Supporting information

Enantioselective Hydrolysis of Racemic and *Meso*-epoxides with Recombinant *Escherichia coli* Expressing Epoxide Hydrolase from *Sphingomonas* sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High *ee* and High Concentration

Shuke Wu, †,‡ Aitao Li, † Yit Siang Chin, † and Zhi Li^{†,‡,*}

† Department of Chemical and Biomolecular Engineering, National University of Singapore, 4

Engineering Drive 4, Singapore 117576

‡ Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117576

E-mail: chelz@nus.edu.sg; Fax: (+65)-6779-1936; Phone: (+65)-6516-8416;

Table of Contents

Chemicals	S3
Strains and Biochemicals	S3
Synthesis of 2-(3-Fluorophenyl)oxirane 5	S3
Synthesis of 2-(3-Bromophenyl)oxirane 7	S4
Synthesis of N-Phenoxycarbonyl-3,4-epoxy-piperidine 8	S4
Synthesis of N-Benzyloxycarbonyl-3,4-epoxy-pyrrolidine 11	S5
Analytical Methods	S5
His-tagged SpEH cloning, expressing and purification for kinetic data determination	S7
Figure S1. sequence alignment of SpEH with several known EHs	S8
Figure S2. enantioselective hydrolysis of cyclohexene oxide 10 with <i>E. coli</i> (SpEH)	S9
Figure S3–S19. Chiral HPLC chromatograms	S10–S26
Figure S20–S24. Chiral GC chromatograms	S27–S31
Figure S25–S32. ¹ H NMR Spectra	S32–S39
References	S40

Chemicals

The epoxides 2-(3-Fluorophenyl)oxirane **5**, 2-(3-Bromophenyl)oxirane **7**, *N*-phenoxycarbonyl-3,4-epoxypiperidine **8** and *N*-benzyloxycarbonyl-3,4-epoxy-pyrrolidine **11** were synthesized according to previously reported methods. S1, S2 All the other chemicals were obtained from commercial suppliers and used without further purification: Styrene oxide **1** (97%, Fluka), (*S*)-**1** (98%, Aldrich), (*R*)-**1** (98%, Aldrich), 2-(2-chlorophenyl)oxirane **2** (97%, Amatek Chemical), 2-(3-chlorophenyl)oxirane **3** (97%, Amatek Chemical), 2-(4-chlorophenyl)oxirane **4** (96%, Aldrich), 3-fluorostyrene (97%, Alfa Aesar), 2-(4-fluoro-phenyl)oxirane **6** (95%, Aldrich), 3-bromostyrene (97%, Alfa Aesar), cyclopentene oxide **9** (98%, Fluka), cyclohexene oxide **10** (98%, Aldrich), (1*R*, 2*R*)-1,2-cyclopentanediol **12** (98%, Fluka), (±)-*trans*-1,2-cyclopentanediol **12** (97%, Fluka), (1*R*, 2*R*)-1,2-cyclo-hexanediol **13** (99%, Aldrich), (1*S*, 2*S*)-1,2-cyclohexane-diol **13** (99%, Aldrich), THF (99.9%, Aldrich), phenyl chloroformate (99%, Aldrich), benzyl chloroformate (99%, Aldrich), 1,2,5,6-tetrahydropyridine (97%, Aldrich), *m*-CPBA (77%, Aldrich), dichloromethane (HPLC, Fisher), benzyl 3-pyrroline-1-carboxylate (90%, Aldrich), acetonitrile (HPLC grade, TEDIA), *n*-hexane (HPLC grade, TEDIA), ethyl acetate (HPLC grade, Fisher), chloroform (HPLC grade, Fisher) and isopropanol (HPLC grade, Fisher).

Strains and Biochemicals

Escherichia coli T7 expression cell, restriction enzymes (NdeI and XhoI) and Quick DNA Ligase were purchased from New England Biolabs. Oligos (primers), Tris buffer (1 M) and IPTG (inducer, >99%) were purchased from 1st BASE. Phusion DNA polymerase was from Thermo Scientific. Medium LB and components tryptone and yeast extract were purchased from Biomed Diagnostics. Antibiotics kanamycin (>99%) and NaCl (>99%) were from Sigma Aldrich.

Synthesis of 2-(3-Fluorophenyl)oxirane 5

Synthesis of 2-(3-Fluorophenyl)oxirane **5** was according to previously reported method^{S1}: *m*-CPBA (0.346 g, 2 mmol) was added to a stirred solution of 3-fluorostyrene (0.244 g, 2 mmol) in CH₂Cl₂-phosphate buffer (1:1, 40 mL, pH 8.0, 0.1M K₂HPO₄-KH₂PO₄) on ice, and the mixture was stirred at room temperature for 5 h. A second equivalent of *m*-CPBA (0.346 g, 2 mmol) was then added to the mixture and stirred at room temperature overnight (12 h). NaOH (1 N, 10 mL) was added and the mixture was extracted with CH₂Cl₂ three times (3 × 20 mL). The organic phase was separated, washed with saturated NaCl solution, and dried over Na₂SO₄ overnight. The

solvent was then removed by evaporation. The crude product was purified by flash chromatography on a silica gel column (n-hexane: ethyl acetate = 50: 1, R_f = 0.3). 193 mg (69.9%) of **5** was obtained as colourless liquid.

