6 Hz, 1 H), 7.55 (d, *J* = 3.9 Hz, 1 H), 7.43 (m, 2 H), 6.63 (s, 1 H). Anal. (C₁₄H₉ClN₂OS₂·0.5H₂O) C, H, N.

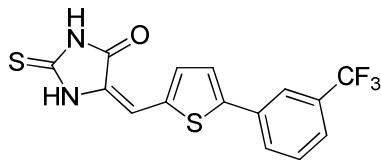


(E,Z)-5-((5-(3-chlorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (45).

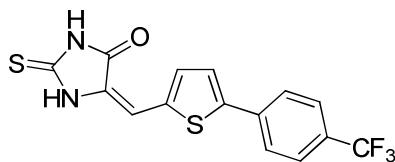

Reaction of 5-(3-chlorophenyl)thiophene-2-carbaldehyde (11) with 2-thioxoimidazolidin-4-one according to general procedure C gave **45** as a brown solid (45%), mp (AcOH) 281-283°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.33 (s, 1 H), 11.96 (s, 1 H), 7.81 (d, *J* = 3.7 Hz, 1 H), 7.79 (t, *J* = 1.7 Hz, 1 H), 7.73 (d, *J* = 3.9 Hz, 1 H), 7.66 (d, *J* = 6.6 Hz, 1 H), 7.48 (t, *J* = 7.9 Hz, 1 H), 7.40 (d, *J* = 8.0 Hz, 1 H), 6.63 (s, 1 H). Anal. (C₁₄H₉ClN₂OS₂·0.25H₂O) C, H, N.


(E,Z)-5-((5-(4-Chlorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (46). Reaction of 5-(4-chlorophenyl)thiophene-2-carbaldehyde (**12**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **46** as a yellow solid (75%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.36 (s, 1 H), 11.96 (s, 1 H), 7.81 (d, $J = 3.9$ Hz, 1 H), 7.73 (d, $J = 8.6$ Hz, 2 H), 7.66 (d, $J = 3.9$ Hz, 1 H), 7.49 (d, $J = 8.6$ Hz, 2 H), 6.62 (s, 1 H). Anal. ($\text{C}_{14}\text{H}_9\text{ClN}_2\text{OS}_2$) C, H, N.

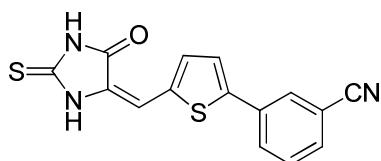
(E,Z)-5-((5-(3-Fluorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (47). Reaction of 5-(3-fluorophenyl)thiophene-2-carbaldehyde (**13**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **47** as an orange solid (75%), mp (AcOH) $285\text{--}289^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.35 (s, 1 H), 11.96 (s, 1 H), 7.82 (d, $J = 4.0$ Hz, 1 H), 7.72 (d, $J = 4.0$ Hz, 1 H), 7.48–7.60 (m, 3 H), 7.19 (t, $J = 9.0$ Hz, 1 H), 6.62 (s, 1 H). Anal. ($\text{C}_{14}\text{H}_9\text{FN}_2\text{OS}_2 \cdot 1.25\text{H}_2\text{O}$) C, N, H; + 0.5.

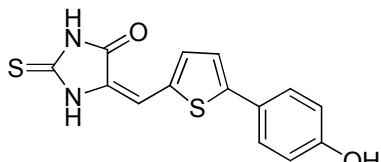


(E,Z)-5-((5-(4-Fluorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (48). Reaction of 5-(4-fluorophenyl)thiophene-2-carbaldehyde (**14**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **48** as an orange solid (87%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.27 (s, 1 H), 11.96 (s, 1 H), 7.74–7.81 (m, 3 H), 7.60 (d, $J = 4.0$ Hz, 1 H), 7.29 (t, $J = 8.8$ Hz, 2 H), 6.60 (s, 1 H). Anal. ($\text{C}_{14}\text{H}_9\text{FN}_2\text{OS}_2$) C, H, N.

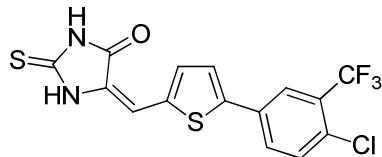


(E,Z)-5-((5-(3,4-Difluorophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (49). Reaction of 5-(3,4-difluorophenyl)thiophene-2-carbaldehyde (**15**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **49** as an orange solid (75%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.33 (s, 1 H),

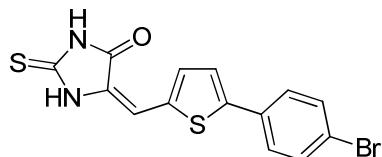

11.95 (s, 1 H), 7.81-7.87 (m, 2 H), 7.68 (d, J = 4.0 Hz, 1 H), 7.48-7.56 (m, 2 H), 6.61 (s, 1 H). Anal. (C₁₄H₈F₂N₂OS₂·0.25H₂O) C, H, N.


(E,Z)-2-thioxo-5-((5-(3-(trifluoromethyl)phenyl)thiophen-2-yl)methylene)imidazolidin-4-one (50). Reaction of 5-(3-(trifluoromethyl)phenyl)thiophene-2-carbaldehyde (**16**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **50** as a brown solid (85%), mp (AcOH) 308-312°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.30 (s, 1 H), 12.00 (s, 1 H), 7.98-8.01 (m, 2 H), 7.81-7.83 (m, 2 H), 7.67-7.72 (m, 2 H), 6.64 (s, 1 H). HRMS (ESI-TOF) calcd for C₁₅H₈F₃N₂OS₂ 353.0036 (M-H), found 353.0032.

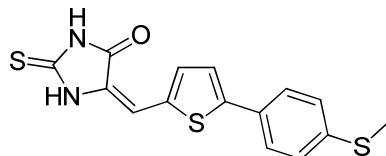
(E,Z)-2-Thioxo-5-((5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)methylene)imidazolidin-4-one (51). Reaction of 5-(4-(trifluoromethyl)phenyl)thiophene-2-carbaldehyde (**17**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **51** as an orange solid (55%), mp (AcOH) 291-294°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.36 (s, 1 H), 12.01 (s, 1 H), 7.92 (d, J = 8.2 Hz, 2 H), 7.86 (d, J = 3.9 Hz, 1 H), 7.79-7.81 (m, 3 H), 6.64 (s, 1 H). Anal. (C₁₅H₉F₃N₂OS₂) C, H, N.

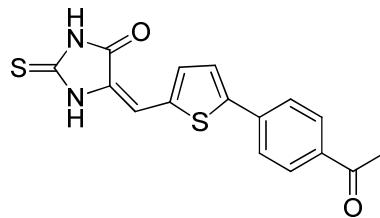


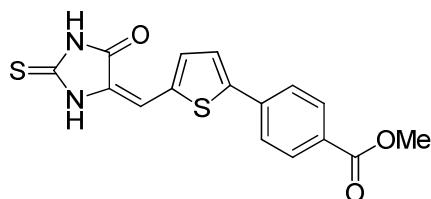
(E,Z)-3-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylbenzonitrile (52). Reaction of 3-(5-formylthiophen-2-yl)benzonitrile (**18**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **52** as a brown solid (39%), mp (AcOH) 278-281°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.06 (br s, 2 H), 8.21 (t, J = 1.5 Hz, 1 H), 8.00 (ddd, J = 9.0, 1.8, 1.0 Hz, 1 H), 7.76-7.84 (m, 3 H), 7.65 (t, J = 7.9 Hz, 1 H), 6.60 (s, 1 H). Anal. (C₁₅H₉N₃OS₂·0.75H₂O) C, H, N; +0.5.

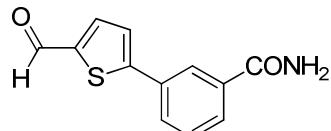


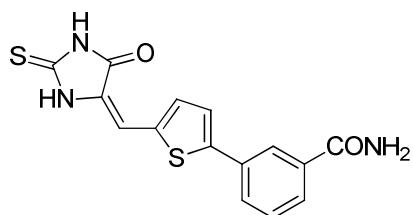
(E,Z)-5-((5-(4-Hydroxyphenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (53). Reaction of 5-(4-hydroxyphenyl)thiophene-2-carbaldehyde (**19**) with 2-

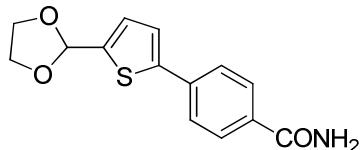

thioxoimidazolidin-4-one according to general procedure C gave **53** as a red-purple solid (88%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.32 (s, 1 H), 11.88 (s, 1 H), 9.78 (s, 1 H), 7.78 (d, $J = 4.0$ Hz, 1 H), 7.54 (d, $J = 8.7$ Hz, 2 H), 7.44 (d, $J = 4.0$ Hz, 1 H), 6.84 (d, $J = 8.7$ Hz, 2 H), 6.61 (s, 1 H). Anal. ($\text{C}_{14}\text{H}_{10}\text{N}_2\text{O}_4\text{S}_2$) C, H, N.

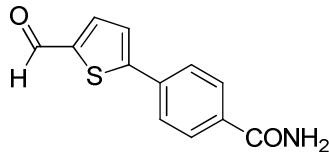

(E,Z)-5-((5-(4-Chloro-3-(trifluoromethyl)phenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (54). Reaction of 5-(4-chloro-3-(trifluoromethyl)phenyl)thiophene-2-carbaldehyde (**20**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **54** as a yellow solid (77%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.34 (s, 1 H), 12.00 (s, 1 H), 8.07 (d, $J = 1.5$ Hz, 1 H), 7.99 (dd, $J = 1.9, 8.4$ Hz, 1 H), 7.76-7.84 (m, 3 H), 6.64 (s, 1 H). Anal. ($\text{C}_{15}\text{H}_8\text{ClF}_3\text{N}_2\text{OS}_2 \cdot 0.5\text{H}_2\text{O}$) C, H, N.

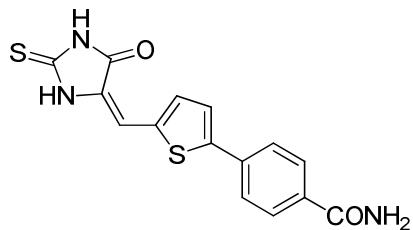

(E,Z)-5-((5-(4-Bromophenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (55). Reaction of 5-(4-bromophenyl)thiophene-2-carbaldehyde (**21**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **55** as a yellow solid (72%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.12 (s, 1 H), 11.99 (s, 1 H), 7.79 (m, 1 H), 7.62-7.68 (m, 5 H), 6.60 (s, 1 H). HRMS (ESI-TOF) calcd for $\text{C}_{14}\text{H}_8\text{BrN}_2\text{OS}_2$ 362.9267, 364.9246 (M-H), found 362.9256, 364.9230.

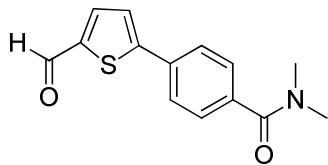

((E,Z)-5-((5-(4-(Methylthio)phenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (56). Reaction of 5-(4-(methylthio)phenyl)thiophene-2-carbaldehyde (**22**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **56** as a bright orange solid (80%), mp (AcOH) 289-293 $^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.34 (s, 1 H), 11.96 (s, 1 H), 7.79 (d, $J = 3.9$ Hz, 1 H), 7.65 (d, $J = 8.5$ Hz, 2 H), 7.60 (d, $J = 4.0$ Hz, 1 H), 7.32 (td, $J = 2.3, 8.5$ Hz, 2 H), 6.61 (s, 1 H), 2.53 (s, 3 H). Anal. ($\text{C}_{15}\text{H}_{12}\text{N}_2\text{OS}_3$) C, H, N.

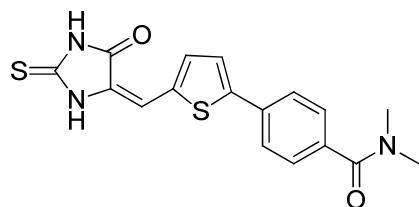

(E,Z)-5-((5-(4-Acetylphenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (57). Reaction of 5-(4-acetylphenyl)thiophene-2-carbaldehyde (**23**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **57** as a pale brown solid (79%), mp (AcOH) $>300^\circ\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.38 (br s, 1 H), 12.00 (br s, 1 H), 8.02 (d, $J = 8.5$ Hz, 2 H), 7.83-7.89 (m, 3 H), 7.81 (d, $J = 4.0$ Hz, 1 H), 6.65 (s, 1 H), 2.60 (s, 3 H). Anal. ($\text{C}_{16}\text{H}_{12}\text{N}_2\text{O}_2\text{S}_2 \cdot 0.25\text{H}_2\text{O}$) C, H, N.

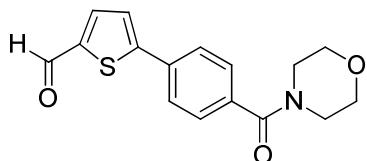

(E,Z)-Methyl 4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylbenzoate (59). Reaction of methyl 4-(5-formylthiophen-2-yl)benzoate (**25**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **59** as a bright orange solid (75%), mp (AcOH) $>300^\circ\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.37 (br s, 1 H), 12.00 (br s, 1 H), 8.01 (d, $J = 8.6$ Hz, 2 H), 7.83-7.88 (m, 3 H), 7.79 (d, $J = 4.0$ Hz, 1 H), 6.65 (s, 1 H), 3.87 (s, 3 H). Anal. ($\text{C}_{16}\text{H}_{12}\text{N}_2\text{O}_3\text{S}_2$) C, H, N.

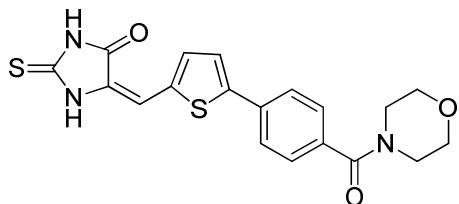

3-(5-Formylthiophen-2-yl)benzamide (26). Bromo-2-thiophenecarboxaldehyde was protected as the cyclic acetal **5** according to a literature procedure,⁴⁴ then reacted with 3-aminocarbonylphenylboronic acid according to general procedure A. This gave the intermediate 3-(5-(1,3-dioxolan-2-yl)thiophen-2-yl)benzamide (**7**) which was purified by flash column chromatography on silica gel (10% acetone/ CH_2Cl_2 as eluant) and deprotected directly according to general procedure B to give **26** as a brown solid (73%, 2 steps). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.26 (s, 1 H), 8.13 (s, 1 H), 8.07 (d, $J = 2.9$ Hz, 1 H), 7.93 (t, $J = 8.8$ Hz, 2 H), 7.81 (d, $J = 3.1$ Hz, 1 H), 7.57 (t, $J = 7.6$ Hz, 1 H), 7.48 (s, 1 H). LRMS (APCI $^+$) calcd for $\text{C}_{12}\text{H}_9\text{NO}_2\text{S}$ 232 (MH^+), found 232.

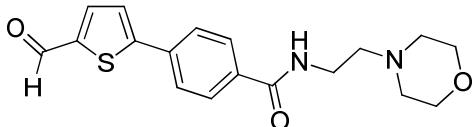

(E,Z)-3-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (60). Reaction of **26** with 2-thioxoimidazolidin-4-one according to general procedure C gave **60** as a brown solid (91%), mp (AcOH) > 295°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.34 (s, 1 H), 11.99 (s, 1 H), 8.19 (s, 1 H), 8.09 (s, 1 H), 7.77-7.86 (m, 3 H), 7.71 (d, *J* = 3.8 Hz, 1 H), 7.53 (t, *J* = 7.1 Hz, 1 H), 7.46 (s, 1 H), 6.64 (s, 1 H). Anal. (C₁₅H₁₁N₃O₂S₂·0.5H₂O) C, H, N; +0.5.

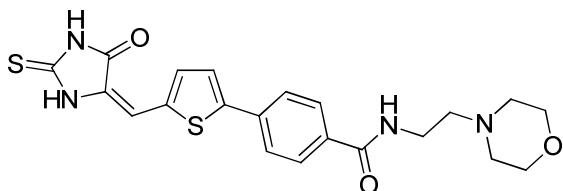

4-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)benzamide (8). Bromo-2-thiophenecarboxaldehyde was protected as the cyclic acetal **5** according to a literature procedure,⁴⁴ then reacted with 4-aminocarbonylphenylboronic acid according to general procedure A. Purification by flash column chromatography on silica gel (10% acetone/CH₂Cl₂ as eluant) gave **8** as an off-white solid (64%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 7.97 (br s, 1 H), 7.91 (d, *J* = 8.5 Hz, 2 H), 7.72 (d, *J* = 8.5 Hz, 2 H), 7.52 (d, *J* = 3.7 Hz, 1 H), 7.34 (br s, 1 H), 7.24 (d, *J* = 3.7 Hz, 1 H), 6.05 (s, 1 H), 4.02-4.10 (m, 2 H), 3.92-4.00 (m, 2 H). LRMS (APCI⁺) calcd for C₁₄H₁₄NO₃S 276 (MH⁺), found 276.

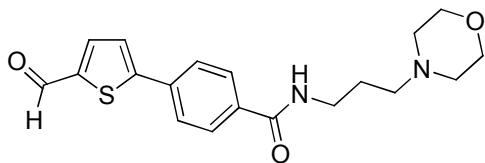

4-(5-Formylthiophen-2-yl)benzamide (27). Deprotection of **8** according to general procedure B gave **27** as a white solid (90%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.07 (d, *J* = 4.0 Hz, 1 H), 8.05 (br s, 1 H), 7.97 (d, *J* = 8.6 Hz, 2 H), 7.89 (d, *J* = 8.6 Hz, 2 H), 7.85 (d, *J* = 4.0 Hz, 1 H), 7.43 (br s, 1 H). LRMS (APCI⁺) calcd for C₁₂H₉NO₂S 231 (M), found 231.

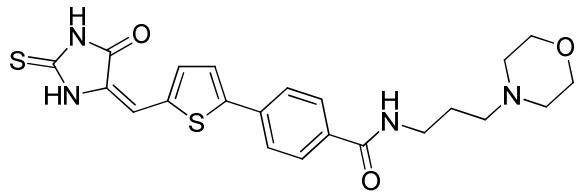

(E,Z)-4-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (61). Reaction of **27** with 2-thioxoimidazolidin-4-one according to general procedure C gave **61** as an orange solid (92%), mp (AcOH) > 300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.38 (br s, 1 H), 11.97 (br s, 1 H), 8.00 (br s, 1 H), 7.94 (d, *J* = 8.5 Hz, 2 H), 7.85 (br s, 1 H), 7.79 (d, *J* = 8.5 Hz, 2 H), 7.75 (d, *J* = 4.0 Hz, 1 H), 7.37 (br s, 1 H), 6.64 (s, 1 H). LRMS (APCI⁺) calcd for C₁₅H₁₂N₃O₂S₂ 330 (MH⁺), found 330. Anal. (C₁₅H₁₁N₃O₂S₂) C, H, N.

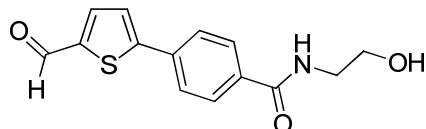

4-(5-Formylthiophen-2-yl)-N,N-dimethylbenzamide (35). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 40% dimethylamine in water according to general procedure D, to give **35** as a pale yellow solid (100%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.93 (s, 1 H), 8.06 (d, *J* = 4.0 Hz, 1 H), 7.86 (d, *J* = 8.5 Hz, 2 H), 7.81 (d, *J* = 4.0 Hz, 1 H), 7.51 (d, *J* = 8.5 Hz, 2 H), 2.51 (s, 6 H). LRMS (APCI⁺) calcd for C₁₄H₁₄NO₂S 260 (MH⁺), found 260.

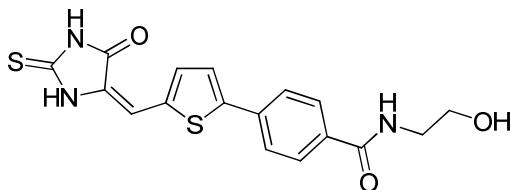

(E,Z)-N,N-Dimethyl-4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylbenzamide (68). Reaction of **35** with 2-thioxoimidazolidin-4-one according to general procedure C gave **68** as a brown-orange solid (62%), mp (AcOH) >295°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.38 (br s, 1 H), 11.97 (br s, 1 H), 7.85 (d, *J* = 3.8 Hz, 1 H), 7.77 (d, *J* = 8.4 Hz, 2 H), 7.71 (d, *J* = 4.0 Hz, 1 H), 7.48 (d, *J* = 2 H), 6.64 (s, 1 H), 2.97 (s, 6 H). LRMS (APCI⁺) calcd for C₁₇H₁₄N₃O₂S₂ 356 (M-H), found 356. Anal. (C₁₇H₁₅N₃O₂S₂) C, H, N.

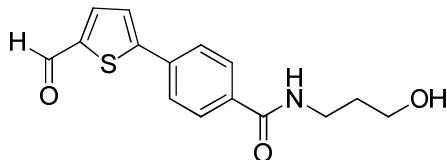

5-(4-(Morpholine-4-carbonyl)phenyl)thiophene-2-carbaldehyde (36). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by morpholine according to general procedure D. Purification by flash column chromatography on silica gel (50% EtOAc/hexanes) gave **36** as a yellow-orange solid (68%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.93 (s, 1 H), 8.07 (d, *J* = 4.0 Hz, 1 H), 7.88 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 4.0 Hz, 1 H), 7.52 (d, *J* = 8.4 Hz, 2 H), 3.55-3.67 (v br s, 8 H). LRMS (APCI⁺) calcd for C₁₆H₁₆NO₃S 302 (MH⁺), found 302.

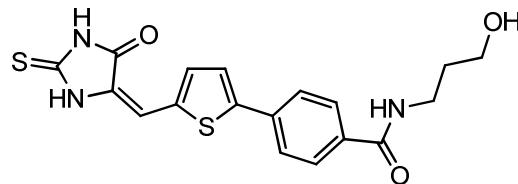

(E,Z)-5-((5-(4-(Morpholine-4-carbonyl)phenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (69). Reaction of **36** with 2-thioxoimidazolidin-4-one according to general procedure C gave **69** as an orange solid (56%), mp (AcOH) 278-281°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.38 (br s, 1 H), 11.97 (br s, 1 H), 7.85 (d, J = 4.0 Hz, 1 H), 7.79 (d, J = 8.2 Hz, 2 H), 7.72 (d, J = 4.0 Hz, 1 H), 7.49 (d, J = 8.2 Hz, 2 H), 6.64 (s, 1 H), 3.40-3.61 (v br s, 8 H). LRMS (APCI $^+$) calcd for $\text{C}_{19}\text{H}_{16}\text{N}_3\text{O}_3\text{S}_2$ 398 (M-H), found 398. Anal. ($\text{C}_{19}\text{H}_{17}\text{N}_3\text{O}_3\text{S}_2$) C, H, N.