Synthesis of 2-(3-Bromophenyl)oxirane 7

Synthesis of 2-(3-Bromophenyl)oxirane **7** was according to previously reported method^{S1}: m-CPBA (0.346 g, 2 mmol) was added to a stirred solution of 3-Bromostyrene (0.366 g, 2 mmol) in CH₂Cl₂-phosphate buffer (1:1, 40 mL, pH 8.0, 0.1M K₂HPO₄-KH₂PO₄) on ice, and the mixture was stirred at room temperature for 5 h. A second equivalent of m-CPBA (0.346 g, 2 mmol) was then added to the mixture and stirred at room temperature overnight (12 h). NaOH (1 N, 10 mL) was added and the mixture was extracted with CH₂Cl₂ three times (3 × 20 mL). The organic phase was separated, washed with saturated NaCl solution, and dried over Na₂SO₄ overnight. The solvent was then removed by evaporation. The crude product was purified by flash chromatography on a silica gel column (n-hexane: ethyl acetate = 50: 1, R_f = 0.3). 255 mg (64.1%) of **7** was obtained as colourless liquid.

Synthesis of N-Phenoxycarbonyl-3,4-epoxy-piperidine 8

Synthesis of *N*-Phenoxycarbonyl-1,2,5,6-tetrahydropyridine (precursor for **8**) was according to previously reported method⁵²: A solution of phenyl chloroformate (0.50 mL, 4.0 mmol) in THF (2 mL) was added dropwise to a stirred mixture of 1,2,5,6-tetrahydropyridine (0.332 g, 4.0 mmol) and NaHCO₃ (0.43 g, 5.2 mmol) in THF/water (1:1, 4 mL) on ice, and the mixture was stirred at room temperature for 5 h. Aqueous Na₂CO₃ (5%, 5 mL) and CHCl₃ (10 mL) were added, the organic phase was separated, and the aqueous phase was extracted with CHCl₃ twice (2 × 10 mL). The combined organic phase was washed with saturated NaCl solution and dried over Na₂SO₄ overnight. The solvent was then removed by evaporation. The crude product was purified by flash chromatography on a silica gel column (*n*-hexane/ethyl acetate = 10:1, R_f = 0.3). 551 mg (67.9%) of *N*-Phenoxycarbonyl-1,2,5,6-tetrahydropyridine was obtained as a white solid.

Synthesis of *N*-Phenoxycarbonyl-3,4-epoxy-piperidine **8** was according to previously reported method^{S2}: *m*-CPBA (0.5 g, 2.23 mmol) was added to a solution of *N*-Phenoxycarbonyl-1,2,5,6-tetrahydropyridine (244 mg, 1.20 mmol) in CH_2Cl_2 (10 mL) and the mixture was stirred at room temperature overnight (12 h). NaOH (1 N, 10 mL) was added and the mixture was extracted with CH_2Cl_2 three times (3 × 10 mL). The organic phase was separated, washed with saturated NaCl solution, and dried over Na_2SO_4 overnight. The solvent was then

removed by evaporation. The crude product was purified by flash chromatography on a silica gel column (n-hexane/ethyl acetate = 4:1, R_f = 0.3). 174 mg (66.1%) of **8** was obtained as colourless oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.32–7.38 (t, J = 8.0 Hz, 2 H, ArH), 7.17–7.21 (t. J = 7.2 Hz, 1 H, ArH), 7.08–7.11 (t, J = 6.4 Hz, 2 H, ArH), 3.98–4.09 (m, 1.5 H), 3.79–3.83 (d, J=15.2 Hz, 0.5 H), 3.66–3.71 (m, 0.5 H), 3.53–3.59 (m, 0.5 H), 3.29–3.39 (m, 3 H), 2.00–2.20 (m, 2 H).

Synthesis of N-Benzyloxycarbonyl-3,4-epoxy-pyrrolidine 11

Synthesis of *N*-Benzyloxycarbonyl-3,4-epoxy-pyrrolidine **11** was according to previously reported method^{S2}: m-CPBA (2.24 g, 10.0 mmol) was added to a solution of benzyl 3-pyrroline-1-carboxylate (1.015 g, 5.0 mmol) in CH₂Cl₂ (20 mL) and the mixture was stirred at room temperature overnight (12 h). NaOH (1 N, 20 mL) was then added and the mixture was extracted with CH₂Cl₂ three times (3 × 20 mL). The organic phase was separated, washed with saturated NaCl solution, and dried over Na₂SO₄ overnight. The solvent was then removed by evaporation. The crude product was purified by flash chromatography on a silica gel column (n-hexane/ethyl acetate = 4:1, R_f = 0.3). 898 mg (82.0%) of **11** was obtained as colourless oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.26–7.37 (m, 5 H, ArH), 5.07–5.14 (m, 2 H), 3.82–3.90 (dd, J = 19.2, 12.8 Hz, 2 H), 3.66–3.69 (m, 2 H), 3.37–3.41 (m, 2 H).

Analytical Methods

The concentrations of the bioproducts (1–7 and their corresponding diols) were determined using a Shimadzu prominence HPLC system (reverse phase) with an Agilent Poroshell 120 EC-C18 column (150 × 4.6 mm, 2.7 µm) and UV detection at 210 nm. Condition: 40% water: 60% acetonitrile. Flow rate: 0.5 mL min⁻¹. Retention times: 6.4 min for 1 and 3.6 min for its diol; 8.8 min for 2 and 3.9 min for its diol; 8.3 min for 3 and 3.9 min for its diol; 8.2 min for 4 and 3.9 min for its diol; 6.9 min for 5 and 3.9 min for its diol; 6.6 min for 6 and 3.6 min for its diol; 9.3 min for 7 and 4.2 min for its diol.

The *ee* values and concentrations of the bioproducts (**1–8** and **12**) were determined using a Shimadzu prominence HPLC system (normal phase) with a Daicel AS-H (250 × 4.6 mm, 5 μ m) or OB-H chiral column (250 × 4.6 mm, 5 μ m). Retention times: 10.9 min for (*R*)-**1** and 11.9 min for (*S*)-**1** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5 mL min⁻¹); 22.5 min for (*R*)-**2** and 23.2 min for (*S*)-**2** (AS-H column, 0% IPA: 100% *n*-hexane, 0.5 mL min⁻¹); 11.1 min for (*R*)-**3** and 11.9 min for (*S*)-**3** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5

mL min⁻¹); 11.9 min for (*R*)-**4** and 14.0 min for (*S*)-**4** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5 mL min⁻¹); 10.2 min for (*R*)-**5** and 11.0 min for (*S*)-**5** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5 mL min⁻¹); 13.5 min for (*R*)-**6** and 14.0 min for (*S*)-**6** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5 mL min⁻¹); 11.4 min for (*R*)-**7** and 12.0 min for (*S*)-**7** (AS-H column, 10% IPA: 90% *n*-hexane, 0.5 mL min⁻¹); 56.2 min for (-)-**8** and 64.7 min for (+)-**8** (OB-H column, 40% IPA: 60% *n*-hexane, 0.5 mL min⁻¹); 46.3 min for (3*R*,4*R*)-**14** and 56.1 min for (3*S*,4*S*)-**14** (AS-H column, 5% IPA: 95% *n*-hexane, 1 mL min⁻¹).

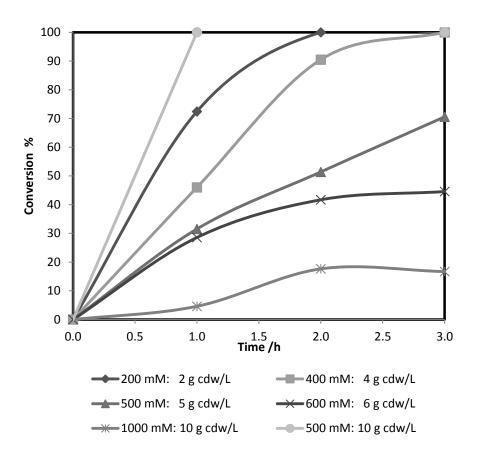
The concentrations of the substrates (9–10) were analyzed by using an Agilent 7890A gas chromatograph with an HP-5 column (30 m × 0.32 mm × 0.25 mm). Temperature program: 45 °C for 1 min, then to 140 °C at 15 °C min^{-1} and finally to 280 °C at 49 °C min⁻¹. Retention times: 5.6 min for 9, 6.7 min for 10, 9.3 min for *n*-dodecane (internal standard). Similarly, the concentrations of the substrate 11 were analyzed by using the same Agilent GC system and HP-5 column. Temperature program: 100 °C for 1 min, then to 280 °C at 10 °C min⁻¹. Retention times: 6.7 min for *n*-dodecane (internal standard) and 14.6 min for 11.

The *ee* values of bioproducts (**12** and **13**) were determined with Macherey-Nagel Lipodex-E chiral column (25 m \times 0.25 mm) at 100 °C constant. Retention times: 31.3 min for (1*S*, 2*S*)-**12** and 34.1 min for (1*R*, 2*R*)-**12**; 32.7 min for (1*R*, 2*R*)-**13** and 33.9 min for (1*S*, 2*S*)-**13**.

The configurations of the bioproducts **1**, **12** and **13** were assigned by using authentic samples of (S)-**1** and (1R, 2R)-**12** and (1R, 2R)-**13**, and the bioproducts **2**, **3**, **4**, **8**, and **14** were established by comparison with our previous published HPLC data of (S)-**2**, (S)-**3**, (S)-**4**, (-)-**8** and (3R, 4R)-**14**. S2-S4 The other bioproducts **5**, **6**, and **7** were established by comparison with the epoxidation products by a well known S selective styrene monooxygenase. The optical rotation data of preparation bioproducts (S)-**1**, (S)-**3**, (S)-**6**, (1R, 2R)-**12**, (1R, 2R)-**13**, and (3R, 4R)-**14** were also determined and compared with literature data:

- (S)-Styrene oxide (S)-1: $[\alpha]_D^{28} = +25.0^\circ$ (c 1.00, CHCl₃) {lit., $^{86}[\alpha]_D^{21} = +24^\circ$ (c 1.00, CHCl₃)}.
- (S)-2-(3-Chlorophenyl)oxirane (S)-3: $[\alpha]_D^{28} = +12.1^\circ (c \ 1.00, CHCl_3) \{ lit., ^{S7} [\alpha]_D^{23} = +11.2^\circ (c \ 1.39, CHCl_3) \}.$
- (S)-2-(4-Fluorophenyl)oxirane (S)-6: $[\alpha]_D^{28} = +17.2^{\circ} (c \ 1.00, \text{CHCl}_3) \{ \text{lit.,}^{S1} \ [\alpha]_D^{20} = +15.6^{\circ} (c \ 0.97, \text{CHCl}_3) \}.$
- (1R, 2R)-1,2-cyclopentanediol 12: $[\alpha]_D^{28} = -28.8^{\circ} (c \ 1.00, H_2O) \{lit., ^{S8} [\alpha]_D^{25} = -24^{\circ} (MeOH) \}.$
- (1R, 2R)-1,2-cyclohexanediol 13: $[\alpha]_D^{28} = -39.0^{\circ} (c \ 1.00, H_2O) \{lit.,^{S9} [\alpha]_D^{20} = -38.4^{\circ} (c \ 0.17, H_2O)\}.$
- (3R,4R)-N-Benzyloxycarbonyl-3,4-dihydroxypyrroli-dine 14: $[\alpha]_D^{28} = +7.4^{\circ} (c \ 1.00, \ CHCl_3) \ \{lit.,^{S2} \ [\alpha]_D^{25} = +7.56 (c \ 1.80, \ CHCl_3)\}.$

His-tagged SpEH cloning, expressing and purification for kinetic data determination


For engineering of His-tagged SpEH, the similar cloning protocol applied with slightly different primers: Sp154-F2: ACTG <u>TCATGA</u> TG AAC GTC GAA CAT ATC CGC CCand Sp154-R2: AT <u>GGTACC</u> TA GTG GTG ATG ATG GTG AAG ATC CAT CTG TGC AAA GGCC. The *E. coli* (His-tagged SpEH) was grown and expressed the His-tagged SpEH in the same condition of *E. coli* (SpEH). Then the cells were broken by cell homogeniser (Stansted fluid power LTD), and then subjected to centrifuge (15000 rpm, 20 min, 4 °C). The His-tagged SpEH was purified from the supernatant (cell free extract) by using Ni-NTA agarose (Qiagen) according to the standard protocol. A SDS-PAGE (12% resolving gel and 4% stacking gel) was applied to check the purity of the protein.

To determine the kinetics data, 1 μ g of the purified SpEH was incubated with (*S*)-1 (0.5–8 mM) or (*R*)-1 (0.2–4 mM) in 1 mL of Tris buffer (50 mM, pH 7.5). The mixtures were shaken at 30 °C. 300 μ L aliquots were taken out at different time points (0, 2, 4 and 8 min) and mixed with 300 μ L cold acetonitrile to quench the reaction. The samples were analyzed by HPLC to quantify the diol formation immediately. The initial velocities were calculated and used to give a Lineweaker-Burk plot (1/v vs. 1/[S]) to determine K_m , V_{max} and k_{cat} .