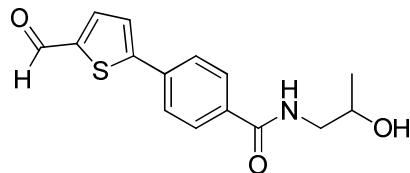

4-(5-Formylthiophen-2-yl)-N-(2-morpholinoethyl)benzamide (37). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 4-(2-aminoethyl)morpholine according to general procedure D, to give **37** as a pale yellow solid (100%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.49 (t, J = 5.6 Hz, 1 H), 8.07 (d, J = 4.0 Hz, 1 H), 7.93 (d, J = 8.8 Hz, 2 H), 7.90 (d, J = 8.8 Hz, 2 H), 7.84 (d, J = 4.0 Hz, 1 H), 3.51-3.66 (m, 4 H), 3.41 (dd, J = 12.9, 6.7 Hz, 4 H), 2.45 (m, 4 H). LRMS (APCI $^+$) calcd for $\text{C}_{18}\text{H}_{21}\text{N}_2\text{O}_3\text{S}$ (MH^+) 345, found 345.

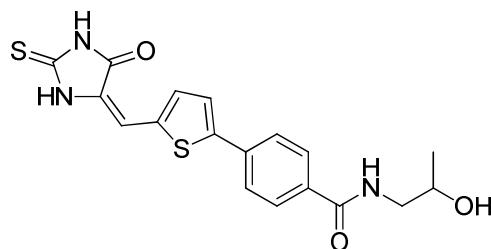

(E,Z)-N-(2-Morpholinoethyl)-4-(5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (70). Reaction of **37** with 2-thioxoimidazolidin-4-one according to general procedure C gave **70** as an orange powder (38%), mp (AcOH) 248-252°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.32 (s, 1 H), 11.94 (s, 1 H), 8.45 (t, J = 5.5 Hz, 1 H), 7.90 (d, J = 8.5 Hz, 2 H), 7.84 (d, J = 3.9 Hz, 1 H), 7.80 (d, J = 8.5 Hz, 2 H), 7.75 (d, J = 4.0 Hz, 1 H), 6.63 (s, 1 H), 3.51-3.67 (m, 4 H), 3.41 (dd, J = 12.8, 6.6 Hz, 4 H), 2.45 (m 4 H). Anal. ($\text{C}_{21}\text{H}_{22}\text{N}_4\text{O}_3\text{S}_2 \cdot 1.5\text{H}_2\text{O}$) C, H, N.


4-(5-Formylthiophen-2-yl)-N-(3-morpholinopropyl)benzamide (38). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 4-(3-aminopropyl)morpholine according to general procedure D, to give **38** as a pale yellow solid (100%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.56 (t, J = 5.6 Hz, 1 H), 8.07 (d, J = 4.0 Hz, 1 H), 7.93 (d, J = 8.8 Hz, 2 H), 7.90 (d, J = 8.8 Hz, 2 H), 7.85 (d, J = 4.0 Hz, 1 H), 3.62-3.54 (m, 4 H), 3.31 (dd, J = 12.7, 6.9 Hz, 4 H), 2.44-2.30 (m, 4 H), 1.71 (m, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{19}\text{H}_{23}\text{N}_2\text{O}_3\text{S}$ 359 (MH^+), found 359.

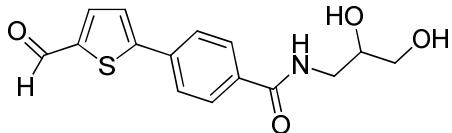

(E,Z)-N-(3-Morpholinopropyl)-4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylbenzamide (71). Reaction of **38** with 2-thioxoimidazolidin-4-one according to general procedure C gave **71** as an orange powder (9%), mp (AcOH) 287°C dec. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 12.18 (m, 2 H), 8.52 (t, $J = 5.5$ Hz, 1 H), 7.90 (d, $J = 8.5$ Hz, 2 H), 7.80 (m, 3 H), 7.74 (d, $J = 4.0$ Hz, 1 H), 6.83 (s, 0.2 Hz), 6.62 (s, 0.8 Hz), 3.54-3.61 (m, 4 H), 3.32 (m, 2 H), 2.35 (m, 6 H), 1.70 (m, 2 H). HRMS (ESI-TOF) calcd for $\text{C}_{22}\text{H}_{25}\text{N}_4\text{O}_3\text{S}_2$ 457.1363 (MH^+), found 457.1369.


4-(5-Formylthiophen-2-yl)-N-(2-hydroxyethyl)benzamide (39). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by ethanolamine according to general procedure D, giving **39** as a pale yellow solid (40%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.52 (t, $J = 5.50$ Hz, 1 H), 8.07 (d, $J = 4.0$ Hz, 1 H), 7.96 (d, $J = 8.7$ Hz, 2 H), 7.90 (d, $J = 8.7$ Hz, 2 H), 7.85 (d, $J = 4.0$ Hz, 1 H), 4.71 (s, 1 H), 3.53 (t, $J = 6.2$ Hz, 2 H), 3.35 (dd, $J = 12.0, 6.1$ Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{14}\text{H}_{14}\text{NO}_3\text{S}$ 276 (MH^+), found 276.

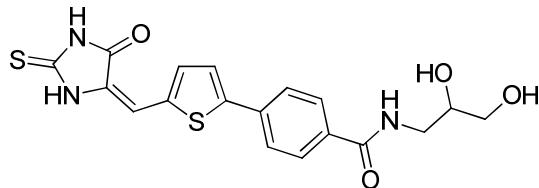

(E,Z)-N-(2-Hydroxyethyl)-4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylbenzamide (72). Reaction of **39** with 2-thioxoimidazolidin-4-one according to general procedure C gave **72** as an orange powder (61%), mp (AcOH) 281-284°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.38 (s, 1 H), 11.97 (s, 1 H), 8.47 (t, $J = 5.6$ Hz, 1 H), 7.93 (d, $J = 8.5$ Hz, 2 H), 7.85 (d, $J = 4.0$ Hz, 1 H), 7.80 (d, $J = 8.5$ Hz, 2 H), 7.75 (d, $J = 4.0$ Hz, 1 H), 6.65 (s, 1 H), 4.70 (t, $J = 5.6$ Hz, 1 H), 3.53 (q, $J = 6.0$ Hz, 2 H), 3.35 (q, $J = 6.0$ Hz, 2 H). HRMS (ESI-TOF) calcd for $\text{C}_{17}\text{H}_{14}\text{N}_3\text{O}_3\text{S}_2$ 372.0477 ($\text{M}-\text{H}$), found 372.0465. Anal. ($\text{C}_{17}\text{H}_{15}\text{N}_3\text{O}_3\text{S}_2$) C, H, N.


4-(5-Formylthiophen-2-yl)-N-(3-hydroxypropyl)benzamide (40). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 3-aminopropanol according to general procedure D, to give **40** as a pale yellow solid (72%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.49 (t, $J = 5.6$ Hz, 1 H), 8.07 (d, $J = 4.0$ Hz, 1 H), 7.93 (d, $J = 8.8$ Hz, 2 H), 7.90 (d, $J = 8.8$ Hz, 2 H), 7.84 (d, $J = 4.0$ Hz, 1 H), 3.66-3.51 (m, 3 H), 3.41 (dd, $J = 12.9, 6.7$ Hz, 2 H), 2.45 (m, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{18}\text{H}_{21}\text{N}_2\text{O}_3\text{S}$ 345 ($\text{M}+\text{H}$), found 345.

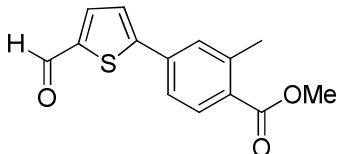
(E,Z)-N-(3-Hydroxypropyl)-4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (73). Reaction of **40** with 2-thioxoimidazolidin-4-one according to general procedure C gave **73** as an orange powder (55%), mp (AcOH) 282-285°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.39 (s, 0.5 H), 12.28 (s, 0.5 H), 12.10 (s, 0.5 H), 11.97 (s, 0.5 H), 8.51-8.43 (m, 1 H), 7.95-7.88 (m, 2 H), 7.86 (d, $J = 4.1$ Hz, 1 H), 7.83-7.73 (m, 2 H), 7.67 (d, $J = 4.0$ Hz, 1 H), 6.83 (s, 0.5 H), 6.65 (s, 0.5 H), 4.45 (t, $J = 4.2$ Hz, 1 H), 3.48 (dd, $J = 9.9, 5.8$ Hz, 2 H), 3.33 (dd, $J = 13.1, 6.8$ Hz, 2 H), 1.69 (m, 2 H). Anal. ($\text{C}_{19}\text{H}_{17}\text{N}_3\text{O}_3\text{S}_2$) C, H, N.

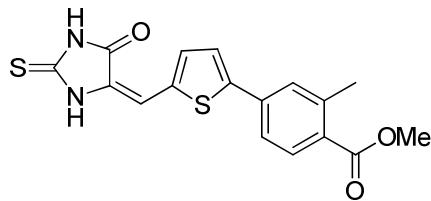


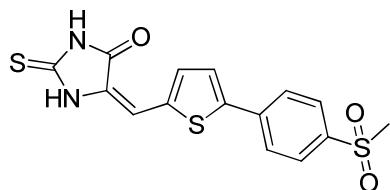
4-(5-Formylthiophen-2-yl)-N-(2-hydroxypropyl)benzamide (41). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 1-aminopropan-2-ol according to general procedure D, to give **41** as a pale yellow solid (58%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.54 (t, $J = 5.7$ Hz, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 7.96 (d, $J = 8.6$ Hz, 2 H), 7.91 (d, $J = 8.6$ Hz, 2 H), 7.86 (d, $J = 4.0$ Hz, 1 H), 3.84-3.75 (m, 1 H), 3.22 (ddd, $J = 9.9, 6.8, 4.0$ Hz, 2 H), 1.07 (d, $J = 8.0$ Hz, 3 H); OH too broad to integrate. LRMS (APCI $^+$) calcd for $\text{C}_{15}\text{H}_{16}\text{NO}_3\text{S}$ 290 ($\text{M}+\text{H}$), found 290.

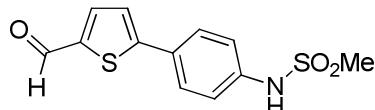


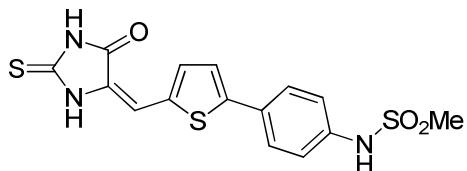
(E,Z)-N-(2-Hydroxypropyl)-4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (74). Reaction of **41** with 2-thioxoimidazolidin-4-one according to general procedure C gave **74** as an orange powder (26%), mp (AcOH) 277°C dec. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*-


and Z- isomers separately. δ 12.44 (s, 0.5 H), 12.33 (s, 0.5 H), 12.16 (s, 0.5 H), 12.03 (s, 0.5 H), 8.49 (dt, J = 5.9, 5.7, 3.4 Hz, 1 H), 7.95-7.90 (m, 2 H), 7.87 (d, J = 4.0 Hz, 0.5 H), 7.83-7.75 (m, 3 H), 7.68 (d, J = 4.0 Hz, 0.5 H), 6.84 (s, 0.5 H), 6.66 (s, 0.5 H), 4.88-4.65 (m, 1 H), 3.97-3.61 (m, 1 H), 3.21 (dd, J = 9.8, 6.0 Hz, 2 H), 1.07 (d, J = 8.0 Hz, 3 H). Anal. (C₁₈H₁₇N₃O₃S₂) C, H, N.

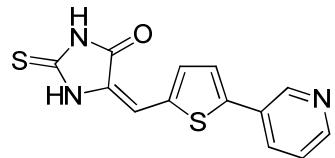

N-(2,3-Dihydroxypropyl)-4-(5-formylthiophen-2-yl)benzamide (42). 4-(5-Formylthiophen-2-yl)benzoic acid (**28**) was reacted with PFP-TFA, followed by 3-aminopropane-1,2-diol according to general procedure D, to give **42** as a pale yellow solid (45%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.47 (t, J = 5.5 Hz, 1 H), 8.07 (d, J = 4.0 Hz, 1 H), 7.96 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 4.0 Hz, 1 H), 4.78 (d, J = 5.0 Hz, 1 H), 4.54 (t, J = 5.8 Hz, 1 H), 3.71-3.60 (m, 1 H), 3.48-3.32 (m, 3 H), 3.23 (m, 1 H). LRMS (APCI⁺) calcd for C₁₅H₁₆NO₄S 306 (MH⁺), found 306.


(E,Z)-N-(2,3-Dihydroxypropyl)-4-(5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzamide (75). Reaction of **42** with 2-thioxoimidazolidin-4-one according to general procedure C gave **75** as an orange powder (32%), mp (AcOH) 287°C dec. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.38 (s, 1 H), 11.98 (s, 1 H), 8.43 (t, J = 5.7 Hz, 1 H), 7.93 (d, J = 8.6 Hz, 2 H), 7.85 (d, J = 4.0 Hz, 2 H), 7.80 (d, J = 8.6 Hz, 2 H), 7.76 (d, J = 4.0 Hz, 2 H), 6.65 (s, 1 H), 4.78 (d, J = 5.0 Hz, 1 H), 4.54 (t, J = 5.8 Hz, 1 H), 3.66 (tt, J = 10.5, 5.3 Hz, 1 H), 3.36 (t, J = 5.6 Hz, 1 H), 3.21 (m, 1 H). HRMS (ESI-TOF) calcd for C₁₈H₁₈N₃O₄S₂ 404.0733 (MH⁺), found 404.0713. Anal. (C₁₈H₁₇N₃O₄S₂) C, H, N.

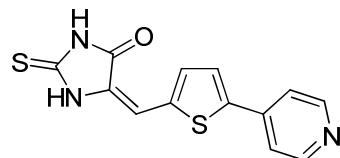

Methyl 4-(5-formylthiophen-2-yl)-2-methylbenzoate (29). Methyl 4-bromo-2-methylbenzoate and 5-formyl-2-thiopheneboronic acid were reacted according to general procedure A, followed by purification by flash column chromatography on silica gel (10% EtOAc/hexanes as eluant), to give **29** as a pale yellow solid (19%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.07 (d, J = 4.0 Hz, 1 H), 7.91 (d, J = 8.2 Hz, 1 H), 7.86 (d, J = 4.0 Hz, 1 H), 7.78-7.81 (m, 1 H), 7.74 (dd, J = 8.2, 1.7 Hz, 1 H), 3.85 (s, 3 H), 2.59 (s, 3 H). LRMS (APCI⁺) calcd for C₁₄H₁₃O₃S 261 (MH⁺), found 261.


(E,Z)-Methyl 2-methyl-4-((5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)benzoate (62). Reaction of **29** with 2-thioxoimidazolidin-4-one according to general procedure C gave **62** as an orange solid (57%), mp (AcOH) 289°C (dec.). ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.37 (br s, 1 H), 11.99 (br s, 1 H), 7.89 (d, *J* = 8.2 Hz, 1 H), 7.84 (d, *J* = 3.8 Hz, 1 H), 7.76 (d, *J* = 4.0 Hz, 1 H), 7.68 (br s, 1 H), 7.64 (dd, *J* = 8.2, 1.8 Hz, 1 H), 6.65 (s, 1 H), 3.84 (s, 3 H), 2.58 (s, 3 H). Anal. (C₁₇H₁₄N₂O₃S₂) C, H, N.

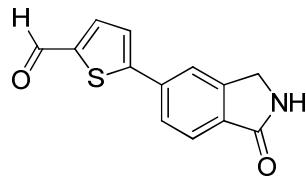
(E,Z)-5-((5-(4-(Methylsulfonyl)phenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (63). Reaction of 5-(4-(Methylsulfonyl)phenyl)thiophene-2-carbaldehyde (**30**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **63** as a brown solid (73%), mp (AcOH) 301-304°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.31 (s, 1 H), 11.97 (s, 1 H), 7.97 (s, 4 H), 7.75-7.85 (m, 2 H), 6.64 (s, 1 H), 3.24 (s, 3 H). HRMS (FAB⁺) calcd for C₁₅H₁₃N₂O₃S₃ 365.0088 (MH⁺), found 365.0089.

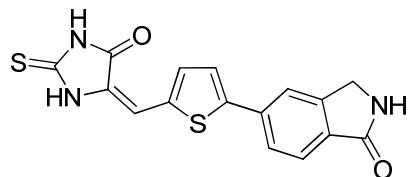


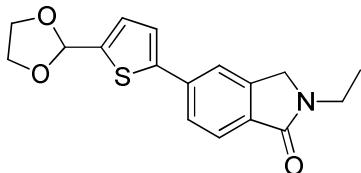
N-(4-(5-Formylthiophen-2-yl)phenyl)methanesulfonamide (31). Reaction of 5-bromothiophen-2-carboxaldehyde and 4-(methylsulfonamido)phenylboronic acid according to general method A gave **31** as a brown solid (11%). [400 MHz, (CD₃)₂SO] δ 10.07 (s, 1 H), 9.89 (s, 1 H), 8.01 (d, *J* = 4.0 Hz, 1 H), 7.78 (d, *J* = 8.9 Hz, 2 H), 7.65 (d, *J* = 4.0 Hz, 1 H), 7.27 (d, *J* = 8.7 Hz, 2 H), 3.04 (s, 3 H). LRMS (APCI⁺) calcd for C₁₂H₁₂NO₃S₂ 282 (MH⁺), found 282.

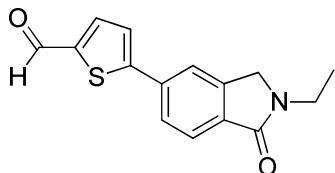


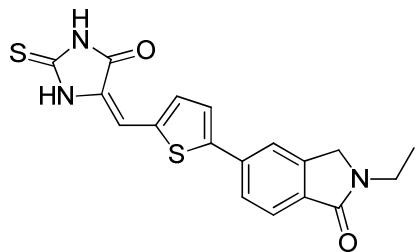
(E,Z)-N-(4-(5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)methylene)methanesulfonamide (64). Reaction of **31** with 2-thioxoimidazolidin-4-one according to general procedure C gave **64** as a brown solid (56%), mp (AcOH)


>295°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.31 (s, 1 H), 11.94 (s, 1 H), 9.93 (s, 1 H), 7.80 (d, J = 3.8 Hz, 1 H), 7.66-7.70 (m, 2 H), 7.56 (d, J = 4.0 Hz, 1 H), 7.26 (d, J = 8.7 Hz, 2 H), 6.61 (s, 1 H), 3.04 (s, 3 H). Anal. ($\text{C}_{15}\text{H}_{13}\text{N}_3\text{O}_3\text{S}_3$) C, H, N.

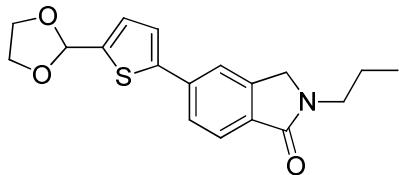

(E,Z)-5-((5-(Pyridin-3-yl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (65). Reaction of 5-(pyridin-3-yl)thiophene-2-carbaldehyde (**32**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **65** as an orange solid (66%), mp (AcOH) >295°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.34 (s, 1 H), 11.98 (s, 1 H), 8.95 (d, J = 1.8 Hz, 1 H), 8.54 (dd, J = 1.5, 4.8 Hz, 1 H), 8.07-8.10 (m, 1 H), 7.86 (d, J = 3.9 Hz, 1 H), 7.76 (d, J = 3.9 Hz, 1 H), 7.46-7.49 (m, 1 H), 6.64 (s, 1 H). Anal. ($\text{C}_{13}\text{H}_9\text{N}_3\text{OS}_2.0.25\text{H}_2\text{O}$) C, H, N.


(E,Z)-5-((5-(Pyridin-4-yl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (66). Reaction of 5-(pyridin-4-yl)thiophene-2-carbaldehyde (**33**) with 2-thioxoimidazolidin-4-one according to general procedure C gave **66** as a brown solid (63%), mp (AcOH) >295°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.45 (s, 1 H), 12.05 (s, 1 H), 8.64 (d, J = 4.9 Hz, 2 H), 7.97 (d, J = 3.9 Hz, 1 H), 7.90 (d, J = 3.9 Hz, 1 H), 7.77 (d, J = 5.9 Hz, 2 H), 6.66 (s, 1 H). Anal. ($\text{C}_{13}\text{H}_9\text{N}_3\text{OS}_2.1.5\text{H}_2\text{O}$) C, H, N.

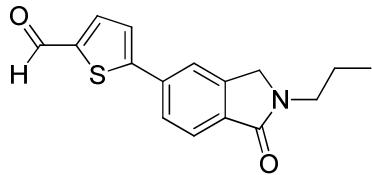

5-(1-Oxoisindolin-5-yl)thiophene-2-carbaldehyde (94). Deprotection of **82** was carried out according to general procedure B to give **94** as a pale yellow solid (100%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.64 (br s, 1 H), 8.08 (d, J = 4.0 Hz, 1 H), 8.02 (br s, 1 H), 7.92 (dd, J = 7.9, 1.5 Hz, 1 H), 7.85 (d, J = 4.0 Hz, 1 H), 7.75 (d, J = 7.9 Hz, 1 H), 3.54 (s, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{13}\text{H}_{10}\text{NO}_2\text{S}$ 244 (MH^+), found 244.


(E,Z)-5-(5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)isoindolin-1-one (118). Reaction of **94** with 2-thioxoimidazolidin-4-one according to general procedure C gave **118** as an orange solid (57%), mp (DMSO/H₂O) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.38 (s, 1 H), 11.98 (s, 1 H), 8.57 (s, 1 H), 7.91 (s, 1 H), 7.86 (d, *J* = 3.9 Hz, 1 H), 7.83 (dd, *J* = 1.4, 7.9 Hz, 1 H), 7.76 (d, *J* = 3.9 Hz, 1 H), 7.71 (d, *J* = 7.9 Hz, 1 H), 6.65 (s, 1 H), 4.43 (s, 2 H). Anal. (C₁₆H₁₁N₃O₂S₂.1.5H₂O) C, H, N; + 0.5.

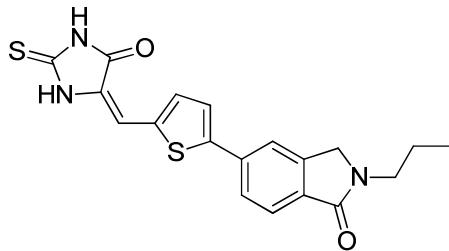
5-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-ethylisoindolin-1-one (88). Alkylation of **82** with NaH and ethyl iodide according to general procedure F gave **88** as a pale yellow solid (58%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 7.87 (d, *J* = 0.8 Hz, 1 H), 7.76 (dd, *J* = 7.9, 1.6 Hz, 1 H), 7.67 (d, *J* = 7.9 Hz, 1 H), 7.53 (d, *J* = 3.7 Hz, 1 H), 7.26 (d, *J* = 3.7 Hz, 1 H), 6.07 (s, 1 H), 4.51 (s, 2 H), 4.02-4.09 (m, 2 H), 3.94-4.01 (m, 2 H), 3.55 (q, *J* = 7.3 Hz, 2 H), 1.18 (t, *J* = 7.3 Hz, 3 H). LRMS (APCI⁺) calcd for C₁₇H₁₈NO₃S 316 (MH⁺), found 316.