Sequence alignment of SpEH with several known EHs

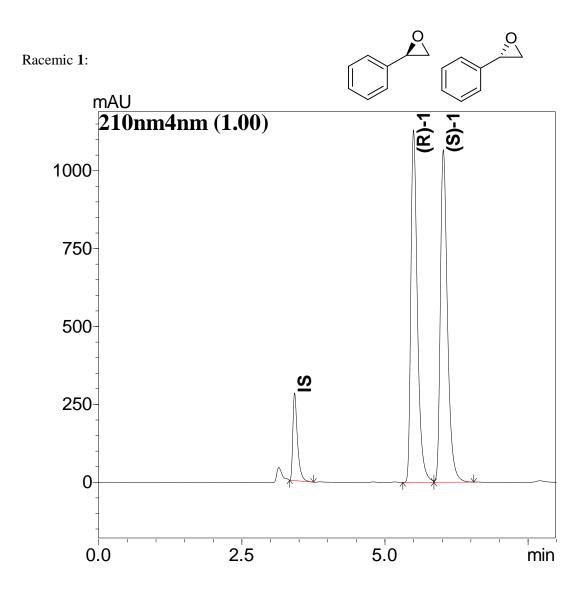

SpEH MgEH AnEH ArEH StEH HsEH	RWPEKETVDDWDQGIPLAYARELAIYWRDEYDWRRIEARLNTWPNF RWPDSETCKGWDQGMPLEYSRELAQYWVKDYDWRRCETMLNNWPNY KIAPPTYESLQADGRFGITSEWLTTMREKWLSEFDWRPFEARLNSFPQF	105 87 12 7
SpEH MgEH AnEH ArEH StEH HsEH	LATVD-GLDIHFLHIRSDNPAARPLVLTHGWPGSVLEFLDVIEPLSADYH MASID-GQDIHFIHRTSTHANALPLIISHGWPGSVIEFHKIIDALAQPEQYGGDPADAFH TTEIE-GLTIHFAALFSEREDAVPIALLHGWPGSFVEFYPILQLFREEYTPETLPFH EVQLP-DVKIHYVREGAGPTLLLLHGWPGFWWEWSKVIGPLAEHYD MVAVN-GLNMHLAELGEGPTILFIHGFPELWYSWRHQMVYLAERGYR YVTVKPRVRHFVELGSGPAVCLCHGFPESWYSWRYQIPALAQAGYR : : * : : : : : : : : : : : : : : : :	164 143 57 53
SpEH MgEH AnEH ArEH StEH HsEH	LVIPSLPGFGFS-GKPTRPGWDVEHIAAAWDALMRALGYDRYFAQGGDWGSAVTS VVAPSLPGFGFS-SKPTTTGTKVEKIGAMWGKLMAELGYDSYVAQGGDWGSMVTQ LVVPSLPGYTFSSGPPLDKDFGLMDNARVVDQLMKDLGFGSGYIIQGGDIGSFVGR VIVPDLRGFGDSEKPDLNDLSKYSLDKAADDQAALLDALGIEKAYVVGHDFAAIVLHK AVAPDLRGYGDTTGAPLNDPSKFSILHLVGDVVALLEAIAPNEEKVFVVAHDWGALIAWH VLAMDMKGYGESSAPPEIEEYCMEVLCKEMVTFLDKLGLSQAVFIGHDWGGMLVWY : : : : :	218 199 115 113
SpEH MgEH AnEH ArEH StEH HsEH	AIGMHHAGHCAGIHVNMVVGAPPPELMNDLTDEEKLYLARFGWYQAKDNGYSTQ SMGQTETKHCAGIHINMPIVAPDPETMNDLTPLEQSALEGMAFYNDHDSGYSKQ LLGVGFD-ACKAVHLNLCAMRAPPEGPSIESLSAAEKEGIARMEKFMTDGLAYAME FIRKYSDRVIKAAIFDPIQPDFGPVYFGLGHVHESWYSQFHQLDMAVEVVGSS LCLFRPDKVKALVNLSVHFSKRNPKMNVVEGLKAIYGEDHYISRFQVPGEIEAEFAPIGA MALFYPERVRAVASLNTPFIPANPNMSPLESIKANP-VFDYQLYFQEPGVAEAELEQNLS * .:	272 254 168 173
SpEH MgEH AnEH ArEH StEH HsEH	QATRPQTIGYALTDSP-AGQMAWIAEKFHGWTDCGHQPGGQSVG QSTRPQTISYGLADSP-VGQMAWIVEKFYAWTDCEKNGVK HSTRPSTIGHVLSSSP-IALLAWIGEKYLQWVDKPLP REVCKKYFKHFFDHWS-YRDELLTEEELEVHVDNCMK	311 290 204 224
SpEH MgEH AnEH ArEH StEH HsEH	GHPEQAVSKDAMLDTISLYWLTASAASSARLYWHSFRQFAAGEIDVPTGC -HPENVLSKDELLDNVMLYWLNNCAGSSARLYWESFNQPNLAPIDMPVGCSETILEMVSLYWLTESFPRAIHTYRETTPTASAPNGATMLQKELYIHKPFGFPDNIHGGFNYYRANIRPDAALWTDLDHTMSDLPVTMIWQTGFTGAVNYYRALPINWELTAPWTGAQVKVPTKFIVGEFDLVKSGFRGPLNWYRNMERNWKWACKSLGRKILIPALMV : . *	360 342 242 267
SpEH MgEH AnEH ArEH StEH HsEH	SLFPNEIMRLSRRWAERRYRNIVYWSEAARGG FAAWEQPELFAAEVRAAFAQMDL SIFPCEIFRSSRRWAAKRFSNIVHWNELEKGG FAAFEQPQIFIKEVSDCFRKLR SFFPKELCPVPRSWIATTG-NLVFFRDHAEGG FAALERPRELKTDLTAFVEQVWQK GLGDTCVPYAPLIEFVPKYYSNYTMETIEDCG FLMVEKPEIAIDRIKTAFR YHIPGAKEYIHNGGFKKDVPLLEEVVVLEGAALFVSQERPHEISKHIYDFIQKF TAEKDFVLVPQMSQHMEDWIPHLKRGHIEDCG WTQMDKPTEVNQILIKWLDSDARNPPV .*: ::* : .	415 398 294 321

Figure S1. Sequence alignment of SpEH with several known EHs (the multiple alignment by ClustalW2). SpEH, EH from *Sphingomonas* sp. HXN-200 (This study); MgEH, putative EH from marine *gamma proteobacterium* HTCC2148 (UniProt: EEB77043.1); AnEH, EH from *Aspergillus niger* (UniProt: Q9UR30); ArEH, EH from *Agrobacterium radiobacter* AD1 (UniProt: O31243); StEH, EH from *Solanum tuberosum* (Potato, UniProt: Q41415); HsEH, EH from *Homo sapiens* (Human, UniProt: P34913). Yellow: the conserve motif (H-G-X-P and G-X-Sm-X-S/T); Green: catalytic trial (D-H-D/E); Cyan: two conserve tyrosine residues (Y). "*": the identical amino acids; ".": similar amino acids; ":": highly similar amino acids.

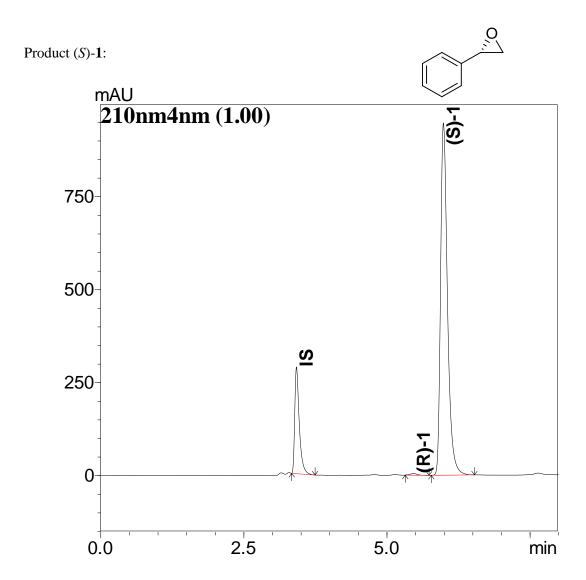
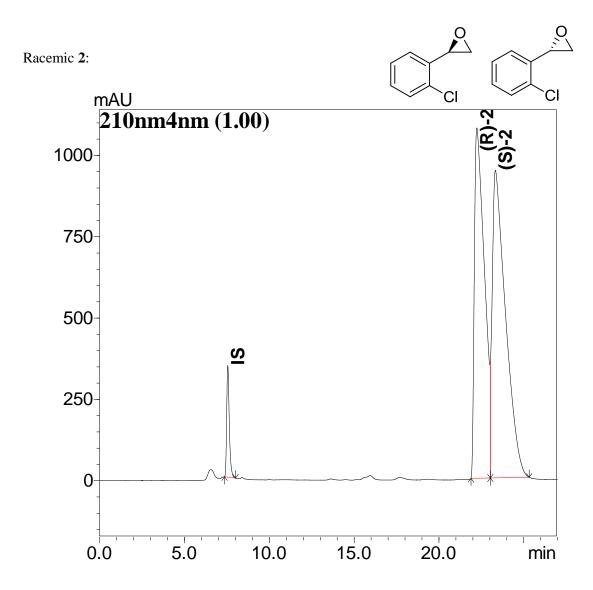
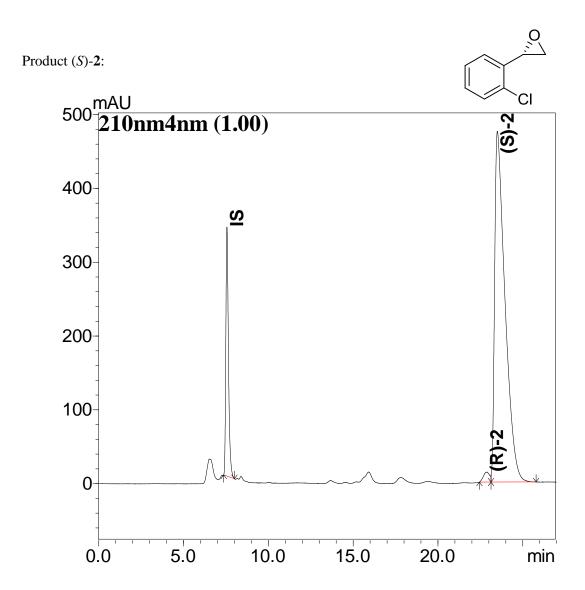
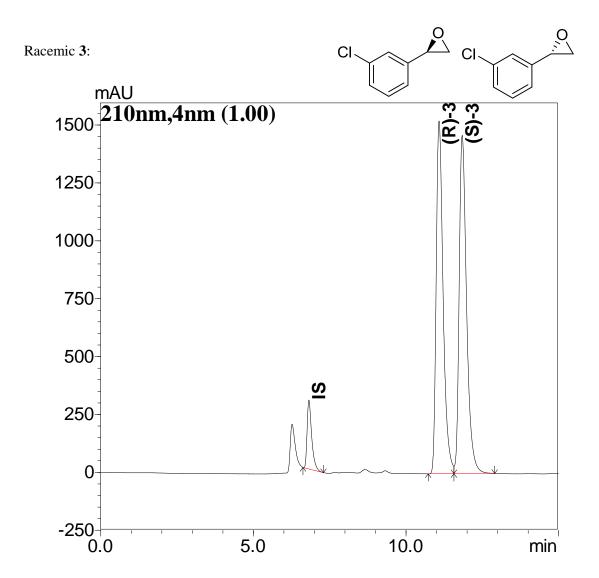
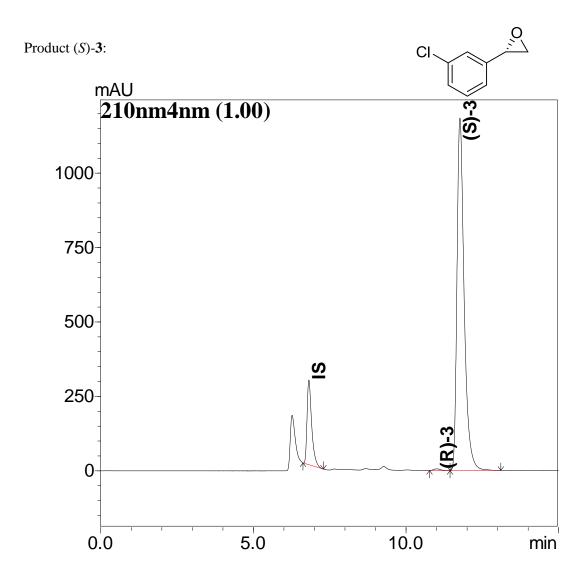