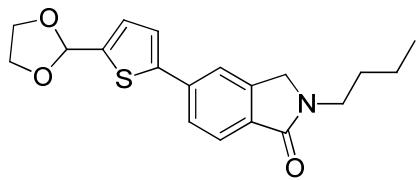


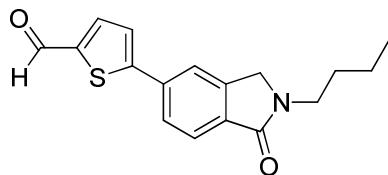
5-(2-Ethyl-1-oxoisoindolin-5-yl)thiophene-2-carbaldehyde (96). Deprotection of **88** according to general procedure B gave **96** as a pale yellow-orange solid (78%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.06 (d, *J* = 4.0 Hz, 1 H), 8.04 (d, *J* = 0.8 Hz, 1 H), 7.92 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.86 (d, *J* = 4.0 Hz, 1 H), 7.75 (d, *J* = 7.9 Hz, 1 H), 4.55 (s, 2 H), 3.56 (q, *J* = 7.3 Hz, 2 H), 1.19 (t, *J* = 7.3 Hz, 3 H). LRMS (APCI⁺) calcd for C₁₅H₁₄NO₂S 272 (MH⁺), found 272.

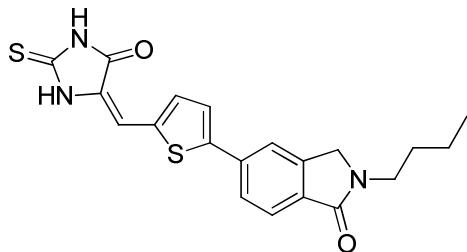


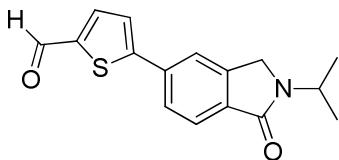
(E,Z)-2-Ethyl-5-(5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)isoindolin-1-one (120). Reaction of **96** with 2-thioxoimidazolidin-4-one according to general procedure C gave **120** as an orange solid (64%), mp (AcOH) 267-270°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 11.98-12.37 (m, 2 H), 7.93 (d, *J* = 0.7 Hz, 1 H), 7.86 (d, *J* = 4.0 Hz, 0.85 H), 7.83 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.75-7.78 (m, 1 H), 7.71 (d, *J* = 8.0 Hz, 1 H), 7.68 (d, *J* = 4.0 Hz, 0.15 H),

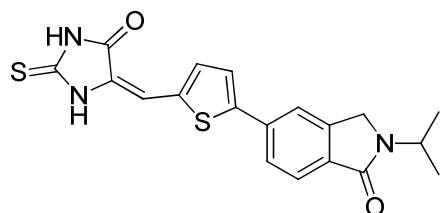

6.84 (s, 0.15 H), 6.65 (s, 0.85 H), 4.53 (s, 2 H), 3.56 (q, $J = 7.2$ Hz, 2 H), 1.19 (t, $J = 7.2$ Hz, 3 H). LRMS (APCI) calcd for $C_{18}H_{14}N_3O_2S_2$ 368 (M-H), found 368.

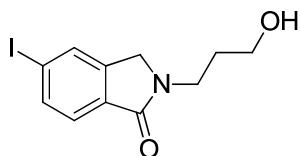

5-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-propylisoindolin-1-one (89). Alkylation of **82** with NaH and propyl iodide according to general procedure F gave **89** as a pale yellow solid (45%). 1H NMR [400 MHz, $(CD_3)_2SO$] δ 7.87 (d, $J = 0.7$ Hz, 1 H), 7.76 (dd, $J = 8.0, 1.6$ Hz, 1 H), 7.68 (d, $J = 8.2$ Hz, 1 H), 7.53 (d, $J = 3.7$ Hz, 1 H), 7.26 (d, $J = 3.8$ Hz, 1 H), 6.07 (s, 1 H), 4.50 (s, 2 H), 4.02-4.09 (m, 2 H), 3.94-4.01 (m, 2 H), 3.48 (t, $J = 7.2$ Hz, 2 H), 1.62 (pentet, $J = 7.3$ Hz, 2 H), 0.88 (t, $J = 7.4$ Hz, 3 H). LRMS (APCI $^+$) calcd for $C_{18}H_{20}NO_3S$ 330 (MH $^+$), found 330.

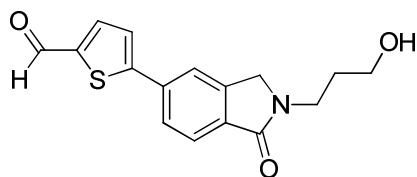

5-(1-Oxo-2-propylisoindolin-5-yl)thiophene-2-carbaldehyde (97). Deprotection of **89** according to general procedure B gave **97** as a pale yellow solid (65%). 1H NMR [400 MHz, $(CD_3)_2SO$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.03 (d, $J = 0.8$ Hz, 1 H), 7.92 (dd, $J = 7.9, 1.6$ Hz, 1 H), 7.86 (d, $J = 3.9$ Hz, 1 H), 7.75 (d, $J = 7.9$ Hz, 1 H), 4.54 (s, 2 H), 3.50 (t, $J = 7.2$ Hz, 2 H), 1.63 (pentet, $J = 7.3$ Hz, 2 H), 0.88 (t, $J = 7.4$ Hz, 3 H). LRMS (APCI $^+$) calcd for $C_{16}H_{16}NO_2S$ 286 (MH $^+$), found 286.

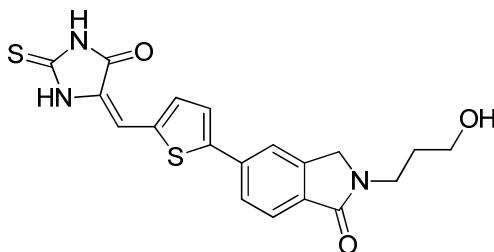

(E,Z)-5-(5-(5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-2-propylisoindolin-1-one (121). Reaction of **97** with 2-thioxoimidazolidin-4-one according to general procedure C gave **121** as an orange solid (64%), mp (AcOH) 275-278°C. 1H NMR [400 MHz, $(CD_3)_2SO$] Observe *E*- and *Z*- isomers separately. δ 11.98-12.38 (m, 2 H), 7.92 (br s, 1 H), 7.67-7.87 (m, 4 H), 6.82 (s, 0.4 H), 6.65 (s, 0.6 H), 4.52 (s, 2 H), 3.48 (t, $J = 7.2$ Hz, 2 H), 1.63 (pentet, $J = 7.3$ Hz, 2 H), 0.89 (t, $J = 7.4$ Hz, 3 H). LRMS (APCI) calcd for $C_{19}H_{16}N_3O_2S_2$ 382 (M-H), found 382. HRMS (ESI $^+$) calcd for $C_{19}H_{16}N_3O_2S_2$ 382.0689 (M-H), found 382.0697.

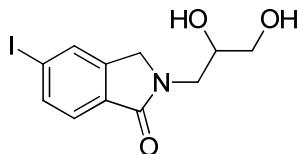

5-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-butylisoindolin-1-one (90). Alkylation of **82** with NaH and butyl iodide according to general procedure F (except in this case the solution of anion was added to a solution of the butyl iodide in DMF) gave **90** as a pale yellow solid (49%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 7.86 (br d, $J = 0.7$ Hz, 1 H), 7.77 (dd, $J = 8.0, 1.6$ Hz, 1 H), 7.68 (d, $J = 8.0$ Hz, 1 H), 7.53 (d, $J = 3.9$ Hz, 1 H), 7.25 (d, $J = 3.9$ Hz, 1 H), 6.07 (s, 1 H), 4.50 (s, 2 H), 4.02-4.09 (m, 2 H), 3.94-4.01 (m, 2 H), 3.52 (t, $J = 7.1$ Hz, 2 H), 1.59 (pentet, $J = 7.3$ Hz, 2 H), 1.30 (sextet, $J = 7.4$ Hz, 2 H), 0.92 (t, $J = 7.3$ Hz, 3 H). LRMS (APCI $^+$) calcd for $\text{C}_{19}\text{H}_{22}\text{NO}_3\text{S}$ 344 (MH^+), found 344.

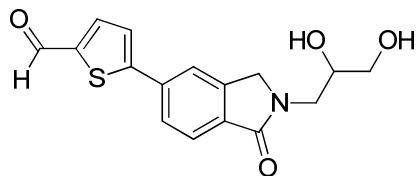

5-(2-Butyl-1-oxoisoindolin-5-yl)thiophene-2-carbaldehyde (98). Deprotection of **90** according to general procedure B gave **98** as a yellow solid (88%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.03 (br d, $J = 0.7$ Hz, 1 H), 7.92 (dd, $J = 7.9, 1.5$ Hz, 1 H), 7.86 (d, $J = 3.9$ Hz, 1 H), 7.75 (d, $J = 7.9$ Hz, 1 H), 4.53 (s, 2 H), 3.53 (t, $J = 7.1$ Hz, 2 H), 1.60 (pentet, $J = 7.3$ Hz, 2 H), 1.30 (sextet, $J = 7.4$ Hz, 2 H), 0.92 (t, $J = 7.3$ Hz, 3 H). LRMS (APCI $^+$) calcd for $\text{C}_{17}\text{H}_{18}\text{NO}_2\text{S}$ 300 (MH^+), found 300.


(*E,Z*)-2-Butyl-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylisoindolin-1-one (122). Reaction of **98** with 2-thioxoimidazolidin-4-one according to general procedure C gave **122** as an orange solid (67%), mp (AcOH) 278-281°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*-isomers separately. δ 11.91-12.39 (br m, 2 H), 7.92 (br d, $J = 0.7$ Hz, 1 H), 7.87 (d, $J = 4.1$ Hz, 0.9 H), 7.83 (dd, $J = 8.0, 1.5$ Hz, 1 H), 7.77 (d, $J = 4.0$ Hz, 1 H), 7.71 (d, $J = 7.9$ Hz, 1 H), 7.68 (d, $J = 4.0$ Hz, 0.1 H), 6.85 (s, 0.1 H), 6.65 (s, 0.9 H), 4.52 (s, 2 H), 3.53 (t, $J = 7.1$ Hz, 2 H), 1.60 (pentet, $J = 7.3$ Hz, 2 H), 1.30 (sextet, $J = 7.40$ Hz, 2 H), 0.92 (t, $J = 7.4$ Hz, 3 H). LRMS (APCI $^+$) calcd for $\text{C}_{20}\text{H}_{18}\text{N}_3\text{O}_2\text{S}_2$ 396 ($\text{M}-\text{H}$), found 396.

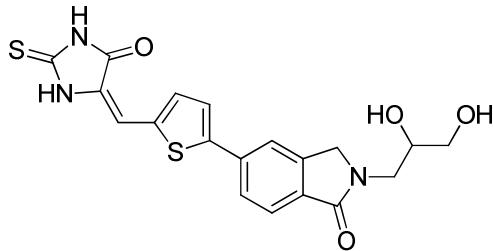

5-(2-Isopropyl-1-oxoindolin-5-yl)thiophene-2-carbaldehyde (99). 5-Bromo-2-isopropylisoindolin-1-one (prepared according to a literature procedure⁴⁷) was reacted with 5-formylthiophen-2-ylboronic acid according to general procedure A. Purification by flash column chromatography on silica gel (50% EtOAc/hexanes) gave **99** as a pale yellow solid (44%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.08 (d, J = 4.0 Hz, 1 H), 8.03 (d, J = 0.8 Hz, 1 H), 7.92 (dd, J = 7.9, 1.6 Hz, 1 H), 7.85 (d, J = 4.0 Hz, 1 H), 7.74 (d, J = 7.6 Hz, 1 H), 4.50 (s, 2 H), 4.48-4.39 (m, 1 H), 1.26 (s, 3 H), 1.24 (s, 3 H). LRMS (APCI⁺) calcd for C₁₆H₁₆NO₂S 286 (MH⁺), found 286.


(E,Z)-2-Isopropyl-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophene-2-ylisoindolin-1-one (123). Reaction of **99** with 2-thioxoimidazolidin-4-one according to general procedure C gave **123** as a red powder (23%), mp (AcOH) 285-290°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.39 (s, 1 H), 11.99 (s, 1 H), 7.92 (d, J = 0.70 Hz, 1 H), 7.87 (d, J = 4.0 Hz, 1 H), 7.83 (dd, J = 8.0, 1.5 Hz, 1 H), 7.76 (d, J = 4.0 Hz, 1 H), 7.71 (d, J = 7.9 Hz, 1 H), 6.65 (s, 1 H), 4.48 (s, 2 H), 4.43 (td, J = 13.5, 6.8 Hz, 1 H), 1.26 (s, 3 H), 1.24 (s, 3 H). HRMS (ESI-TOF) calcd for C₁₉H₁₈N₃O₂S₂ 384.0835 (MH⁺), found 384.0821.

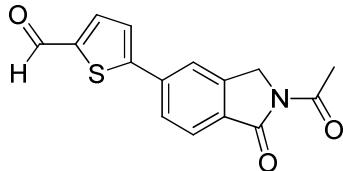

2-(3-Hydroxypropyl)-5-iodoisindolin-1-one (79). Reaction of methyl 4-iodo-2-methylbenzoate⁴⁵ **76** and 3-amino-1-propanol according to general procedure G gave **79** as a crystalline white solid (65%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.02 (d, J = 0.7 Hz, 1 H), 7.84 (dd, J = 7.9, 1.4 Hz, 1 H), 7.45 (d, J = 7.9 Hz, 1 H), 4.48 (t, J = 5.1 Hz, 1 H), 4.45 (s, 2 H), 3.55 (t, J = 7.2 Hz, 2 H), 3.43 (q, J = 5.9 Hz, 2 H), 1.70-1.77 (m, 2 H). LRMS (APCI⁺) calcd for C₁₁H₁₃INO₂ 318 (MH⁺), found 318.


5-(2-(3-Hydroxypropyl)-1-oxoisindolin-5-yl)thiophene-2-carbaldehyde (101). 2-Thiophenecarboxaldehyde was protected as the dimethyl acetal based on a literature procedure⁴⁶ then reacted with **79** according to general procedure E. Deprotection of **84** directly to the aldehyde according to general procedure H gave **101** as a yellow solid (50%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.08 (d, J = 4.0 Hz, 1 H), 8.03 (d, J = 0.8 Hz, 1 H), 7.92 (dd, J = 7.9, 1.6 Hz, 1 H), 7.86 (d, J = 4.0 Hz, 1 H), 7.75 (d, J = 8.0 Hz, 1 H), 4.55 (s, 2 H), 4.50 (t, J = 5.2 Hz, 1 H), 3.58 (q, J = 7.5 Hz, 2 H), 3.46 (q, J = 5.8 Hz, 2 H), 1.76 (pentet, J = 6.3 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₆H₁₆NO₃S 302 (MH⁺), found 302.

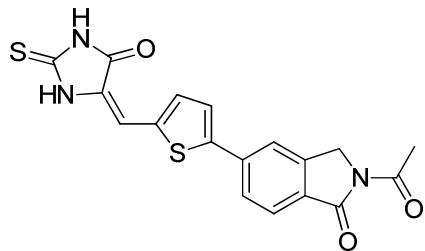
(E,Z)-2-(3-Hydroxypropyl)-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)isoindolin-1-one (126). Reaction of **101** with 2-thioxoimidazolidin-4-one according to general procedure C, followed by hydrolysis of the crude *O*-acetate according to general procedure I, gave **126** as an orange solid (64%), mp (MeOH) 240-243°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*-isomers separately. δ 11.98-12.40 (m, 2 H), 7.93 (br s, 1 H), 7.87 (d, J = 4.0 Hz, 0.9 H), 7.83 (dd, J = 8.0, 1.5 Hz, 1 H), 7.77 (d, J = 4.0 Hz, 1 H), 7.71 (d, J = 8.1 Hz, 1 H), 7.68 (d, J = 4.0 Hz, 0.1 H), 6.84 (s, 0.1 H), 6.65 (s, 0.9 H), 4.54 (s, 2 H), 4.50 (t, J = 5.1 Hz, 1 H), 3.58 (t, J = 7.2 Hz, 2 H), 3.46 (q, J = 5.8 Hz, 2 H), 1.77 (pentet, J = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₉H₁₈N₃O₃S₂ 400 (MH⁺), found 400.

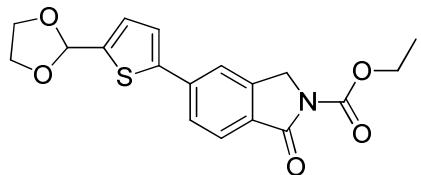


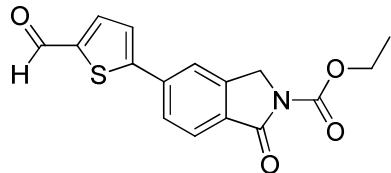
2-(2,3-Dihydroxypropyl)-5-iodoisindolin-1-one (80). Reaction of methyl 4-iodo-2-methylbenzoate⁴⁵ **76** and 3-amino-1-propanol according to general procedure G gave **80** as a crystalline cream solid (58%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.03 (d, J = 0.7 Hz, 1 H), 7.84 (dd, J = 7.9, 1.4 Hz, 1 H), 7.46 (d, J = 7.9 Hz, 1 H), 4.88 (d, J = 5.2 Hz, 1 H), 4.47-4.64 (m, 3 H), 3.69-3.77 (m, 1 H), 3.61-3.66 (m, 1 H), 3.30-3.43 (m, 3 H). LRMS (APCI⁺) calcd for C₁₁H₁₃INO₃ 334 (MH⁺), found 334.

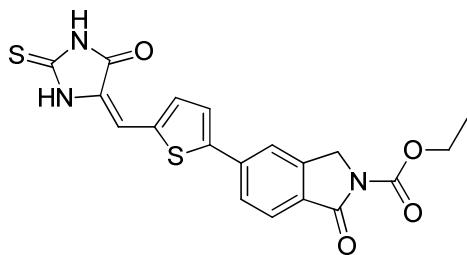


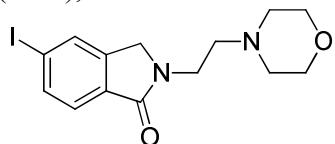
5-(2-(2,3-Dihydroxypropyl)-1-oxoisindolin-5-yl)thiophene-2-carbaldehyde (102). 2-Thiophenecarboxaldehyde was protected as the dimethyl acetal based on a literature

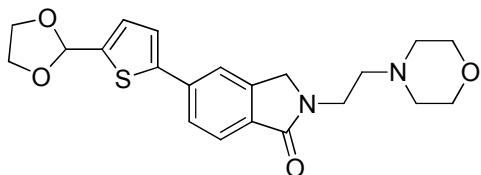

procedure,⁴⁶ then reacted with **80** according to general procedure E. Deprotection of **85** directly to the aldehyde according to general procedure H gave **102** as a yellow solid (38%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.94 (s, 1 H), 8.08 (d, *J* = 4.0 Hz, 1 H), 8.05 (d, *J* = 0.7 Hz, 1 H), 7.92 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.86 (d, *J* = 4.0 Hz, 1 H), 7.75 (d, *J* = 8.0 Hz, 1 H), 4.91 (t, *J* = 5.2 Hz, 1 H), 4.57-4.71 (m, 3 H), 3.73-3.81 (m, 1 H), 3.65-3.71 (m, 1 H), 3.31-3.47 (m, 3 H). LRMS (APCI⁺) calcd for C₁₆H₁₆NO₄S 318 (MH⁺), found 318.


(E,Z)-2-(2,3-Dihydroxypropyl)-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)isoindolin-1-one (127). Reaction of **102** with 2-thioxoimidazolidin-4-one according to general procedure C, followed by hydrolysis of the crude *O,O*-diacetate according to general procedure I, gave **127** as an orange solid, (18%); mp (DMSO/water) 260-263°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.02-12.41 (m, 2 H), 7.94 (br s, 1 H), 7.87 (br d, *J* = 3.9 Hz, 0.7 H), 7.83 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.77 (d, *J* = 4.0 Hz, 1 H), 7.72 (d, *J* = 8.0 Hz, 1 H), 7.69 (d, *J* = 4.0 Hz, 0.3 H), 6.84 (s, 0.3 H), 6.65 (s, 0.7 H), 4.93 (t, *J* = 5.2 Hz, 1 H), 4.56-4.59 (m, 3 H), 3.72-3.80 (m, 1 H), 3.63-3.70 (m, 1 H), 3.33-3.46 (m, 3 H). LRMS (APCI⁻) calcd for C₁₉H₁₆N₃O₄S₂ 414 (M-H), found 414.


5-(2-Acetyl-1-oxoisoindolin-5-yl)thiophene-2-carbaldehyde (103). Compound **82** (150 mg, 0.52 mmol) was suspended in acetic anhydride (10 mL) and heated at reflux temperature for 2 h. The solvent was removed under reduced pressure to afford a residue which was dissolved in CH₂Cl₂ (50 mL) and washed with sat. NaHCO₃ (2x50 mL) and brine (50 mL). The organic fraction was dried (Na₂SO₄), filtered and the solvent removed under reduced pressure to give **91** as a brown solid which was deprotected directly according to general procedure B. Purification by flash column chromatography on silica gel (2% acetone/CH₂Cl₂ as eluant), gave **103** as a pale yellow solid (84%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.96 (s, 1 H), 8.11-8.13 (br m, 1 H), 8.10 (d, *J* = 4.0 Hz, 1 H), 8.00 (dd, *J* = 8.1, 1.6 Hz, 1 H), 7.89-7.93 (m, 2 H), 4.84 (s, 2 H), 2.56 (s, 3 H). LRMS (APCI⁺) calcd for C₁₅H₁₂NO₃S 286 (MH⁺), found 286.