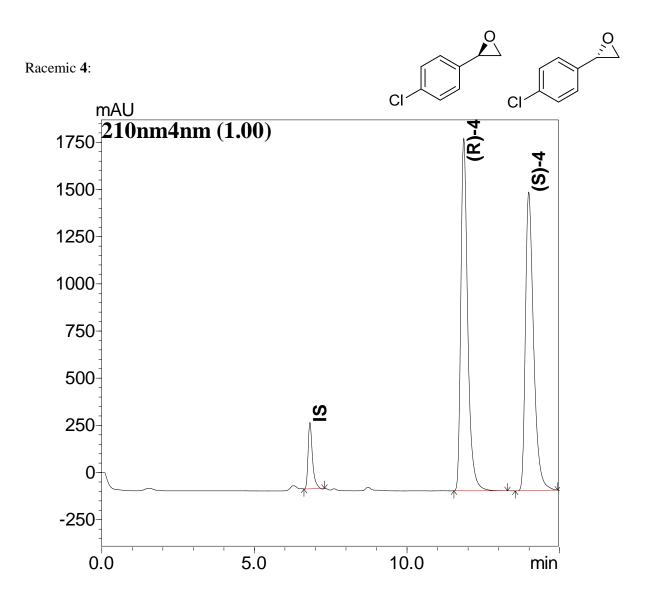
Figure S2. Enantioselective hydrolysis of cyclohexene oxide **10** with resting cells of *E. coli* (SpEH) in Tris–HCl buffer (50 mM, pH 7.5) with various substrate concentrations (mM) and cell densities (g cdw/L).

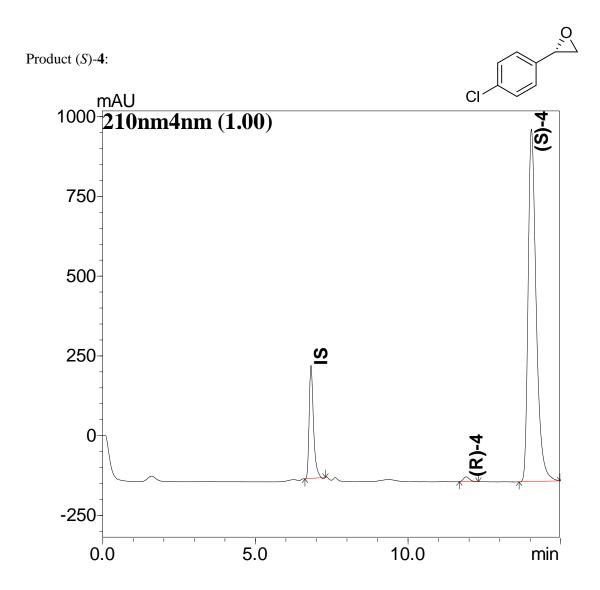

Figure S3-S19. Chiral HPLC chromatograms

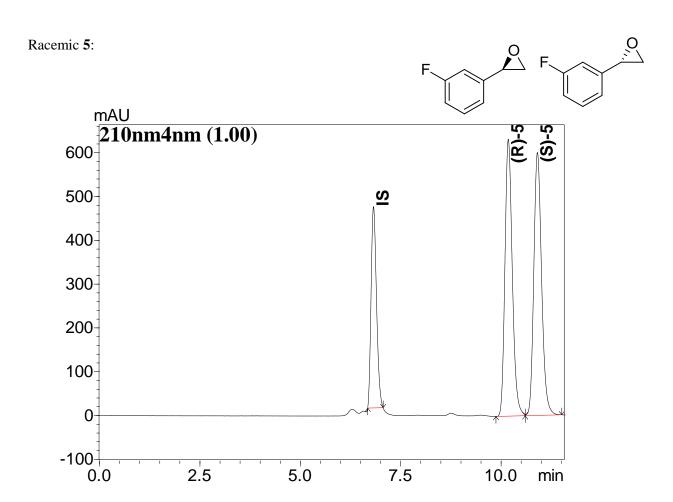

Figure S3. Chiral HPLC chromatogram of racemic substrate **1** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 1.0 mL min⁻¹).

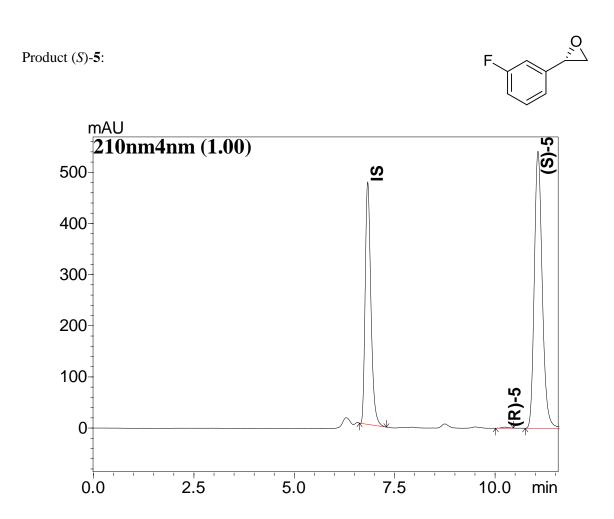

Figure S4. Chiral HPLC chromatogram of biotransformation product (*S*)-**1** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 1.0 mL min⁻¹).

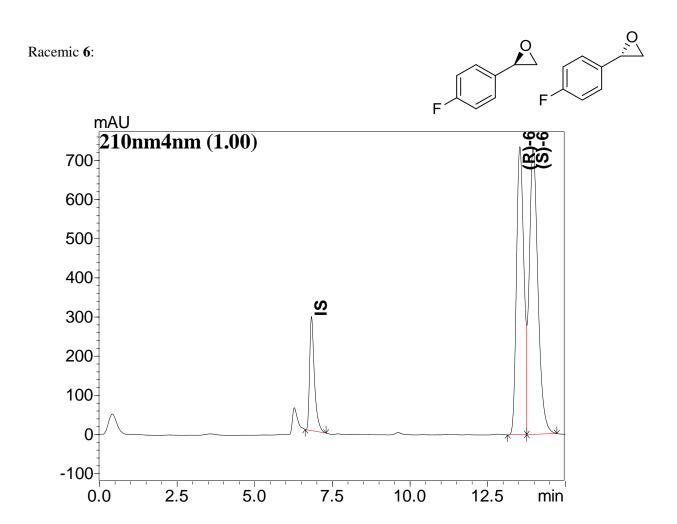

Figure S5. Chiral HPLC chromatogram of racemic substrate **2** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 0% IPA: 100% *n*-hexane; flow rate: 0.5 mL min⁻¹).

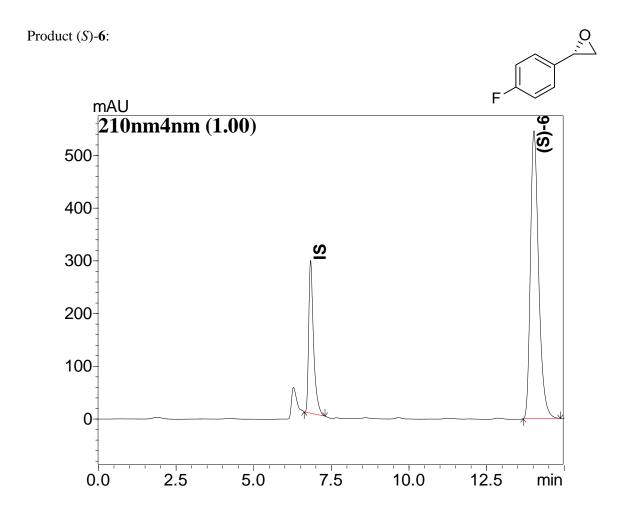

Figure S6. Chiral HPLC chromatogram of biotransformation product (*S*)-**2** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 0% IPA: 100% *n*-hexane; flow rate: 0.5 mL min⁻¹).

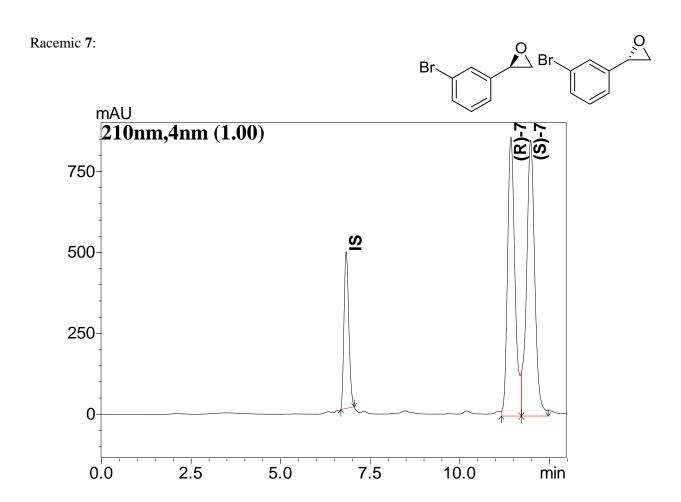

Figure S7. Chiral HPLC chromatogram of racemic substrate **3** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).


Figure S8. Chiral HPLC chromatogram of biotransformation product (*S*)-**3** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).


Figure S9. Chiral HPLC chromatogram of racemic substrate **4** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).


Figure S10. Chiral HPLC chromatogram of biotransformation product (*S*)-**4** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).


Figure S11. Chiral HPLC chromatogram of racemic substrate **5** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).


Figure S12. Chiral HPLC chromatogram of biotransformation product (*S*)-**5** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).

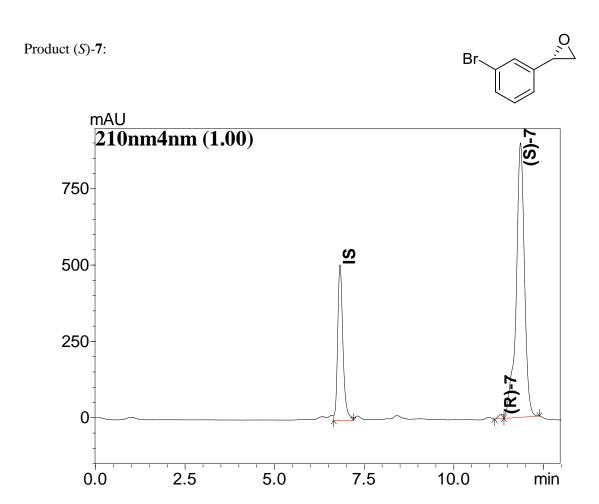

Figure S13. Chiral HPLC chromatogram of racemic substrate **6