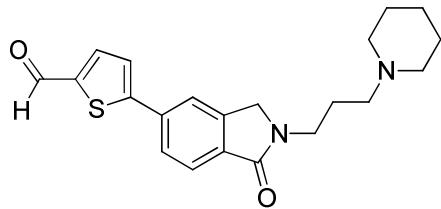

(E,Z)-2-Acetyl-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylisoindolin-1-one (128). Reaction of **103** with 2-thioxoimidazolidin-4-one according to general procedure C gave **128** as an orange solid (79%), mp (AcOH) 336-339°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 11.91-12.39 (m, 2 H), 7.99 (br s, 1 H), 7.91 (dd, *J* = 8.1, 1.4 Hz, 1 H), 7.85-7.89 (m, 1.85 H), 7.83 (d, *J* = 4.0 Hz, 0.85 H), 7.78 (br d, *J* = 4.4 Hz, 0.15 H), 7.75 (d, *J* = 4.0 Hz, 0.15 H), 6.84 (s, 0.15 H), 6.65 (s, 0.85 H), 4.83 (s, 2 H), 2.55 (s, 3 H). LRMS (APCI⁺) calcd for C₁₈H₁₂N₃O₃S₂ 382 (M-H), found 382.


Ethyl 5-(5-(1,3-dioxolan-2-yl)thiophen-2-yl)-1-oxoisindoline-2-carboxylate (92). Alkylation of **82** with NaH and ethyl chloroformate according to general procedure F gave **92** as an off-white solid (60%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 7.93 (br d, *J* = 0.7 Hz, 1 H), 7.84 (dd, *J* = 8.1, 1.5 Hz, 1 H), 7.80 (d, *J* = 8.1 Hz, 1 H), 7.59 (d, *J* = 3.9 Hz, 1 H), 7.28 (d, *J* = 4.0 Hz, 1 H), 6.08 (s, 1 H), 4.86 (s, 2 H), 4.28 (q, *J* = 7.1 Hz, 2 H), 4.02-4.11 (m, 2 H), 3.93-4.01 (m, 2 H), 1.31 (t, *J* = 7.1 Hz, 3 H). LRMS (APCI⁺) calcd for C₁₈H₁₈NO₅S 360 (MH⁺), found 360.

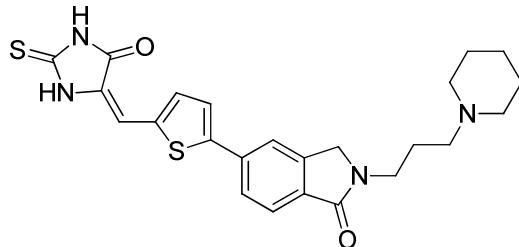

Ethyl 5-(5-formylthiophen-2-yl)-1-oxoisindoline-2-carboxylate (104). Deprotection of **92** according to general procedure B gave **104** as a cream solid (100%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.96 (s, 1 H), 8.08-8.11 (m, 2 H), 7.98 (dd, *J* = 8.1, 1.6 Hz, 1 H), 7.90 (d, *J* = 4.0 Hz, 1 H), 7.87 (d, *J* = 8.2 Hz, 1 H), 4.89 (s, 2 H), 4.29 (q, *J* = 7.1 Hz, 2 H), 1.31 (t, *J* = 7.1 Hz, 3 H). LRMS (APCI⁺) calcd for C₁₆H₁₃NO₄S 315 (M⁺), found 315.

(E,Z)-Ethyl 1-oxo-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylisoindoline-2-carboxylate (129). Reaction of **104** with 2-thioxoimidazolidin-4-one according to general procedure C gave **129** as an orange solid (98%), mp (AcOH) 274-277°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 11.91-12.39 (m, 2 H), 7.97 (br s, 1 H), 7.86-7.91 (m, 1.8 H), 7.80-7.85 (m, 1.8 H), 7.78 (br d, *J* = 4.4 Hz, 0.2 H), 7.73 (d, *J* = 4.0 Hz, 0.2 H), 6.84 (s, 0.2 H), 6.65 (s, 0.8 H), 4.88 (s, 2 H), 4.28 (q, *J* = 7.1 Hz, 2 H), 1.31 (t, *J* = 7.1 Hz, 3 H). LRMS (APCI⁺) calcd for C₁₉H₁₄N₃O₄S₂ 412 (M-H), found 312.

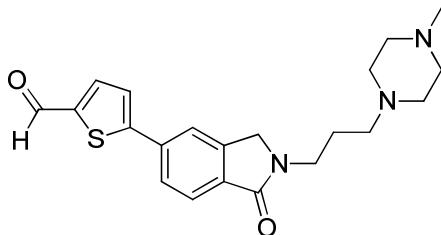
5-Iodo-2-(2-morpholinoethyl)isoindolin-1-one (81). Reaction of methyl 4-iodo-2-methylbenzoate⁴⁵ **76** and 4-(2-aminoethyl)morpholine, according to general procedure G gave **81** as a white solid (61%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.02 (d, *J* = 0.7 Hz, 1 H), 7.84 (dd, *J* = 7.9, 1.3 Hz, 1 H), 7.45 (d, *J* = 7.9 Hz, 1 H), 4.52 (s, 2 H), 3.63 (t, *J* = 6.3 Hz, 2 H), 3.53 (t, *J* = 4.6 Hz, 4 H), 2.53 (t, *J* = 6.4 Hz, 2 H), 2.41 (t, *J* = 4.4 Hz, 4 H). LRMS (APCI⁺) calcd for C₁₄H₁₈IN₂O₂ 373 (M+H), found 373.



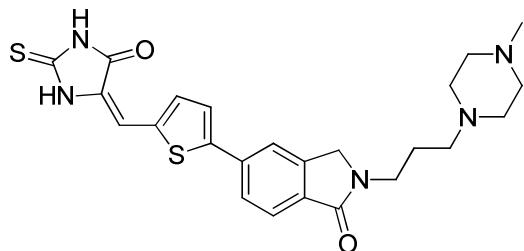
5-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-(2-morpholinoethyl)isoindolin-1-one (86). 2-Thiophenecarboxaldehyde was protected as the cyclic acetal according to a literature procedure,⁴⁴ then reacted with **81** according to general procedure E giving **86** as a yellow-orange foam (50%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 7.88 (d, *J* = 0.7 Hz, 1 H), 7.76 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.68 (dd, *J* = 7.9, 0.3 Hz, 1 H), 7.54 (d, *J* = 3.7 Hz, 1 H), 7.26 (dd, *J* = 3.8, 0.4 Hz, 1 H), 6.07 (s, 1 H), 4.58 (s, 2 H), 4.02-4.10 (m, 2 H), 3.93-4.01 (m, 2 H), 3.65 (t, *J* = 6.3 Hz, 2 H), 3.55 (t, *J* = 4.6 Hz, 4 H), 2.56 (t, *J* = 6.3 Hz, 2 H), 2.39-2.46 (m, 4 H). LRMS (APCI⁺) calcd for C₂₁H₂₅N₂O₄S 401 (M+H), found 401.

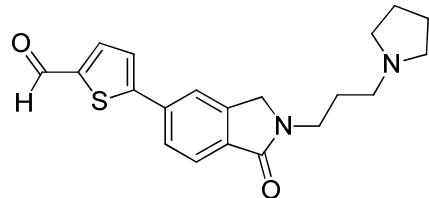

5-(2-(2-Morpholinoethyl)-1-oxoisindolin-5-yl)thiophene-2-carbaldehyde (105).

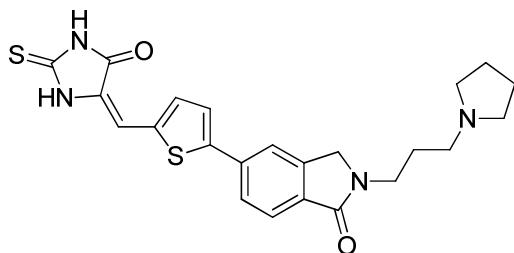
Deprotection of **86** according to general procedure B gave **105** as a yellow solid (81%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.05 (d, $J = 0.8$ Hz, 1 H), 7.92 (dd, $J = 8.0, 1.5$ Hz, 1 H), 7.86 (d, $J = 4.0$ Hz, 1 H), 7.75 (d, $J = 7.9$ Hz, 1 H), 4.62 (s, 2 H), 3.67 (t, $J = 6.3$ Hz, 2 H), 3.55 (t, $J = 4.6$ Hz, 4 H), 2.56 (t, $J = 6.2$ Hz, 2 H), 2.40-2.47 (m, 4 H). LRMS (APCI $^+$) calcd for $\text{C}_{19}\text{H}_{21}\text{N}_2\text{O}_3\text{S}$ 357 ($\text{M}+\text{H}$), found 357.

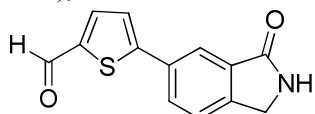


5-(1-Oxo-2-(3-(piperidin-1-yl)propyl)isoindolin-5-yl)thiophene-2-carbaldehyde (115).

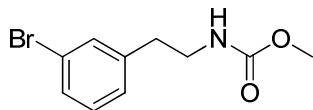

Reaction of iodide **109** with piperidine according to general procedure K, followed by deprotection of **111** according to general procedure H gave **115** as a yellow solid (73%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.03 (br s, 1 H), 7.92 (dd, $J = 8.0, 1.5$ Hz, 1 H), 7.86 (d, $J = 4.0$ Hz, 1 H), 7.74 (d, $J = 8.0$ Hz, 1 H), 4.55 (s, 2 H), 3.56 (t, $J = 7.2$ Hz, 2 H), 2.22-2.34 (m, 6 H), 1.77 (pentet, $J = 7.0$ Hz, 2 H), 1.45 (pentet, $J = 5.3$ Hz, 4 H), 1.31-1.38 (m, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{21}\text{H}_{25}\text{N}_2\text{O}_2\text{S}$ 369 (MH^+), found 369.

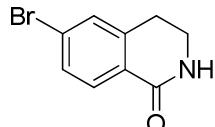

(E,Z)-5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-2-(3-(piperidin-1-yl)propyl)isoindolin-1-one (132). Reaction of **115** with 2-thioxoimidazolidin-4-one according to general procedure C, followed by isolation according to general procedure J, gave **132** as an orange solid (48%), mp (dioxane) 221-224°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 11.47 (v br s, 2 H), 7.91 (br s, 1 H), 7.82 (dd, $J = 8.0, 1.4$ Hz, 1 H), 7.77 (d, $J = 4.4$ Hz, 0.15 H), 7.67-7.72 (m, 2.85 H), 6.84 (s, 0.15 H), 6.52 (s, 0.85 H), 4.53 (s, 2 H), 3.51 (t, $J = 6.9$ Hz, 2 H), 2.44-2.57 (m, 6 H), 1.83 (pentet, $J = 7.1$ Hz, 2 H), 1.53 (pentet, $J = 5.4$ Hz, 4 H), 1.35-1.43 (m, 2 H). HRMS (ESI $^+$) calcd for $\text{C}_{24}\text{H}_{27}\text{N}_4\text{O}_2\text{S}_2$ 467.1570 (MH^+), found 467.1567.

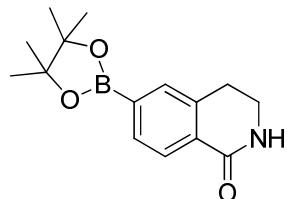

5-(2-(3-(4-Methylpiperazin-1-yl)propyl)-1-oxoisoindolin-5-yl)thiophene-2-carbaldehyde (116). Reaction of iodide **109** with 1-methylpiperazine according to general procedure K, followed by deprotection of **112** according to general procedure H gave **116** as a yellow solid (78%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.03 (d, $J = 0.7$ Hz, 1 H), 7.92 (dd, $J = 8.0, 1.6$ Hz, 1 H), 7.86 (d, $J = 3.9$ Hz, 1 H), 7.74 (d, $J = 8.0$ Hz, 1 H), 4.54 (s, 2 H), 3.55 (t, $J = 7.1$ Hz, 2 H), 2.20-2.38 (m, 10 H), 2.11 (s, 3 H), 1.76 (pentet, $J = 7.0$ Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{21}\text{H}_{26}\text{N}_3\text{O}_2\text{S}$ 384 (MH^+), found 384.

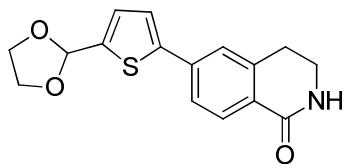

(E,Z)-2-(3-(4-Methylpiperazin-1-yl)propyl)-5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)isoindolin-1-one (133). Reaction of **116** with 2-thioxoimidazolidin-4-one according to general procedure C, followed by isolation according to general procedure J, gave **133** as a dark orange solid (81%), mp (MeOH) 197-201°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 11.75 (br s, 2 H), 7.90 (br s, 1 H), 7.82 (dd, $J = 8.0, 1.5$ Hz, 1 H), 7.77 (d, $J = 4.4$ Hz, 0.2 H), 7.65-7.72 (m, 2.8 H), 6.84 (s, 0.2 H), 6.51 (s, 0.8 H), 4.52 (s, 2 H), 3.54 (t, $J = 7.0$ Hz, 2 H), 2.29-2.42 (m, 10 H), 2.16 (s, 3 H), 1.75 (pentet, $J = 7.1$ Hz, 2 H). HRMS (ESI $^+$) calcd for $\text{C}_{24}\text{H}_{28}\text{N}_5\text{O}_2\text{S}_2$ 482.1679 (MH^+), found 482.1675.

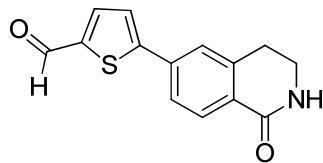

5-(1-Oxo-2-(3-(pyrrolidin-1-yl)propyl)isoindolin-5-yl)thiophene-2-carbaldehyde (117). Reaction of iodide **109** with pyrrolidine according to general procedure K, followed by deprotection of **113** according to general procedure H gave **117** as a beige solid (78%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 9.94 (s, 1 H), 8.08 (d, $J = 4.0$ Hz, 1 H), 8.03 (d, $J = 0.7$ Hz, 1 H), 7.92 (dd, $J = 8.0, 1.6$ Hz, 1 H), 7.86 (d, $J = 4.0$ Hz, 1 H), 7.74 (d, $J = 8.0$ Hz, 1 H), 4.55 (s, 2 H), 3.57 (t, $J = 7.2$ Hz, 2 H), 2.40-2.46 (m, 6 H), 1.79 (pentet, $J = 7.1$ Hz, 2 H), 1.64-1.70 (m, 4 H). LRMS (APCI $^+$) calcd for $\text{C}_{20}\text{H}_{23}\text{N}_2\text{O}_2\text{S}$ 355 (MH^+), found 355.


(E,Z)-5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-2-(3-(pyrrolidin-1-yl)propyl)isoindolin-1-one (134). Reaction of **117** with 2-thioxoimidazolidin-4-one according to general procedure C, followed by isolation according to general procedure J, gave **134** as a dark orange solid (67%), mp (acetone) 206-210 °C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 11.36 (v br s, 2 H), 7.92 (br s, 0.2 H), 7.90 (br s, 0.8 H), 7.82 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.77 (d, *J* = 3.9 Hz, 0.2 H), 7.65-7.72 (m, 2 H), 7.60 (d, *J* = 3.9 Hz, 0.8 H), 6.84 (s, 0.2 H), 6.47 (s, 0.8 H), 4.53 (s, 2 H), 3.57 (t, *J* = 6.9 Hz, 2 H), 2.58-2.74 (m, 6 H), 1.85 (pentet, *J* = 7.2 Hz, 2 H), 1.70-1.78 (m, 4 H). LRMS (APCI⁺) calcd for C₂₃H₂₅N₄O₂S₂ 453 (MH⁺), found 453.

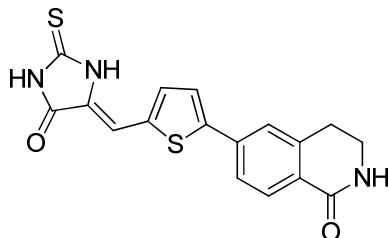

5-(3-Oxoisindolin-5-yl)thiophene-2-carbaldehyde (159). 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one (**147**) was reacted with 2-(5-bromothiophen-2-yl)-1,3-dioxolane (**5**) according to general procedure A, to give **153** which was deprotected directly to the aldehyde according to general procedure B, affording **159** as an off-white solid (84%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.93 (s, 1 H), 8.68 (br s, 1 H), 8.07 (d, *J* = 3.9 Hz, 1 H), 8.00-8.04 (m, 2 H), 7.87 (d, *J* = 3.9 Hz, 1 H), 7.70 (br d, *J* = 8.5 Hz, 1 H), 4.44 (s, 2 H). LRMS (APCI⁺) calcd for C₁₃H₁₀NO₂S 244 (MH⁺), found 244.


(E,Z)-6-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-ylisoindolin-1-one (165). Reaction of **159** with 2-thioxoimidazolidin-4-one according to general procedure C gave **164** as an orange solid (60%), mp (DMSO/water) >320°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 11.97-12.37 (m, 2 H), 8.63 (br s, 1 H), 7.93-7.97 (m, 2 H), 7.83 (br d, *J* = 4.0 Hz, 1 H), 7.76 (br d, *J* = 4.0 Hz, 1 H), 7.75 (d, *J* = 8.5 Hz, 1 H), 6.84 (s, 0.05 H), 6.66 (s, 0.95 H), 4.42 (s, 2 H). LRMS (APCI⁺) calcd for C₁₆H₁₀N₃O₃S₂ 340 (M-H), found 340.

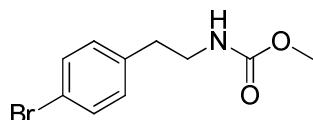

Methyl 3-bromophenethylcarbamate (139). Adaption of a literature procedure³⁸ gave **139** as a pale yellow oil (96%). ¹H NMR [400 MHz, CDCl₃] δ 7.33-7.38 (m, 2 H), 7.17 (t, *J* = 7.6 Hz, 1 H), 7.11 (d, *J* = 7.7 Hz, 1 H), 4.68 (bs, 1 H), 3.67 (s, 3 H), 3.42 (q, *J* = 6.6 Hz, 2 H), 2.78 (t, *J* = 7.0 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₀H₁₃BrNO₂ 259 (MH⁺), found 259.


6-Bromo-3,4-dihydroisoquinolin-1(2H)-one (143). Cyclisation of **139** was carried out by adaption of a literature procedure³⁹ to give **143** as a white solid (30%). ¹H NMR [400 MHz, CDCl₃] δ 7.93 (d, *J* = 8.3 Hz, 1 H), 7.49 (dd, *J* = 8.3, 1.9 Hz, 1 H), 7.39 (d, *J* = 1.7 Hz, 1 H), 5.98 (bs, 1 H), 3.57 (dt, *J* = 6.6, 2.9 Hz, 2 H), 2.99 (t, *J* = 6.6 Hz, 2 H). LRMS (APCI⁺) calcd for C₉H₉BrNO 227 (MH⁺), found 227.

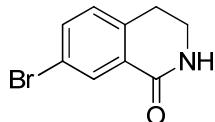
6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (149). Reaction of **143** with bis(pinacolato)diboron according to general procedure L gave **149** as a light brown solid (26%). ¹H NMR [400 MHz, CDCl₃] δ 8.06 (d, *J* = 7.7 Hz, 1 H), 7.79 (d, *J* = 7.7 Hz, 1 H), 7.66 (s, 1 H), 5.95 (bs, 1 H), 3.55 (dt, *J* = 6.6, 2.9 Hz, 2 H), 3.01 (t, *J* = 6.7 Hz, 2 H), 1.36 (s, 12 H). LRMS (APCI⁺) calcd for C₁₅H₂₁BNO₃ 274 (MH⁺), found 274.

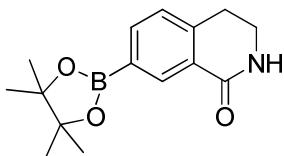


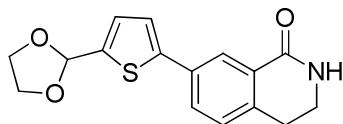
6-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (155). Reaction of 2-(5-bromothiophen-2-yl)-1,3-dioxolane (**5**) with **149** according to general procedure A gave **155** as a light orange solid (44%). ¹H NMR [400 MHz, CDCl₃] δ 8.07 (d, *J* = 8.1 Hz, 1 H), 7.57 (dd, *J* = 8.1, 1.8 Hz, 1 H), 7.42 (d, *J* = 1.8 Hz, 1 H), 7.27 (d, *J* = 3.7 Hz, 1 H), 7.15 (dd, *J* = 3.6, 0.4 Hz, 1 H), 6.11 (s, 1 H), 6.02 (bs, 1 H), 4.03-4.21 (m, 4 H), 3.59 (dt, *J* = 6.6, 2.9 Hz, 2 H), 3.03 (t, *J* = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₆H₁₆NO₃S 302 (MH⁺), found 302.

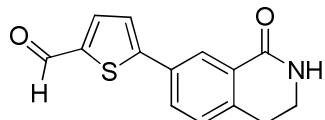


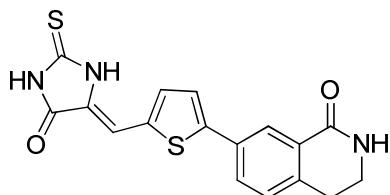
5-(1-Oxo-1,2,3,4-tetrahydroisoquinolin-6-yl)thiophene-2-carbaldehyde (161).


Deprotection of **155** was carried out according to general procedure B to give **161** as an orange solid (97%). ^1H NMR [400 MHz, CDCl_3] δ 9.92 (s, 1 H), 8.13 (d, J = 8.1 Hz, 1 H), 7.77 (d, J = 4.0 Hz, 1 H), 7.66 (dd, J = 8.1, 1.8 Hz, 1 H), 7.52 (d, J = 1.0 Hz, 1 H), 7.48 (d, J = 3.9 Hz, 1 H), 6.01 (bs, 1 H), 3.62 (dt, J = 6.6, 2.9 Hz, 2 H), 3.07 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{14}\text{H}_{12}\text{NO}_2\text{S}$ 258 (MH^+), found 258.

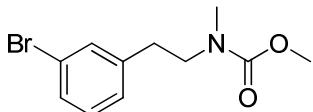

(E,Z)-6-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (167). Reaction of **161** with 2-thioxoimidazolidin-4-one according to general procedure C gave **167** as a brown solid (65%); mp (AcOH) 341-344°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 11.98-12.30 (br m, 2 H), 7.93 (br s, 1 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.83 (d, J = 3.9 Hz, 1 H), 7.77 (d, J = 4.4 Hz, 0.2 H), 7.74 (d, J = 4.0 Hz, 0.8 H), 7.64-7.70 (m, 2 H), 6.83 (br s, 0.2 H), 6.63 (br s, 0.8 H), 3.40 (dt, J = 6.6, 2.5 Hz, 2 H), 2.96 (t, J = 6.5 Hz, 2 H). HRMS (ESI $^+$) calcd for $\text{C}_{17}\text{H}_{12}\text{N}_3\text{O}_2\text{S}_2$ 354.0376 ($\text{M}-\text{H}$), found 354.0368.


Methyl 4-bromophenethylcarbamate (140). Adaption of a literature procedure³⁸ gave **140** as a pale yellow oil (94%). ^1H NMR [400 MHz, CDCl_3] δ 7.43 (d, J = 8.4 Hz, 2 H), 7.06 (d, J = 8.3 Hz, 2 H), 4.65 (bs, 1 H), 3.65 (s, 3 H), 3.41 (q, J = 6.3 Hz, 2 H), 2.77 (t, J = 7.0 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{10}\text{H}_{13}\text{BrNO}_2$ 259 (MH^+), found 259.

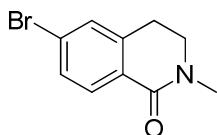

7-Bromo-3,4-dihydroisoquinolin-1(2H)-one (144). Cyclisation of **140** was carried out by adaption of a literature procedure³⁹ to give **144** as a white solid (20%). ^1H NMR [400 MHz, CDCl_3] δ 8.20 (d, J = 2.1 Hz, 1 H), 7.55 (dd, J = 8.1, 2.2 Hz, 1 H), 7.09 (d, J = 8.1 Hz, 1 H), 6.12 (bs, 1 H), 3.55 (dt, J = 6.2, 2.9 Hz, 2 H), 2.94 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_9\text{H}_9\text{BrNO}$ 227 (MH^+), found 227.


7-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (150). Reaction of **144** with bis(pinacolato)diboron according to general procedure L gave **150** as a light brown solid (47%). ^1H NMR [400 MHz, CDCl_3] δ 8.53 (s, 1 H), 7.86 (dd, J = 7.5, 1.3 Hz, 1 H), 7.21 (d, J = 7.4 Hz, 1 H), 5.88 (bs, 1 H), 3.55 (dt, J = 6.6, 2.9 Hz, 2 H), 3.01 (t, J = 6.6 Hz, 2 H), 1.33 (s, 12 H). LRMS (APCI $^+$) calcd for $\text{C}_{15}\text{H}_{21}\text{BNO}_3$ 274 (MH^+), found 274.

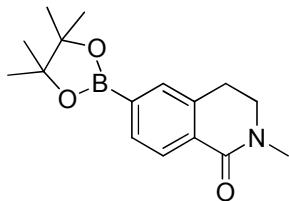
7-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (156). Reaction of 2-(5-bromothiophen-2-yl)-1,3-dioxolane (**5**) with **150** according to general procedure A gave **156** as a brown solid (41%). ^1H NMR [400 MHz, CDCl_3] δ 8.31 (d, J = 2.0 Hz, 1 H), 7.65 (dd, J = 7.9, 2.1 Hz, 1 H), 7.27 (d, J = 3.6 Hz, 1 H), 7.22 (d, J = 8.0 Hz, 1 H), 7.13 (d, J = 3.8 Hz, 1 H), 6.11 (s, 1 H), 6.01 (bs, 1 H), 4.03-4.16 (m, 4 H), 3.59 (dt, J = 6.7, 2.9 Hz, 2 H), 3.01 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{16}\text{H}_{16}\text{NO}_3\text{S}$ 302 (MH^+), found 302.

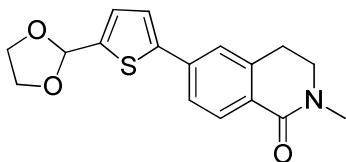


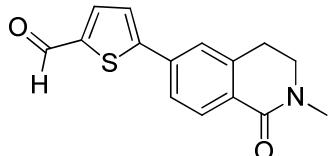
5-(1-Oxo-1,2,3,4-tetrahydroisoquinolin-7-yl)thiophene-2-carbaldehyde (162). Deprotection of **156** was carried out according to general procedure B to give **162** as an orange solid (84%). ^1H NMR [400 MHz, CDCl_3] δ 9.90 (s, 1 H), 8.40 (d, J = 2.0 Hz, 1 H), 7.75 (d, J = 3.9 Hz, 1 H), 7.73 (d, J = 2.0 Hz, 1 H), 7.49 (d, J = 3.9 Hz, 1 H), 7.30 (d, J = 7.9 Hz, 1 H), 6.12 (bs, 1 H), 3.61 (dt, J = 6.6, 2.8 Hz, 2 H), 3.05 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{14}\text{H}_{12}\text{NO}_2\text{S}$ 258 (MH^+), found 258.

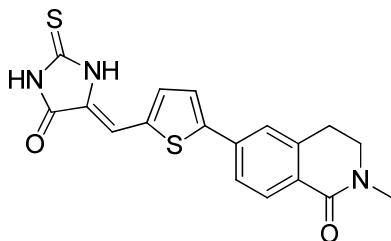


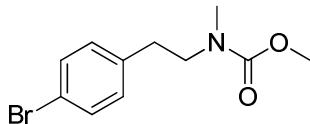
(E,Z)-7-(5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (168). Reaction of **162** with 2-thioxoimidazolidin-4-one according to general procedure C gave **168** as a brown solid (72%); mp (AcOH)

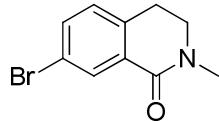

>310°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 12.35-12.69 (br m, 2 H), 8.12 (d, J = 2.0 Hz, 0.9 H), 8.10 (d, J = 2.0 Hz, 0.1 H), 8.03 (m, 1 H), 7.86 (dd, J = 7.9, 2.1 Hz, 1 H), 7.79 (d, J = 3.9 Hz, 0.9 H), 7.74 (d, J = 4.0 Hz, 0.1 H), 7.66 (d, J = 4.0 Hz, 0.9 H), 7.59 (d, J = 4.0 Hz, 0.1 H), 7.40 (d, J = 8.0 Hz, 1 H), 6.65 (br s, 0.9 H), 6.60 (br s, 0.1 H), 3.40 (dt, J = 6.6, 2.5 Hz, 2 H), 2.93 (t, J = 6.5 Hz, 2 H). HRMS (ESI $^+$) calcd for $\text{C}_{17}\text{H}_{14}\text{N}_3\text{O}_2\text{S}_2$ 356.0516 (MH^+), found 356.0522.

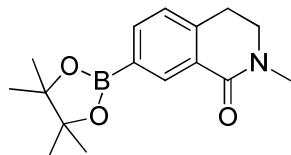

Methyl 3-bromophenethyl(methyl)carbamate (141). Adaption of a literature procedure³⁸ gave **141** as a pale yellow oil (88%). ^1H NMR [400 MHz, CDCl_3] δ 7.32-7.38 (m, 1 H), 7.30 (d, J = 7.4 Hz, 1 H), 7.16-7.24 (m, 2 H), 3.69 (s, 3 H), 3.48 (s, 3 H), 2.72-2.91 (m, 4 H). LRMS (APCI $^+$) calcd for $\text{C}_{11}\text{H}_{14}\text{BrNO}_2$ 273 (MH^+), found 273.

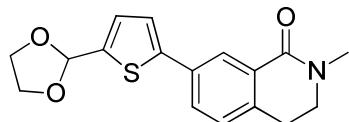

6-Bromo-2-methyl-3,4-dihydroisoquinolin-1(2H)-one (145). Cyclisation of **141** was carried out by adaption of a literature procedure³⁹ to give **145** as a pale orange oil (13%). ^1H NMR [400 MHz, CDCl_3] δ 7.94 (d, J = 8.3 Hz, 1 H), 7.46 (dd, J = 8.3, 1.8 Hz, 1 H), 7.34 (d, J = 1.8 Hz, 1 H), 3.56 (t, J = 6.8 Hz, 2 H), 3.14 (s, 3 H), 2.98 (t, J = 6.9 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{10}\text{H}_{10}\text{BrNO}$ 241 (MH^+), found 241.

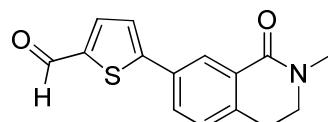

2-Methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (151). Reaction of **145** with bis(pinacolato)diboron according to general procedure L gave **151** as a yellow oil (0.26 g, 86%). ^1H NMR [400 MHz, CDCl_3] δ 8.09 (dd, J = 7.5, 1.0 Hz, 1 H), 7.76 (d, J = 7.6 Hz, 1 H), 7.61 (s, 1 H), 3.57 (t, J = 6.8 Hz, 2 H), 3.16 (s, 3 H), 3.01 (t, J = 6.6 Hz, 2 H), 1.35 (s, 12 H). LRMS (APCI $^+$) calcd for $\text{C}_{16}\text{H}_{22}\text{BNO}_3$ 288 (MH^+), found 288.

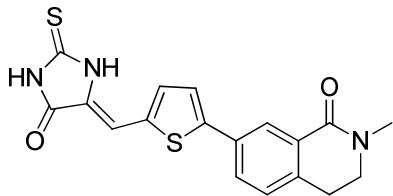

6-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-methyl-3,4-dihydroisoquinolin-1(2*H*)-one (157). Reaction of 2-(5-bromothiophen-2-yl)-1,3-dioxolane (**5**) with **151** according to general procedure A gave **157** as an orange-brown solid (88%). ¹H NMR [400 MHz, CDCl₃] δ 8.08 (d, *J* = 8.1 Hz, 1 H), 7.55 (dd, *J* = 7.8, 1.4 Hz, 1 H), 7.37 (s, 1 H), 7.25 (d, *J* = 3.6 Hz, 1 H), 7.14 (d, *J* = 3.6 Hz, 1 H), 6.11 (s, 1 H), 4.01-4.21 (m, 4 H), 3.61 (t, *J* = 6.7 Hz, 2 H), 3.18 (s, 3 H), 3.03 (t, *J* = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₇H₁₇NO₃S 316 (MH⁺), found 316.

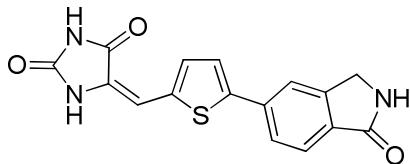

5-(2-Methyl-1-oxo-1,2,3,4-tetrahydroisoquinolin-6-yl)thiophene-2-carbaldehyde (163). Deprotection of **157** was carried out according to general procedure B to give **163** as an orange solid (75%). ¹H NMR [400 MHz, CDCl₃] δ 9.91 (s, 1 H), 8.14 (d, *J* = 8.1 Hz, 1 H), 7.75 (d, *J* = 4.0 Hz, 1 H), 7.64 (dd, *J* = 8.1, 1.9 Hz, 1 H), 7.47 (s, 1 H), 7.46 (d, *J* = 4.0 Hz, 1 H), 3.61 (t, *J* = 6.6 Hz, 2 H), 3.18 (s, 3 H), 3.07 (t, *J* = 6.6 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₅H₁₃NO₂S 272 (MH⁺), found 272.

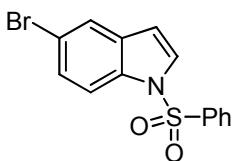

(E,Z)-2-Methyl-6-(5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (169). Reaction of **163** with 2-thioxoimidazolidin-4-one according to general procedure C gave **169** as an orange-brown solid (60%); mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.40 (s, 0.4 H), 12.28 (s, 0.6 H), 12.10 (s, 0.6 H), 11.98 (s, 0.4 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.86 (d, *J* = 4.1 Hz, 0.4 H), 7.76 (d, *J* = 4.4 Hz, 0.6 H), 7.74 (d, *J* = 4.0 Hz, 0.4 H), 7.69 (dd, *J* = 8.0, 2.0 Hz, 0.4 H), 7.67 (dd, *J* = 8.1, 1.9 Hz, 0.6 H), 7.65 (d, *J* = 4.1 Hz, 0.6 H), 7.64 (s, 0.4 H), 7.62 (s, 0.6 H), 6.83 (s, 0.6 H), 6.65 (s, 0.4 H), 3.57 (t, *J* = 6.6 Hz, 2 H), 3.05 (t, *J* = 6.6 Hz, 2 H), 3.04 (s, 3 H). HRMS (ESI⁺) calcd for C₁₈H₁₄N₃O₂S₂ 368.0533 (M-H), found 368.0542.

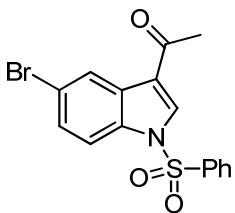

Methyl 4-bromophenethyl(methyl)carbamate (142). Adaption of a literature procedure³⁸ gave **142** as an orange oil (89%). ¹H NMR [400 MHz, CDCl₃] δ 7.42 (d, *J* = 8.4 Hz, 2 H), 7.04-7.09 (m, 2 H), 3.65 (s, 3 H), 3.45 (s, 3 H), 2.72-2.81 (m, 4 H). LRMS (APCI⁺) calcd for C₁₁H₁₄BrNO₂ 273 (MH⁺), found 273.

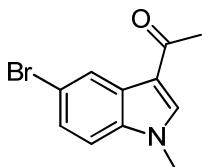

7-Bromo-2-methyl-3,4-dihydroisoquinolin-1(2H)-one (146). Cyclisation of **142** was carried out by adaption of a literature procedure³⁹ to give **146** as an orange oil (55%). ¹H NMR [400 MHz, CDCl₃] δ 8.21 (d, *J* = 2.1 Hz, 1 H), 7.52 (dd, *J* = 8.1, 2.2 Hz, 1 H), 7.05 (d, *J* = 8.0 Hz, 1 H), 3.56 (t, *J* = 6.7 Hz, 2 H), 3.15 (s, 3 H), 2.95 (t, *J* = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₀H₁₀BrNO 241 (MH⁺), found 241.

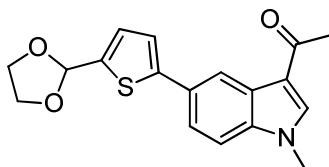

2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (152). Reaction of **146** with bis(pinacolato)diboron according to general procedure L gave **152** as a pale yellow oil (58%). ¹H NMR [400 MHz, CDCl₃] δ 8.53 (s, 1 H), 7.82 (dd, *J* = 7.5, 1.3 Hz, 1 H), 7.16 (d, *J* = 7.5 Hz, 1 H), 3.55 (t, *J* = 6.7 Hz, 2 H), 3.15 (s, 3 H), 3.01 (t, *J* = 6.6 Hz, 2 H), 1.33 (s, 12 H). LRMS (APCI⁺) calcd for C₁₆H₂₂BNO₃ 288 (MH⁺), found 288.


7-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-2-methyl-3,4-dihydroisoquinolin-1(2H)-one (158). Reaction of 2-(5-bromothiophen-2-yl)-1,3-dioxolane (**5**) with **152** according to general procedure A gave **158** as a yellow oil (41%). ¹H NMR [400 MHz, CDCl₃] δ 8.32 (d, *J* = 2.0 Hz, 1 H), 7.61 (dd, *J* = 7.8, 2.0 Hz, 1 H), 7.25 (d, *J* = 3.6 Hz, 1 H), 7.17 (d, *J* = 7.8 Hz, 1 H), 7.12 (d, *J* = 3.6 Hz, 1 H), 6.11 (s, 1 H), 4.01-4.17 (m, 4 H), 3.58 (t, *J* = 6.7 Hz, 2 H), 3.17 (s, 3 H), 3.01 (t, *J* = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₇H₁₇NO₃S 316 (MH⁺), found 316.

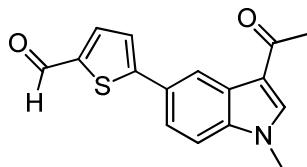

5-(2-Methyl-1-oxo-1,2,3,4-tetrahydroisoquinolin-7-yl)thiophene-2-carbaldehyde (164). Deprotection of **158** was carried out according to general procedure B to give **164** as a yellow-orange solid (99%). ¹H NMR [400 MHz, CDCl₃] δ 9.89 (s, 1 H), 8.41 (d, *J* = 2.0 Hz, 1 H), 7.74 (d, *J* = 4.0 Hz, 1 H), 7.69 (dd, *J* = 7.8, 2.1 Hz, 1 H), 7.48 (d, *J* = 4.0 Hz, 1 H), 7.24 (s, 1 H), 3.60 (t, *J* = 6.7 Hz, 2 H), 3.19 (s, 3 H), 3.05 (t, *J* = 6.7 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₅H₁₃NO₂S 272 (MH⁺), found 272.


(E,Z)-2-Methyl-7-(5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (170). Reaction of **164** with 2-thioxoimidazolidin-4-one according to general procedure C gave **170** as a red-brown solid (66%); mp (AcOH) >320°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*-isomers separately. δ 11.72-12.49 (br m, 2 H), 8.13 (d, *J* = 2.0 Hz, 0.7 H), 8.12 (d, *J* = 2.0 Hz, 0.3 H), 7.84 (dd, *J* = 7.9, 2.2 Hz, 0.7 H), 7.83 (dd, *J* = 7.9, 2.2 Hz, 0.3 H), 7.79 (d, *J* = 4.0 Hz, 0.7 H), 7.73 (d, *J* = 4.0 Hz, 0.3 H), 7.65 (d, *J* = 3.9 Hz, 0.7 H), 7.58 (d, *J* = 4.0 Hz, 0.3 H), 7.38 (d, *J* = 7.8 Hz, 1 H), 6.84 (s, 0.3 H), 6.64 (s, 0.7 H), 3.58 (t, *J* = 6.7 Hz, 2 H), 3.06 (s, 3 H), 3.01 (t, *J* = 6.6 Hz, 2 H). HRMS (ESI⁺) calcd for C₁₈H₁₄N₃O₂S₂ 368.0533 (M-H), found 368.0529.

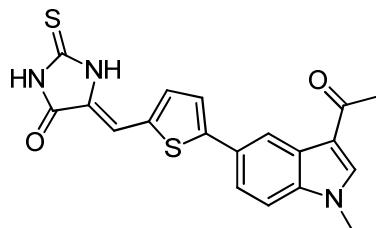

(E,Z)-5-((5-(1-Oxoisoindolin-5-yl)thiophen-2-yl)methylene)imidazolidine-2,4-dione (136). Reaction of **94** with hydantoin according to general procedure C gave **136** as a yellow-brown solid (41%), mp (DMSO/H₂O) >295°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 11.27 (s, 1 H), 10.39 (s, 1 H), 8.55 (s, 1 H), 7.87 (s, 1 H), 7.80 (dd, *J* = 1.4, 7.9 Hz, 1 H), 7.71 (m, 2 H), 7.62 (d, *J* = 4.2 Hz, 1 H), 6.59 (s, 1 H), 4.42 (s, 2 H). Anal. (C₁₆H₁₁N₃O₃S.1.25H₂O) C, H, N.


5-Bromo-1-(phenylsulfonyl)-1H-indole (172).⁴⁰ To a stirred suspension of powdered sodium hydroxide (7.18 g, 180 mmol), and (n-Bu)₄HSO₄ (505 mg, 1.48 mmol) in CH₂Cl₂ (180 mL) at 0°C was added 5-bromoindole (**171**) (10.0 g, 51.0 mmol). After 3 hours the mixture was filtered through a pad of silica and washed with CH₂Cl₂. The eluant was removed under reduced pressure to give **172** as an oil which solidified on standing (17.0 g, 95%). ¹H NMR [400 MHz, CDCl₃] δ 7.83-7.89 (m, 3 H), 7.66 (d, *J* = 1.9 Hz, 1 H), 7.53-7.58 (m, 2 H), 7.41 (dd, *J* = 8.8, 1.9 Hz, 1 H), 7.43-7.48 (m, 2 H), 6.60 (dd, *J* = 3.7, 0.7 Hz, 1 H). LRMS (APCI⁺) calcd for C₁₄H₁₁BrNO₂S 336 (MH⁺), found 336.

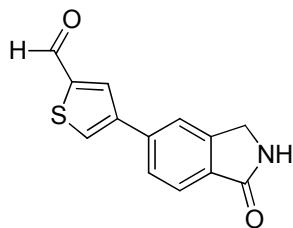
1-(5-Bromo-1-(phenylsulfonyl)-1*H*-indol-3-yl)ethanone (173).⁴¹ To a stirred solution of AlCl₃ (13.9 g, 105 mmol), and Ac₂O (4.58 g, 44.8 mmol) in CH₂Cl₂ (180 mL) at RT was added a dropwise solution of **172** (5.03 g, 14.9 mmol). The reaction was stirred for 3 h and then poured onto ice, and extracted with CH₂Cl₂. The solvent was dried with MgSO₄, concentrated, and the crude was purified by trituration with CH₂Cl₂/hexanes to give **173** as a brown solid (3.62 g, 64%). ¹H NMR [400 MHz, CDCl₃] δ 8.88 (s, 1 H), 8.32 (d, *J* = 2.0 Hz, 1 H), 8.13-8.17 (m, 2 H), 7.93 (d, *J* = 8.6 Hz, 1 H), 7.75-7.79 (m, 2 H), 7.62-7.68 (m, 1 H), 7.58 (dd, *J* = 8.9, 2.1 Hz, 1 H), 2.59 (s, 3 H). LRMS (APCI⁺) calcd for C₁₆H₁₃BrNO₃S 378 (MH⁺) found 378.

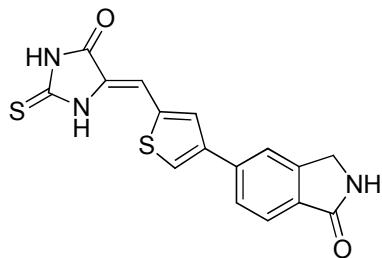


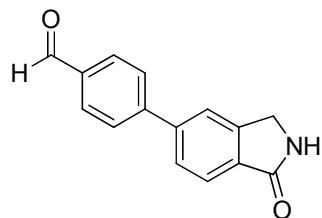
1-(5-Bromo-1-methyl-1*H*-indol-3-yl)ethanone (174). An oven dried 50 mL round bottom flask was charged with **173** (812 mg, 2.09 mmol), MeOH (100 mg, 3.14 mmol), CsCO₃ (751 mg, 2.31 mmol), and tetra-*n*-butylammonium bromide (34 mg, 0.104 mmol), and the mixture was suspended in dry toluene (20 mL). After heating to 65°C overnight, the reaction was quenched with saturated NH₄Cl (20 mL), extracted with CH₂Cl₂, dried over MgSO₄ and then evaporated to dryness. The crude material was purified by silica gel chromatography, eluting with CH₂Cl₂/MeOH 98:2, to afford **174** as a colourless oil which solidified upon standing (520 mg, 98%). ¹H NMR [400 MHz, CDCl₃] δ 8.38 (s, 1 H), 8.31 (dd, *J* = 2.0, 0.4 Hz, 1 H), 7.54 (dd, *J* = 8.8, 0.4 Hz, 1 H), 7.41 (dd, *J* = 8.8, 0.4 Hz, 1 H), 3.86 (s, 3 H), 2.43 (s, 3 H). LRMS (APCI⁺) calcd for C₁₁H₁₁BrNO 252 (MH⁺), found 252.

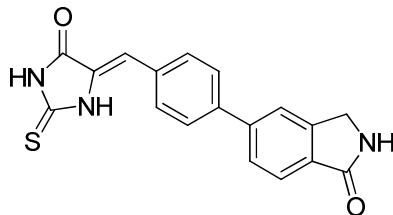


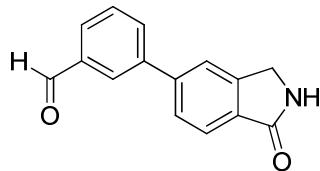
1-(5-(5-(1,3-Dioxolan-2-yl)thiophen-2-yl)-1-methyl-1*H*-indol-3-yl)ethanone (176). A 50 mL round bottom flask was charged with (5-(1,3-dioxolan-2-yl)thiophen-2-yl)boronic acid (**175**) (494 mg, 2.47 mmol), **174** (520 mg, 2.06 mmol) and Pd(dppf)Cl₂ (20.0 mg, 0.03 mmol). The mixture was suspended in DMF (12 mL) and 2 M KHCO₃ (3 mL), degassed and then heated to 70°C for 3 h. The reaction was diluted with saturated NH₄Cl, extracted with CH₂Cl₂, dried over MgSO₄ and the solvent removed under reduced pressure to give a black solid. Chromatography with silica gel eluting with CH₂Cl₂/MeOH 98:2 gave **176** as a cream coloured solid (318 mg, 47%). ¹H NMR [400 MHz, CDCl₃] δ 9.84 (s, 1 H), 8.76 (dd, *J* = 6.4, 0.4 Hz, 1

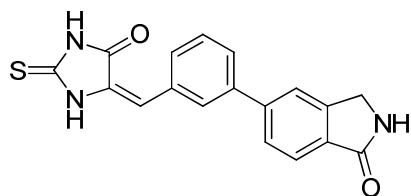

H), 7.76 (d, J = 0.4 Hz, 1 H), 7.74 (br s, 1 H), 7.63 (dd, J = 8.4, 2.0 Hz, 1 H), 7.50 (d, J = 4.0 Hz, 1 H), 7.38 (dd, J = 8.8, 0.8 Hz, 1 H), 3.89 (s, 3 H), 2.54 (s, 3 H), 1.57 (s, 4 H). LRMS (APCI $^+$) calcd for $C_{16}H_{14}NO_2S$ 284 ($MH - C_2H_4O^+$), found 284.


5-(3-Acetyl-1-methyl-1H-indol-5-yl)thiophene-2-carbaldehyde (177). Deprotection of **176** according to general procedure B gave **177** as a colourless solid (270 mg, 98%). ^1H NMR [400 MHz, CDCl_3] δ 9.90 (s, 1 H), 8.57 (d, J = 1.6 Hz, 1 H), 8.42 (s, 1 H), 8.04 (d, J = 4.0 Hz, 1 H), 7.75 (dd, J = 8.6, 1.9 Hz, 1 H), 7.70 (d, J = 4.0 Hz, 1 H), 7.67 (d, J = 8.1 Hz, 1 H), 3.90 (s, 3 H), 2.46 (s, 3 H). LRMS (APCI $^+$) calcd for $C_{16}H_{14}NO_2S$ 284 (MH^+), found 284.

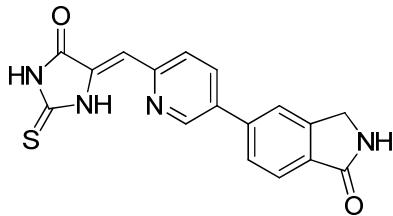

5-((5-(3-Acetyl-1-methyl-1H-indol-5-yl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (178). Reaction of **177** with 2-thioxoimidazolidin-4-one according to general procedure C gave **178** isolated as a cream solid (73%); mp (AcOH) 309-313°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.37 (s, 1 H), 12.03 (s, 1 H), 8.51-8.51 (m, 1 H), 8.38 (s, 1 H), 7.83 (dd, J = 4.0, 0.5 Hz, 1 H), 7.70 (dd, J = 8.6, 1.9 Hz, 1 H), 7.63 (d, J = 8.3 Hz, 1 H), 7.59 (d, J = 4.0 Hz, 1 H), 6.67 (s, 1 H), 3.88 (s, 3 H), 2.45 (s, 3 H). Anal. calcd for $(C_{19}H_{15}N_3O_2S_2 \cdot H_2O)$ C, H, N.


4-(1-Oxoisoindolin-5-yl)thiophene-2-carbaldehyde (195). 4-Bromo-2-thiophenecarboxaldehyde was protected as the dimethyl acetal **179** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A. In this case deprotection of the product **179** occurred *in situ*, affording the aldehyde directly. Purification by flash column chromatography on silica gel (EtOAc as eluant) gave **195** as a cream solid (74%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 10.00 (d, J = 1.2 Hz, 1 H), 8.53-8.59 (m, 3 H), 7.98 (s, 1 H), 7.89 (dd, J = 7.9, 1.4 Hz, 1 H), 7.74 (d, J = 7.9 Hz, 1 H), 4.43 (s, 2 H). LRMS (APCI $^+$) calcd for $C_{13}H_{10}NO_2S$ 244 (MH^+), found 244.

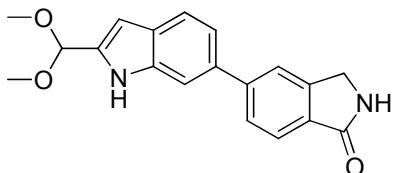

(E,Z)-5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-3-ylisoindolin-1-one (204). Reaction of **195** with 2-thioxoimidazolidin-4-one according to general procedure C gave **204** as a yellow solid (58%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.41 (br s, 1 H), 12.27 (br s, 1 H), 8.55 (br s, 1 H), 8.32 (s, 1 H), 8.24 (d, $J = 1.0$ Hz, 1 H), 8.01 (s, 1 H), 7.97 (dd, $J = 7.9, 1.3$ Hz, 1 H), 7.75 (d, $J = 7.9$ Hz, 1 H), 6.55 (s, 1 H), 4.45 (s, 2 H). HRMS (FAB $^+$) calcd for $\text{C}_{16}\text{H}_{12}\text{N}_3\text{O}_2\text{S}_2$ 342.0371 (MH^+), found 342.0372.


4-(1-Oxoisindolin-5-yl)benzaldehyde (196). 4-Bromobenzaldehyde was protected as the dimethyl acetal **180** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A. Deprotection of **180** directly to the corresponding aldehyde according to general procedure H gave **196** as a cream solid (78%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 10.08 (s, 1 H), 8.60 (br s, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H), 7.95-8.00 (m, 3 H), 7.84-7.89 (m, 1 H), 7.78 (d, $J = 7.9$ Hz, 1 H), 4.46 (s, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{15}\text{H}_{12}\text{NO}_2$ 238 (MH^+), found 238.

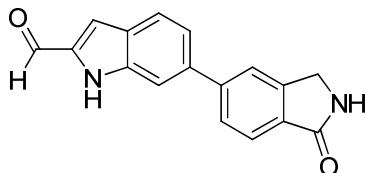
(E,Z)-5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)phenylisoindolin-1-one (205). Reaction of **196** with 2-thioxoimidazolidin-4-one according to general procedure C gave **205** as a yellow solid (66%), mp (AcOH) $>300^{\circ}\text{C}$. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.38 (br s, 1 H), 12.22 (br s, 1 H), 8.56 (br s, 1 H), 7.93 (s, 1 H), 7.89 (d, $J = 8.5$ Hz, 2 H), 7.84 (dd, $J = 8.0, 1.3$ Hz, 1 H), 7.80 (d, $J = 8.5$ Hz, 2 H), 7.76 (d, $J = 7.9$ Hz, 1 H), 6.54 (s, 1 H), 4.45 (s, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{18}\text{H}_{12}\text{N}_3\text{O}_2\text{S}$ 334 ($\text{M}-\text{H}$), found 334. Anal. ($\text{C}_{18}\text{H}_{13}\text{N}_3\text{O}_2\text{S} \cdot 0.5\text{AcOH}$) C, H, N.


3-(1-Oxoisoindolin-5-yl)benzaldehyde (197). 3-Bromobenzaldehyde was protected as the dimethyl acetal **181** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A. Deprotection of **188** directly to the corresponding aldehyde according to general procedure H gave **197** as a cream solid (87%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 10.12 (s, 1 H), 8.58 (br s, 1 H), 8.28 (t, J = 1.6 Hz, 1 H), 8.08 (ddd, J = 7.8, 1.9, 1.2 Hz, 1 H), 7.93-7.98 (m, 2 H), 7.85 (dd, J = 7.9, 1.5 Hz, 1 H), 7.78 (d, J = 7.9 Hz, 1 H), 7.74 (t, J = 7.7 Hz, 1 H), 4.46 (s, 2 H). LRMS (APCI⁺) calcd for C₁₅H₁₂NO₂ 238 (MH⁺), found 238.

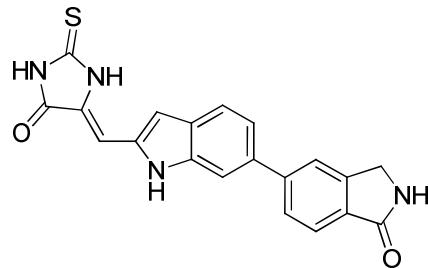
(E,Z)-5-(3-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)phenyl)isoindolin-1-one (206). Reaction of **197** with 2-thioxoimidazolidin-4-one according to general procedure C gave **206** as a yellow solid (81%), mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.38 (br s, 1 H), 12.30 (br s, 1 H), 8.56 (br s, 1 H), 8.01 (s, 1 H), 7.93 (s, 1 H), 7.85 (dd, J = 7.9, 1.3 Hz, 1 H), 7.74-7.79 (m, 2 H), 7.72 (d, J = 8.1 Hz, 1 H), 7.55 (t, J = 7.8 Hz, 1 H), 6.59 (s, 1 H), 4.45 (s, 2 H). LRMS (APCI⁺) calcd for C₁₈H₁₂N₃O₂S 334 (M-H), found 334. Anal. (C₁₈H₁₃N₃O₂S.0.5AcOH) C, H, N.

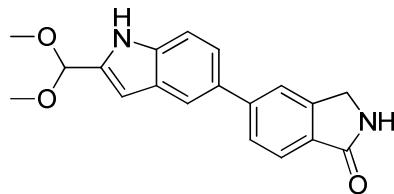


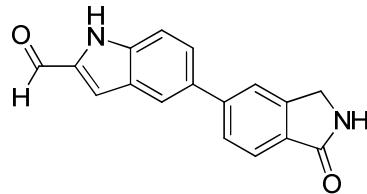
5-(6-(Dimethoxymethyl)pyridin-3-yl)isoindolin-1-one (189). 5-Bromopyridinecarboxaldehyde was protected as the dimethyl acetal **182** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A, followed by purification by flash column chromatography on silica gel (5% MeOH/CH₂Cl₂ as eluant) to give **189** as a cream solid (63%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.92 (dd, J = 2.4, 0.7 Hz, 1 H), 8.59 (br s, 1 H), 8.19 (dd, J = 8.2, 2.4 Hz, 1 H), 7.94 (d, J = 0.7 Hz, 1 H), 7.84 (dd, J = 7.9, 1.5 Hz, 1 H), 7.78 (d, J = 7.7 Hz, 1 H), 7.61 (d, J = 8.2 Hz, 1 H), 5.36 (s, 1 H), 4.48 (s, 2 H), 3.35 (s, 6 H). LRMS (APCI⁺) calcd for C₁₆H₁₇N₂O₃ 285 (MH⁺), found 285.

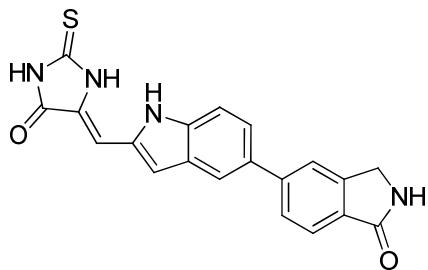


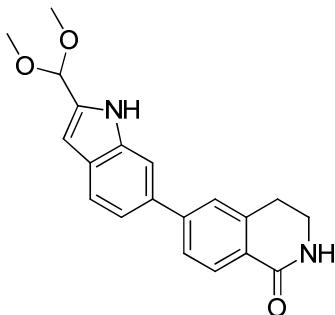
(E,Z)-5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-3-ylisoindolin-1-one (207).

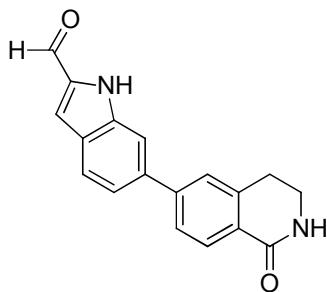

Deprotection of **189** was carried out according to general method H to give the corresponding aldehyde **198** as an off-white solid which was then used directly in a reaction with 2-thioxoimidazolidin-4-one according to general procedure C. The title compound **207** was obtained as a dark green solid (50% over 2 steps), mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.53 (s, 1 H), 11.50 (s, 1 H), 9.13 (d, *J* = 2.4 Hz, 1 H), 8.62 (s, 1 H), 8.25 (dd, *J* = 8.2, 2.4 Hz, 1 H), 7.99 (s, 1 H), 7.89 (dd, *J* = 8.0, 1.3 Hz, 1 H), 7.85 (d, *J* = 8.1 Hz, 1 H), 7.80 (d, *J* = 7.9 Hz, 1 H), 6.68 (s, 1 H), 4.46 (s, 2 H). LRMS (APCI⁺) calcd for C₁₇H₁₁N₄O₂S 335 (M-H), found 335. Anal. (C₁₇H₁₂N₄O₂S·0.5H₂O) C, H, N.


5-(2-(Dimethoxymethyl)-1H-indol-6-yl)isoindolin-1-one (190). 6-Bromo-1*H*-indole-2-carbaldehyde was protected as the dimethyl acetal **183** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A to give **190** as a pale yellow solid (61%). ¹H NMR [400 MHz, CDCl₃] δ 8.55 (bs, 1 H), 7.93 (d, *J* = 7.6 Hz, 1 H), 7.75 (dd, *J* = 7.9, 1.4 Hz, 1 H), 7.71 (d, *J* = 0.6 Hz, 1 H), 7.69 (d, *J* = 8.3 Hz, 1 H), 7.59-7.63 (m, 1 H), 7.39 (dd, *J* = 8.2, 1.6 Hz, 1 H), 6.57-6.59 (m, 1 H), 6.47 (bs, 1 H), 5.68 (d, *J* = 0.8 Hz, 1 H), 4.52 (s, 2 H), 3.41 (s, 6 H). LRMS (APCI⁺) calcd for C₁₉H₁₉N₂O₃ 323 (MH⁺), found 323.

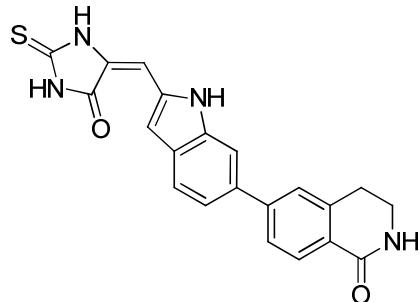

6-(1-Oxoisindolin-5-yl)-1*H*-indole-2-carbaldehyde (199). Deprotection of **190** according to general procedure H gave **199** as a pale yellow solid (74%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.14 (br s, 1 H), 9.88 (s, 1 H), 8.57 (br s, 1 H), 7.85-7.90 (m, 2 H), 7.79 (dd, *J* = 7.9, 1.4 Hz, 1 H), 7.76 (dd, *J* = 7.9, 0.6 Hz, 1 H), 7.70-7.73 (m, 1 H), 7.49 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.45 (dd, *J* = 2.1, 0.8 Hz, 1 H), 4.45 (s, 2 H). LRMS (APCI⁺) calcd for C₁₇H₁₃N₂O₂ 277 (MH⁺), found 277.


(E,Z)-5-(2-((5-oxo-2-Thioxoimidazolidin-4-ylidene)methyl)-1H-indol-6-yl)isoindolin-1-one (208). Reaction of **199** with 2-thioxoimidazolidin-4-one according to general procedure C gave **208** as a red solid (67%); mp >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.56 (br s, 0.8 H), 12.40 (br s, 0.2 H), 12.29 (br s, 0.8 H), 12.15 (br s, 0.2 H), 12.00 (br s, 0.8 H), 11.56 (br s, 0.2 H), 8.54 (br s, 1 H), 7.78-7.96 (m, 3 H), 7.65-7.77 (m, 2 H), 7.41-7.48 (m, 1 H), 7.38 (s, 0.2 H), 7.16 (s, 0.8 H), 6.72 (s, 0.8 H), 6.60 (s, 0.2 H), 4.44 (s, 2 H). LRMS (APCI) calcd for C₂₀H₁₃N₄O₂S 373 (M-H), found 373. Anal. (C₂₀H₁₄N₄O₂S·0.50AcOH) C, H, N.

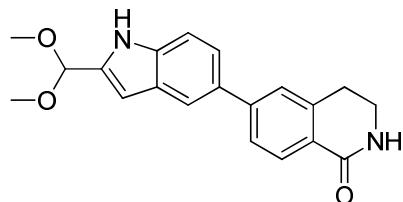

5-(2-(Dimethoxymethyl)-1H-indol-5-yl)isoindolin-1-one (191). 5-Bromo-1*H*-indole-2-carbaldehyde was protected as the dimethyl acetal **184** according to a literature procedure,⁴⁶ then reacted with 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoindolin-1-one⁴⁸ according to general procedure A to give **191** as a pale brown solid (65%). ¹H NMR [400 MHz, CDCl₃] δ 8.50 (bs, 1 H), 7.93 (d, *J* = 7.9 Hz, 1 H), 7.86 (d, *J* = 0.7 Hz, 1 H), 7.76 (dd, *J* = 8.0, 1.4 Hz, 1 H), 7.72 (d, *J* = 0.7 Hz, 1 H), 7.45-7.50 (m, 2 H), 6.59-6.62 (m, 1 H), 6.60 (bs, 1 H), 5.68 (d, *J* = 0.4 Hz, 1 H), 4.52 (s, 2 H), 3.41 (s, 6 H). LRMS (APCI⁺) calcd for C₁₉H₁₉N₂O₃ 323 (MH⁺), found 323.


5-(1-Oxoisindolin-5-yl)-1H-indole-2-carbaldehyde (200). Deprotection of **191** according to general procedure H gave **200** as a pink solid (61%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.09 (br s, 1 H), 9.89 (s, 1 H), 8.53 (br s, 1 H), 8.09-8.13 (m, 1 H), 7.88 (d, *J* = 0.6 Hz, 1 H), 7.80 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.73 (d, *J* = 8.0 Hz, 1 H), 7.72 (dd, *J* = 8.8, 1.9 Hz, 1 H), 7.57 (d, *J* = 8.7 Hz, 1 H), 7.48 (d, *J* = 1.3 Hz, 1 H), 4.44 (s, 2 H). LRMS (APCI⁺) calcd for C₁₇H₁₃N₂O₂ 277 (MH⁺), found 277.

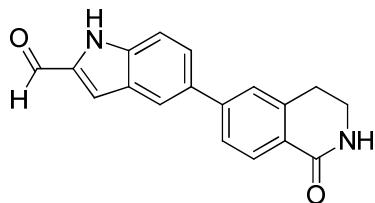
(E,Z)-5-((5-(1-Oxoisoindolin-5-yl)-1H-indol-2-yl)methylene)imidazolidine-2,4-dione (208). Reaction of **200** with 2-thioxoimidazolidin-4-one according to general procedure C gave **208** as a red solid (99%); mp >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.56 (br s, 0.7 H), 12.39 (br s, 0.3 H), 12.29 (br s, 0.7 H), 11.96 (br s, 1.0 H), 11.54 (br s, 0.3 H), 8.51 (br s, 1 H), 7.94 (s, 0.7 H), 7.91 (s, 0.3 H), 7.87 (s, 1 H), 7.77-7.82 (m, 1 H), 7.73 (d, *J* = 7.8 Hz, 0.3 H), 7.72 (d, *J* = 7.9 Hz, 0.7 H), 7.65 (d, *J* = 8.7 Hz, 0.7 H), 7.56-7.62 (m, 1 H), 7.52 (d, *J* = 8.7 Hz, 0.3 H), 7.39 (s, 0.3 H), 7.21 (s, 0.7 H), 6.73 (s, 0.7 H), 6.58 (s, 0.3 H), 4.43 (s, 2 H). LRMS (APCI⁺) calcd for C₂₀H₁₃N₄O₂S 373 (M-H), found 373. Anal. (C₂₀H₁₄N₄O₂S.0.80AcOH) C, H, N.



6-(2-(Dimethoxymethyl)-1H-indol-6-yl)-3,4-dihydroisoquinolin-1(2H)-one (192). 6-Bromo-1*H*-indole-2-carbaldehyde was protected as the dimethyl acetal **183** according to a literature procedure,⁴⁶ then reacted with **149** according to general procedure A to give **192** as a brown oil (43%). ¹H NMR [400 MHz, CDCl₃] δ 8.51 (bs, 1 H), 8.13 (d, *J* = 8.1 Hz, 1 H), 7.68 (d, *J* = 8.3 Hz, 1 H), 7.63 (dd, *J* = 8.1, 1.8 Hz, 1 H), 7.61 (t, *J* = 0.7 Hz, 1 H), 7.49 (d, *J* = 1.2 Hz, 1 H), 7.39 (dd, *J* = 8.2, 1.6 Hz, 1 H), 6.57 (quint, *J* = 1.0 Hz, 1 H), 5.91 (bs, 1 H), 5.67 (d, *J* = 0.8 Hz, 1 H), 3.62 (dt, *J* = 6.6, 2.8 Hz, 2 H), 3.41 (s, 6 H), 3.08 (t, *J* = 6.6 Hz, 2 H). LRMS (APCI⁺) calcd for C₂₀H₂₁N₂O₃ 337 (MH⁺), found 337.

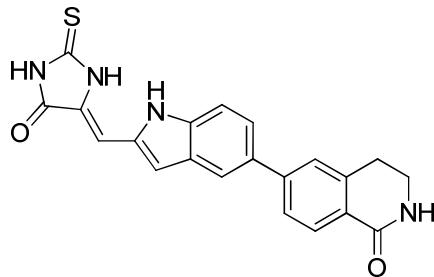

6-(1-Oxo-1,2,3,4-tetrahydroisoquinolin-6-yl)-1*H*-indole-2-carbaldehyde (201).

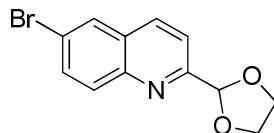
Deprotection of **192** according to general procedure H gave **201** as a dark orange solid (72%). ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] δ 12.11 (br s, 1 H), 9.87 (s, 1 H), 7.95 (br s, 1 H), 7.94 (d, J = 7.9 Hz, 1 H), 7.86 (d, J = 8.3 Hz, 1 H), 7.71 (s, 1 H), 7.66 (dd, J = 8.1, 1.8 Hz, 1 H), 7.64 (s, 1 H), 7.48 (dd, J = 8.5, 1.6 Hz, 1 H), 7.44 (s, 1 H), 3.42 (dt, J = 6.6, 2.7 Hz, 2 H), 3.00 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{18}\text{H}_{15}\text{N}_2\text{O}_2$ 291 (MH^+), found 291.


(*E,Z*)-6-(2-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)-1*H*-indol-6-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (210).

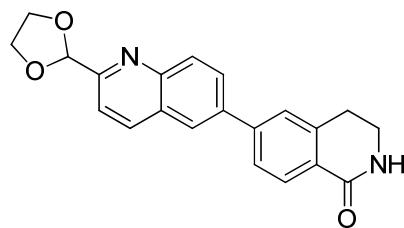
Reaction of **201** with 2-thioxoimidazolidin-4-one according to general procedure C gave **210** as a red-brown solid (76%); mp >310°C. ^1H NMR [400 MHz, $(\text{CD}_3)_2\text{SO}$] Observe *E*- and *Z*- isomers separately. δ 11.60-12.60 (br m, 2 H), 12.01 (s, 0.6 H), 11.55 (s, 0.4 H), 7.88-7.94 (m, 3 H), 7.65-7.74 (m, 3 H), 7.41-7.48 (m, 1 H), 7.33 (s, 0.4 H), 7.14 (s, 0.6 H), 6.71 (s, 0.6 H), 6.56 (s, 0.4 H), 3.42 (dt, J = 6.3, 2.6 Hz, 2 H), 2.96-3.01 (m, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{21}\text{H}_{15}\text{N}_4\text{O}_2\text{S}$ 387 ($\text{M}-\text{H}$), found 387. Anal. ($\text{C}_{21}\text{H}_{16}\text{N}_4\text{O}_2\text{S} \cdot 1.40\text{H}_2\text{O}$) C, H, N.

6-(2-(Dimethoxymethyl)-1*H*-indol-5-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (193).

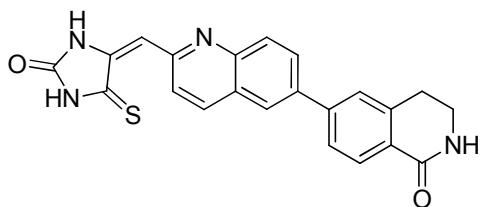

5-Bromo-1*H*-indole-2-carbaldehyde was protected as the dimethyl acetal **184** according to a literature procedure,⁴⁶ then reacted with **149** according to general procedure A to give **193** as a yellow oil (50%). ^1H NMR [400 MHz, CDCl_3] δ 8.47 (bs, 1 H), 8.13 (d, J = 8.1 Hz, 1 H), 7.86 (d, J = 0.8 Hz, 1 H), 7.63 (dd, J = 8.1, 1.8 Hz, 1 H), 7.42-7.51 (m, 3 H), 6.58-6.61 (m, 1 H), 5.90 (bs, 1 H), 5.67 (d, J = 0.8 Hz, 1 H), 3.61 (dt, J = 6.6, 2.8 Hz, 2 H), 3.40 (s, 6 H), 3.08 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $\text{C}_{20}\text{H}_{21}\text{N}_2\text{O}_3$ 337 (MH^+), found 337.


5-(1-Oxo-1,2,3,4-tetrahydroisoquinolin-6-yl)-1*H*-indole-2-carbaldehyde (202).

Deprotection of **193** according to general procedure H gave **202** as a pink solid (72%).


¹H NMR [400 MHz, (CD₃)₂SO] δ 12.09 (br s, 1 H), 9.88 (s, 1 H), 8.11 (d, *J* = 0.8 Hz, 1 H), 7.91 (d, *J* = 7.9 Hz, 1 H), 7.90 (br s, 1 H), 7.72 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.64-7.69 (m, 2 H), 7.54 (d, *J* = 8.7 Hz, 1 H), 7.47 (dd, *J* = 2.0, 0.7 Hz, 1 H), 3.42 (dt, *J* = 6.6, 2.7 Hz, 2 H), 2.99 (t, *J* = 6.5 Hz, 2 H). LRMS (APCI⁺) calcd for C₁₈H₁₅N₂O₂ 291 (MH⁺), found 291.

(E,Z)-6-(2-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)-1*H*-indol-5-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (211). Reaction of **202** with 2-thioxoimidazolidin-4-one according to general procedure C gave **211** as an orange solid (76%); mp >315°C. ¹H NMR [400 MHz, (CD₃)₂SO] Observe *E*- and *Z*- isomers separately. δ 12.11-12.72 (br m, 1.6 H), 11.96 (s, 1 H), 11.52 (s, 0.4 H), 7.86-7.95 (m, 3 H), 7.48-7.69 (m, 4 H), 7.36 (s, 0.4 H), 7.20 (s, 0.6 H), 6.72 (s, 0.6 H), 6.57 (s, 0.4 H), 3.37-3.45 (m, 2 H), 2.95-3.01 (m, 2 H). LRMS (APCI⁺) calcd for C₂₁H₁₅N₄O₂S 387 (M-H), found 387. Anal. (C₂₁H₁₆N₄O₂S.0.80AcOH) C, H, N.


6-Bromo-2-(1,3-dioxolan-2-yl)quinolone (185). 6-Bromoquinoline-2-carbaldehyde was protected as the cyclic acetal according to a literature procedure⁴⁴ to give **185** as an orange solid (91%). ¹H NMR [400 MHz, CDCl₃] δ 8.13 (d, *J* = 8.6 Hz, 1 H), 8.02 (d, *J* = 9.0 Hz, 1 H), 8.00 (d, *J* = 2.2 Hz, 1 H), 7.79 (dd, *J* = 9.0, 2.2 Hz, 1 H), 7.68 (d, *J* = 8.5 Hz, 1 H), 5.96 (s, 1 H), 4.11-4.19 (m, 2 H), 4.20-4.28 (m, 2 H). LRMS (APCI⁺) calcd for C₁₂H₁₁BrNO₂ 281 (MH⁺), found 281.

6-(2-(1,3-Dioxolan-2-yl)quinolin-6-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (194).

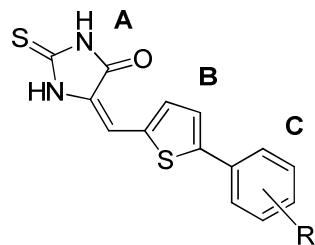
Reaction of **185** and **149** according to general procedure A gave **194** as a pale brown solid (74%). ¹H NMR [400 MHz, CDCl₃] δ 8.28 (d, *J* = 8.5 Hz, 1 H), 8.24 (d, *J* = 8.8 Hz, 1 H), 8.20 (d, *J* = 8.1 Hz, 1 H), 8.06 (d, *J* = 2.0 Hz, 1 H), 8.00 (dd, *J* = 8.8, 2.2 Hz, 1 H), 7.72 (dd, *J* = 8.0, 1.9 Hz, 1 H), 7.70 (d, *J* = 5.5 Hz, 1 H), 7.58 (d, *J* = 1.2 Hz, 1

H), 6.01 (bs, 2 H), 4.15-4.20 (m, 2 H), 4.22-4.28 (m, 2 H), 3.64 (dt, J = 6.6, 2.8 Hz, 2 H), 3.18 (t, J = 6.6 Hz, 2 H). LRMS (APCI $^+$) calcd for $C_{21}H_{19}N_2O_3$ 347 (MH $^+$), found 347.

(E,Z)-6-(2-((2-Oxo-5-thioxoimidazolidin-4-ylidene)methyl)quinolin-6-yl)-3,4-dihydroisoquinolin-1(2H)-one (212). Deprotection of **194** according to general procedure B gave aldehyde **203** as a brown solid which was reacted directly with 2-thioxoimidazolidin-4-one according to general procedure C. The desired product **212** was isolated as a green solid (71%); mp >310°C. 1H NMR [400 MHz, (CD₃)₂SO] δ 12.60 (br s, 1 H), 11.88 (br s, 1 H), 8.48 (d, J = 8.6 Hz, 1 H), 8.45 (d, J = 9.0 Hz, 1 H), 8.37 (d, J = 2.0 Hz, 1 H), 8.21 (dd, J = 8.8, 2.1 Hz, 1 H), 7.95-8.01 (m, 2 H), 7.82-7.89 (m, 3 H), 6.75 (s, 1 H), 3.44 (dt, J = 6.6, 2.6 Hz, 2 H), 3.03 (t, J = 6.5 Hz, 2 H). LRMS (APCI $^-$) calcd for $C_{22}H_{15}N_4O_2S$ 399 (M-H), found 300. Anal. (C₂₂H₁₆N₄O₂S) C, H, N.

References

- (38) Ortwine, D. F.; Malone, T. C.; Bigge, C. F.; Drummond, J. T.; Humblet, C.; Johnson, G.; Pinter, G.W. Generation of *N*-methyl-D-aspartate agonist and competitive antagonist pharmacophore models. Design and synthesis of phosphonoalkyl-substituted tetrahydroisoquinolines as novel antagonists. *J. Med. Chem.* **1992**, *35*, 1345-70.
- (39) Wang, X.-J.; Tan, J.; Grozinger, K. A significantly improved condition for cyclization of phenethylcarbamates to *N*-alkylated 3,4-dihydroisoquinolones. *Tetrahedron Lett.* **1998**, *39*, 6609-6612.
- (40) Fraser, H. L. and Gribble, G. W. A synthesis of 6,11-disubstituted benzo[*b*]carbazoles. *Can. J. Chem.* **2001**, *79*, 1515-21.
- (41) Ran, J. -Q.; Huang, N.; Xu, H.; Yang, L., -M.; Min Lv, M.; Zheng, Y. -T. Anti HIV-1 agents 5: Synthesis and anti-HIV-1 activity of some *N*-arylsulfonyl-3-acetylindoles *in vitro*. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3534-3536.
- (44) Lu, T. -J.; Yang, J. -F.; Sheu, L. -J. An efficient method for the acetalisation of α,β -unsaturated aldehydes. *J. Org. Chem.*, **1995**, *60*, 2931-2934.
- (45) Menet, C. J. M., Blanc, J., Hodges, A. J., Burli, R. W., Breccia, P., Blackaby, W. P., Van Rompaey, L. J. C., Fletcher, S. R. Preparation of [1,2,4]triazolo[1,5-a]pyridines as JAK inhibitors for the treatment of degenerative and inflammatory diseases. WO 2010010184 A1.


(46) Kumar, R. and Chakraborti, A. K. Copper(II) tetrafluoroborate as a novel and highly efficient catalyst for acetal formation. *Tetrahedron Lett.*, **2005**, 46, 8319-8323.

(47) Tsuritani, T.; Kii, S.; Akao, A.; Sato, K.; Nonoyama, N.; Mase, T.; Yasuda, N. A short and efficient synthesis of isoindolin-1-ones. *Synlett*, **2006**, 801-803.

(48) Dally, R. D.; Dodge, J. A.; Hummel, C. W.; Jones, S. A.; Shepherd, T.A.; Wallace, O. B.; Weber, W. W. Selective estrogen receptor modulators. WO 2005073205 A1.

Biological Activity for Other Selected Compounds

Table 5. *in vitro* Perforin-Inhibitory Activity for Selected Compounds

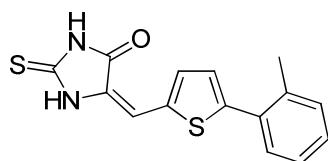
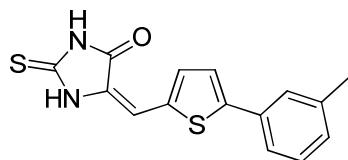
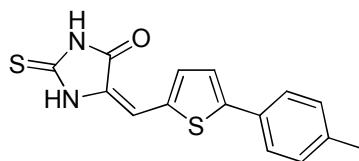

Cmpd	R	Jurkat IC ₅₀ (μM)
205	2-Me	>20
206	3-Me	>20
207	4-Me	>20
208	2-OMe	>20
209	3-OMe	>20
210	4-OMe	8.93
211	4-NHAc	>20
212		>20

Table 6. Effect of Double Bond Reduction

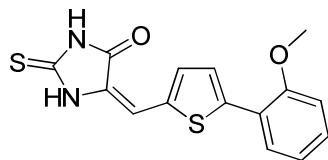
Cmpd	A-Subunit	B-Subunit	C-Subunit	Jurkat IC ₅₀ (μM)
59				1.62
213				>20


Further Experimental for Selected Compounds

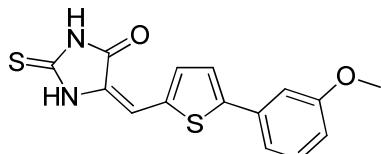
The general procedures referred to below are described in the published article.


(E,Z)-2-Thioxo-5-((5-o-tolylthiophen-2-yl)methylene)imidazolidin-4-one (213).

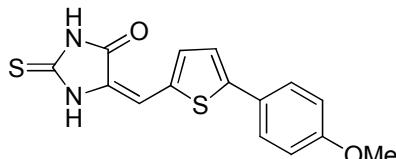
Reaction of 5-*o*-tolylthiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure C gave **213** as a dark red solid (37%), mp (AcOH) 224-226°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.32 (s, 1 H), 11.95 (s, 1 H), 7.82 (d, *J* = 3.8 Hz, 1 H), 7.46 (dd, *J* = 1.5, 6.8 Hz, 1 H), 7.31 (m, 4 H), 6.64 (s, 1 H), 2.45 (s, 3 H). Anal. (C₁₅H₁₂N₂OS₂·0.2H₂O) C, H, N.

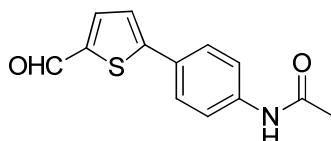

(E,Z)-2-Thioxo-5-((5-m-tolylthiophen-2-yl)methylene)imidazolidin-4-one (214).

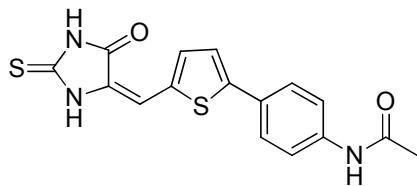
Reaction of 5-*m*-tolylthiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **214** as a brown solid (31%), mp (AcOH) >295°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.34 (s, 1 H), 11.94 (s, 1 H), 7.81 (d, *J* = 3.9 Hz, 1 H), 7.62 (d, *J* = 3.9 Hz, 1 H), 7.50-7.73 (m, 2 H), 7.33 (t, *J* = 7.6 Hz, 1 H), 7.18 (d, *J* = 7.6 Hz, 1 H), 6.63 (s, 1 H), 2.34 (s, 3 H). Anal. (C₁₅H₁₂N₂OS₂·H₂O) C, N, H; + 0.5.

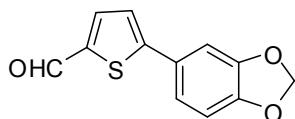


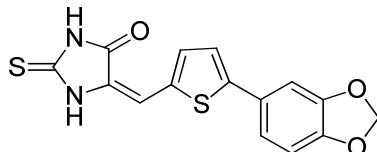
(E,Z)-2-Thioxo-5-((5-p-tolylthiophen-2-yl)methylene)imidazolidin-4-one (215).

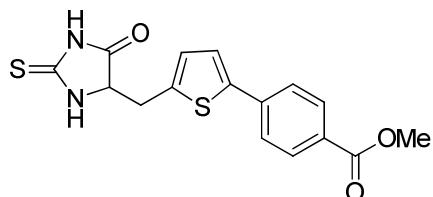

Reaction of 5-*p*-tolylthiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **215** as an orange solid (78%), mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.35 (s, 1 H), 11.91 (s, 1 H), 7.80 (d, *J* = 3.9 Hz, 1 H), 7.60 (d, *J* = 7.9 Hz, 2 H), 7.58 (d, *J* = 3.9 Hz, 1 H), 7.26 (d, *J* = 7.9 Hz, 2 H), 6.61 (s, 1 H), 2.33 (s, 3 H). Anal. (C₁₅H₁₂N₂OS₂·0.2H₂O) C, H, N.


(E,Z)-5-((5-(2-Methoxyphenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (216). Reaction of 5-(2-methoxyphenyl)thiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **216** as a red solid (54%), mp (AcOH) 255-258°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.30 (s, 1 H), 11.96 (s, 1 H), 7.85 (d, *J* = 3.9 Hz, 1 H), 7.82 (dd, *J* = 1.3, 7.8 Hz, 1 H), 7.72 (d, *J* = 4.0 Hz, 1 H), 7.35 (t, *J* = 8.6 Hz, 1 H), 7.17 (d, *J* = 8.0 Hz, 1 H), 7.05 (t, *J* = 8.0 Hz, 1 H), 6.59 (s, 1 H), 3.83 (s, 3 H). Anal. (C₁₅H₁₂N₂O₂S₂) C, H, N.


(E,Z)-5-((5-(3-Methoxyphenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (217). Reaction of 5-(3-methoxyphenyl)thiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **217** as an orange solid (64%), mp (AcOH) 267-270°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.34 (s, 1 H), 11.94 (s, 1 H), 7.81 (d, *J* = 3.9 Hz, 1 H), 7.66 (d, *J* = 3.9 Hz, 1 H), 7.36 (t, *J* = 7.8 Hz, 1 H), 7.27 (m, 2 H), 6.95 (d, *J* = 8.1 Hz, 1 H), 6.62 (s, 1 H), 3.84 (s, 3 H). Anal. (C₁₅H₁₂N₂O₂S₂) C, H, N.


(E,Z)-5-((5-(4-Methoxyphenyl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (218). Reaction of 5-(4-methoxyphenyl)thiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **218** as a purple-brown solid (38%), mp (AcOH) 288-293°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.32 (br s, 1 H), 11.90 (br s, 1 H), 7.79 (d, *J* = 4.0 Hz, 1 H), 7.65 (d, *J* = 8.8 Hz, 2 H), 7.51 (d, *J* = 4.0 Hz, 1 H), 7.02 (d, *J* = 8.9 Hz, 2 H), 6.61 (s, 1 H), 3.81 (s, 3 H). HRMS (EI⁺) calcd for C₁₅H₁₂N₂O₂S₂ 316.0340 (M⁺), found 316.0338.


N-(4-(5-Formylthiophen-2-yl)phenyl)acetamide. *N*-(4-Iodophenyl)acetamide and 5-formyl-2-thiopheneboronic acid were reacted according to general procedure B, followed by purification by flash column chromatography on silica gel (20% EtOAc/hexanes as eluant) to give *N*-(4-(5-formylthiophen-2-yl)phenyl)acetamide as a yellow solid (40%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 10.14 (br s, 1 H), 9.88 (s, 1 H), 8.01 (d, *J* = 4.0 Hz, 1 H), 7.75 (d, *J* = 8.8 Hz, 2 H), 7.68 (d, *J* = 8.8 Hz, 2 H), 7.64 (d, *J* = 3.9 Hz, 1 H), 2.07 (s, 3 H). LRMS (APCI⁺) calcd for C₁₃H₁₂NO₂S 246 (MH⁺), found 246.


(E,Z)-N-(4-(5-((5-Oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-yl)phenyl)acetamide (219). Reaction of *N*-(4-(5-formylthiophen-2-yl)phenyl)acetamide with 2-thioxoimidazolidin-4-one according to general procedure A gave **219** as an orange solid (39%), mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.30 (br s, H), 11.80 (br s, 1 H), 10.07 (s, 1 H), 7.80 (br d, *J* = 3.8 Hz, 1 H), 7.65 (br s, 4 H), 7.54 (d, *J* = 4.0 Hz, 1 H), 6.61 (s, 1 H), 2.06 (s, 3 H). Anal. (C₁₆H₁₃N₃O₂S₂·0.5H₂O) C, H, N.

5-(Benzo[d][1,3]dioxol-5-yl)thiophene-2-carbaldehyde. 4-Bromo-1,2-(methylenedioxy)benzene and 5-formyl-2-thiopheneboronic acid were reacted according to general procedure B, followed by purification by flash column chromatography on silica gel (10% EtOAc/hexanes as eluant) to give 5-(benzo[d][1,3]dioxol-5-yl)thiophene-2-carbaldehyde as a yellow solid (13%). ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.87 (s, 1 H), 7.99 (d, *J* = 4.0 Hz, 1 H), 7.63 (d, *J* = 4.0 Hz, 1 H), 7.41 (d, *J* = 1.8 Hz, 1 H), 7.31 (dd, *J* = 8.2, 1.9 Hz, 1 H), 7.01 (d, *J* = 8.1 Hz, 1 H), 6.10 (s, 2 H). LRMS (APCI⁺) calcd for C₁₂H₉O₃S 233 (MH⁺), found 233.

(E,Z)-5-((5-(benzo[d][1,3]dioxol-5-yl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (220). Reaction of 5-(benzo[d][1,3]dioxol-5-yl)thiophene-2-carbaldehyde with 2-thioxoimidazolidin-4-one according to general procedure A gave **220** as a red-orange solid (84%), mp (AcOH) >300°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.34 (br s, 1 H), 11.88 (br s, 1 H), 7.78 (d, *J* = 4.0 Hz, 1 H), 7.53 (d, *J* = 4.0 Hz, 1 H), 7.32 (d, *J* = 1.8 Hz, 1 H), 7.20 (dd, *J* = 8.1, 1.9 Hz, 1 H), 6.99 (d, *J* = 8.1 Hz, 1 H), 6.60 (s, 1 H), 6.08 (s, 2 H). Anal. (C₁₅H₁₀N₂O₃S₂·0.25H₂O) C, H, N.

Methyl 4-((5-oxo-2-thioxoimidazolidin-4-yl)methyl)thiophen-2-ylbenzoate (221). (E,Z)-Methyl 4-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)thiophen-2-

yl)benzoate (**59**) (105 mg, 0.31 mmol) was dissolved in DMSO (1.5 ml), to which was added AcOH (3.0 mL). This mixture was heated to 105°C, Zn powder (100 mg, 1.53 mmol) added, and heating and stirring continued for 3 h. The mixture was then allowed to cool, then partitioned between CH₂Cl₂ (50 mL) and water (50 mL). The organic layer was washed with further water (2x50 mL), and all fractions filtered to collect the precipitated product which was washed well with water and dried under vacuum. The title compound **221** was isolated as a pale brown solid (75 mg, 71%), mp (AcOH) 240-244°C. ¹H NMR [400 MHz, (CD₃)₂SO] δ 11.55 (s, 1 H), 10.09 (s, 1 H), 7.96 (d, *J* = 8.5 Hz, 2 H), 7.72 (d, *J* = 8.6 Hz, 2 H), 7.52 (d, *J* = 3.7 Hz, 1 H), 6.92 (d, *J* = 3.7 Hz, 1 H), 4.59 (t, *J* = 4.5 Hz, 1 H), 3.86 (s, 3 H), 3.22-3.34 (m, 2 H). LRMS (APCI⁺) calcd for C₁₆H₁₅N₂O₃S₂ 347 (MH⁺), found 347. Anal. (C₁₆H₁₄N₂O₃S₂·0.25H₂O) C, H, N.

Table 7. Elemental Analysis Results for Target Compounds

Cmpd		Calcd			Found		
		C	H	N	C	H	N
43	C ₁₄ H ₁₀ N ₂ OS ₂	58.7	3.5	9.8	58.9	3.6	9.8
44	C ₁₄ H ₉ CIN ₂ OS ₂ .0.5H ₂ O	51.0	3.1	8.5	51.0	2.8	8.7
45	C ₁₄ H ₉ CIN ₂ OS ₂ .0.25H ₂ O	51.7	2.9	8.6	51.4	2.8	8.7
46	C ₁₄ H ₉ CIN ₂ OS ₂	52.4	2.8	8.7	52.3	2.9	8.6
47	C ₁₄ H ₉ FN ₂ OS ₂ .1.25H ₂ O	51.4	3.2	8.6	51.5	2.9	8.6
48	C ₁₄ H ₉ FN ₂ OS ₂	55.3	3.0	9.2	55.0	3.0	9.2
49	C ₁₄ H ₈ F ₂ N ₂ OS ₂ .0.25H ₂ O	51.4	2.6	8.6	51.5	2.6	8.5
50	C ₁₅ H ₉ F ₃ N ₂ OS ₂	50.8	2.6	7.9	50.7	2.7	8.1
51	C ₁₅ H ₉ F ₃ N ₂ OS ₂	50.8	2.6	7.9	50.8	2.6	7.8
52	C ₁₅ H ₉ N ₃ OS ₂ .0.75H ₂ O	55.5	3.3	12.9	55.6	3.3	12.4
53	C ₁₄ H ₁₀ N ₂ O ₂ S ₂	55.6	3.3	9.3	55.9	3.5	9.3
54	C ₁₅ H ₈ ClF ₃ N ₂ OS ₂	45.2	2.3	7.0	45.0	2.2	6.9
55	C ₁₄ H ₉ BrN ₂ OS ₂ .0.5H ₂ O	44.9	2.7	7.5	44.5	2.5	7.4
56	C ₁₅ H ₁₂ N ₂ OS ₃	54.2	3.6	8.4	54.3	3.8	8.6
57	C ₁₆ H ₁₂ N ₂ O ₂ S ₂ .0.25H ₂ O	57.9	3.7	8.7	57.7	3.8	8.4
58	C ₁₇ H ₁₄ N ₂ O ₃ S ₂	57.0	3.9	7.8	57.0	4.0	7.8
59	C ₁₆ H ₁₂ N ₂ O ₃ S ₂	55.8	3.5	8.1	55.7	3.4	8.1
60	C ₁₅ H ₁₁ N ₃ O ₂ S ₂ .0.5H ₂ O	53.2	3.6	12.4	53.1	3.5	11.9
61	C ₁₅ H ₁₁ N ₃ O ₂ S ₂	54.7	3.4	12.8	55.0	3.5	12.6
67	C ₁₆ H ₁₃ N ₃ O ₂ S ₂	56.0	3.8	12.2	55.9	3.9	12.2
68	C ₁₇ H ₁₅ N ₃ O ₂ S ₂	57.1	4.2	11.8	57.2	4.2	11.6
69	C ₁₉ H ₁₇ N ₃ O ₃ S ₂	57.1	4.3	10.5	56.9	4.2	10.4
70	C ₂₁ H ₂₂ N ₄ O ₃ S ₂ .1.5H ₂ O	53.7	5.4	11.9	53.6	5.1	11.9
72	C ₁₇ H ₁₅ N ₃ O ₃ S ₂	54.7	4.1	11.3	54.4	4.1	11.2
73	C ₁₈ H ₁₇ N ₃ O ₃ S ₂	55.8	4.4	10.8	56.1	4.6	10.6
74	C ₁₈ H ₁₇ N ₃ O ₃ S ₂	55.8	4.4	10.8	55.5	4.6	10.9
75	C ₁₈ H ₁₇ N ₃ O ₄ S ₂	53.6	4.3	10.4	53.3	4.4	10.3
62	C ₁₇ H ₁₄ N ₂ O ₃ S ₂	57.0	3.9	7.8	56.9	4.0	7.9
64	C ₁₅ H ₁₃ N ₃ O ₃ S ₃	47.5	3.5	11.1	47.2	3.5	11.2
65	C ₁₃ H ₉ N ₃ OS ₂ .0.25H ₂ O	53.5	3.3	14.4	53.6	3.4	14.3
66	C ₁₃ H ₉ N ₃ OS ₂ .1.25H ₂ O	49.6	3.8	13.4	49.7	3.4	13.2
118	C ₁₆ H ₁₁ N ₃ O ₂ S ₂ .1.5H ₂ O	52.2	3.8	11.4	52.2	3.7	10.9
119	C ₁₇ H ₁₃ N ₃ O ₂ S ₂	57.5	3.7	11.8	57.6	3.7	11.6
120	C ₁₈ H ₁₅ N ₃ O ₂ S ₂ .0.25H ₂ O	57.8	4.2	11.2	57.5	4.1	11.4
122	C ₂₀ H ₁₉ N ₃ O ₂ S ₂	60.4	4.8	10.6	60.2	4.9	10.5
124	C ₂₀ H ₁₇ N ₃ O ₄ S ₂ .0.5H ₂ O	55.0	4.2	9.6	55.1	4.0	9.6
125	C ₁₈ H ₁₅ N ₃ O ₃ S ₂ .0.75H ₂ O	54.2	4.2	10.5	54.2	4.3	10.2
126	C ₁₉ H ₁₇ N ₃ O ₃ S ₂ .0.5H ₂ O	55.9	4.4	10.3	55.8	4.2	10.2
127	C ₁₉ H ₁₇ N ₃ O ₄ S ₂ .0.75H ₂ O	53.2	4.4	9.8	53.2	4.3	9.6
128	C ₁₈ H ₁₃ N ₃ O ₃ S ₂ .0.25AcOH	55.8	4.2	10.6	56.2	3.9	10.3
129	C ₁₉ H ₁₅ N ₃ O ₄ S ₂ .0.25H ₂ O	54.6	3.7	10.1	54.5	3.8	9.7
131	C ₂₁ H ₂₂ N ₄ O ₂ S ₂ .H ₂ O	56.8	5.4	12.6	56.9	5.5	12.8
134	C ₂₃ H ₂₄ N ₄ O ₂ S ₂ .0.5H ₂ O	59.8	5.5	12.1	59.5	5.3	11.8
135	C ₁₈ H ₁₅ N ₃ O ₂ S ₂	58.5	4.1	11.4	58.3	4.1	11.4

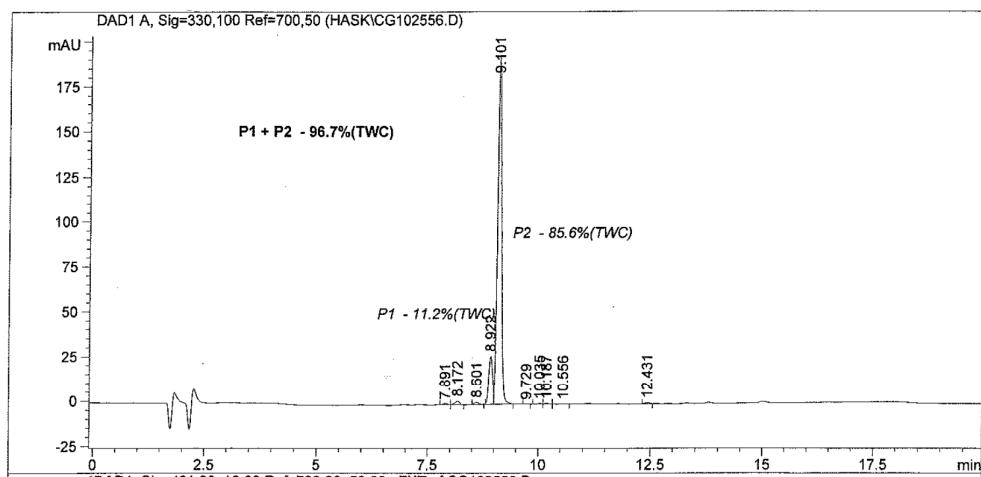
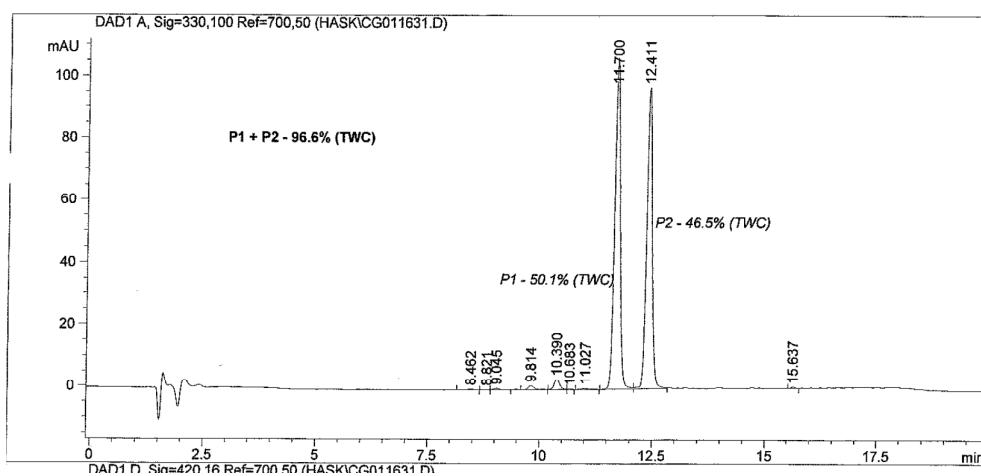
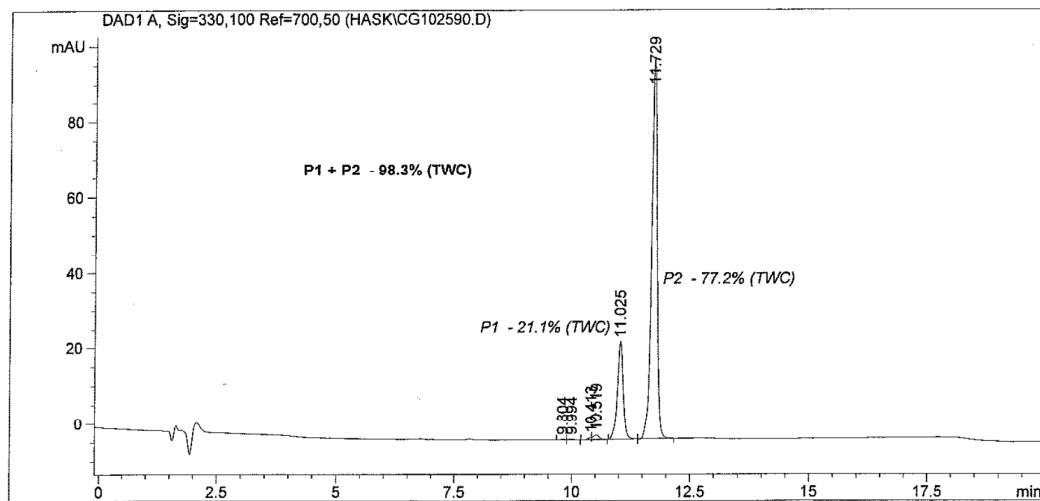

136	C ₁₆ H ₁₁ N ₃ O ₃ S.1.25H ₂ O	55.2	3.9	12.0	55.52	3.60	11.6
165	C ₁₆ H ₁₁ N ₃ O ₂ S ₂	56.3	3.3	12.3	56.2	3.3	12.2
166	C ₁₇ H ₁₃ N ₃ O ₂ S ₂	57.5	3.7	11.8	57.5	3.7	11.9
167	C ₁₇ H ₁₃ N ₃ O ₂ S ₂ .0.4H ₂ O	56.3	3.8	11.6	56.0	3.8	11.8
168	C ₁₇ H ₁₃ N ₃ O ₂ S ₂ .0.5H ₂ O	56.0	3.9	11.5	55.8	3.9	11.6
169	C ₁₈ H ₁₅ N ₃ O ₂ S ₂ .0.1H ₂ O	58.2	4.1	11.3	57.9	4.0	11.3
170	C ₁₈ H ₁₅ N ₃ O ₂ S ₂ .H ₂ O	55.8	4.4	10.8	55.8	4.4	10.4
178	C ₁₉ H ₁₅ N ₃ O ₂ S ₂ .H ₂ O	57.1	4.3	10.5	57.4	4.2	10.4
205	C ₁₈ H ₁₃ N ₃ O ₂ S.0.5AcOH	62.5	4.1	11.5	62.7	4.2	11.5
206	C ₁₈ H ₁₃ N ₃ O ₂ S.0.5AcOH	62.5	4.1	11.5	62.8	4.3	11.5
207	C ₁₇ H ₁₂ N ₄ O ₂ S.0.5H ₂ O	59.1	3.8	16.2	59.4	3.6	16.0
208	C ₂₀ H ₁₄ N ₄ O ₂ S.0.50AcOH	62.4	4.0	13.9	62.2	4.3	14.1
209	C ₂₀ H ₁₄ N ₄ O ₂ S.0.75AcOH	61.6	4.1	13.4	61.5	4.3	13.1
210	C ₂₁ H ₁₆ N ₄ O ₂ S.1.5H ₂ O	60.7	4.6	13.5	60.8	4.5	13.4
211	C ₂₁ H ₁₆ N ₄ O ₂ S.0.75AcOH	62.3	4.4	12.9	62.0	4.4	13.2
212	C ₂₂ H ₁₆ N ₄ O ₂ S	65.7	4.1	13.7	66.0	4.0	14.0
213	C ₁₅ H ₁₂ N ₂ OS ₂ .0.25H ₂ O	59.1	4.1	9.2	59.1	4.1	9.5
214	C ₁₅ H ₁₂ N ₂ OS ₂ .H ₂ O	56.6	4.4	8.8	56.9	3.9	8.9
215	C ₁₅ H ₁₂ N ₂ OS ₂ .0.25H ₂ O	59.1	4.1	9.2	59.5	4.1	9.3
216	C ₁₅ H ₁₂ N ₂ O ₂ S ₂	56.9	3.8	8.9	56.8	3.8	8.9
217	C ₁₅ H ₁₂ N ₂ O ₂ S ₂	56.9	3.8	8.9	57.2	3.8	8.9
219	C ₁₆ H ₁₃ N ₃ O ₂ S ₂ .0.5H ₂ O	54.5	4.0	11.9	54.5	4.0	11.9
220	C ₁₅ H ₁₀ N ₂ O ₃ S ₂ .0.25H ₂ O	53.9	3.2	8.4	53.8	3.2	8.4
221	C ₁₆ H ₁₄ N ₂ O ₃ S ₂ .0.25H ₂ O	54.8	4.2	8.0	54.7	4.3	7.9

Table 8. HRMS and HPLC for Target Compounds

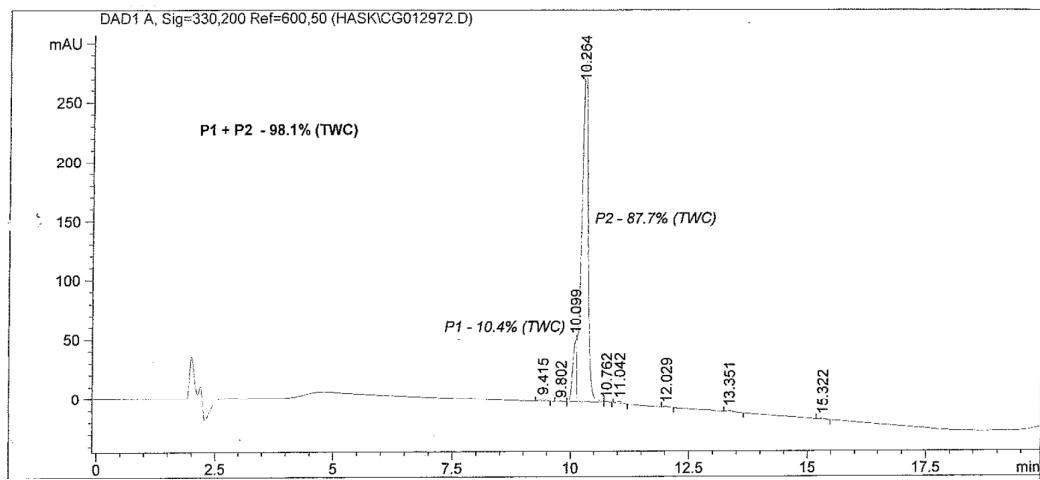
Cmpd	HRMS		HPLC	
	Formula	Calcd.	Found	
71	C ₂₂ H ₂₅ N ₄ O ₃ S ₂ (MH ⁺)	457.1363	457.1369	96.7%
63	C ₁₅ H ₁₁ N ₂ O ₃ S ₃ (M-H)	362.9937	362.9922	96.9%
121	C ₁₉ H ₁₆ N ₃ O ₂ S ₂ (M-H)	382.0689	382.0697	96.6%
123	C ₁₉ H ₁₈ N ₃ O ₂ S ₂ (MH ⁺)	384.0835	384.0821	98.3%
130	C ₂₂ H ₂₃ N ₄ O ₃ S ₂ (MH ⁺)	455.1206	455.1201	94.7%
132	C ₂₄ H ₂₇ N ₄ O ₂ S ₂ (MH ⁺)	467.1570	467.1567	98.1%
133	C ₂₄ H ₂₈ N ₅ O ₂ S ₂ (MH ⁺)	482.1679	482.1675	95.1%
204	C ₁₆ H ₁₂ N ₃ O ₂ S ₂ (MH ⁺)	342.0371	342.0372	99.8%
218	C ₁₅ H ₁₂ N ₂ O ₂ S ₂ (M ⁺)	316.0340	316.0338	96.7%

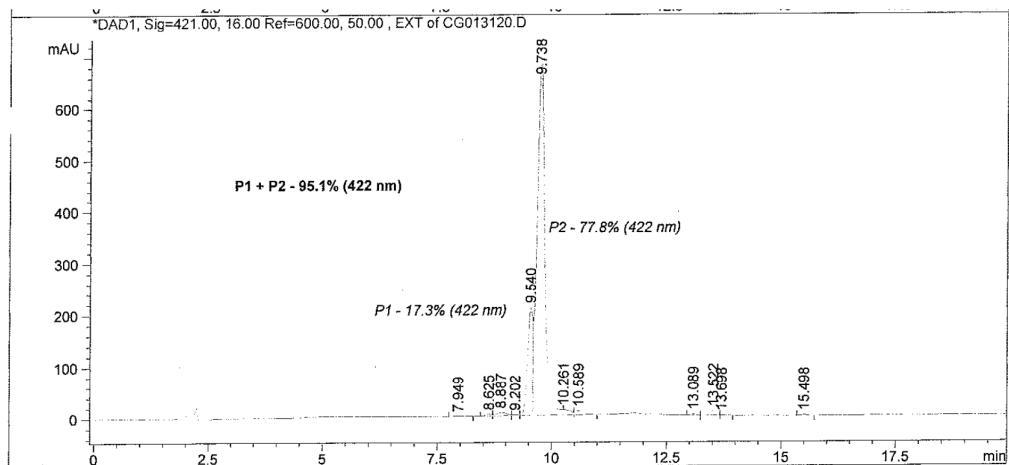
HPLC Traces For Selected Compounds

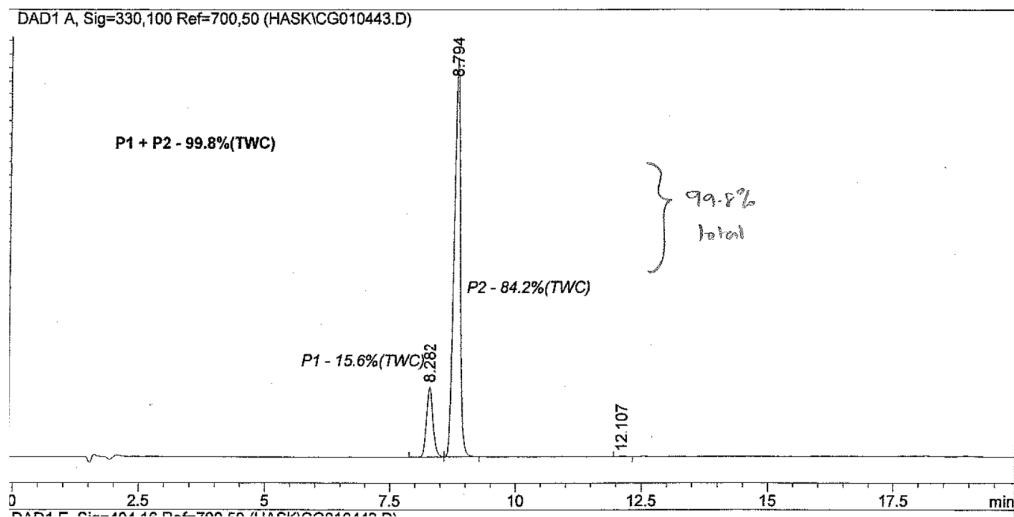

Compound 71:

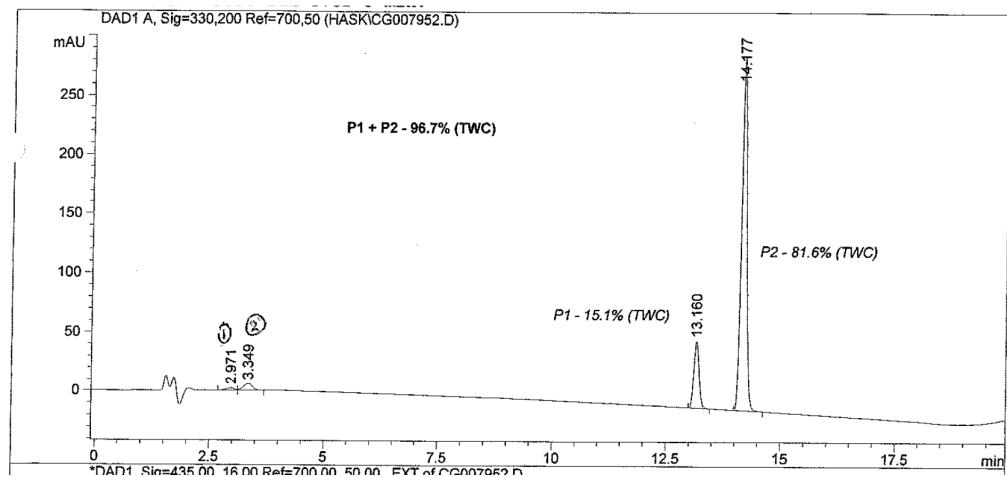

Compound 63:

Compound 121:


Compound 123:


Compound 130:


Compound 132:


Compound 133:

Compound 204:

Compound 218:

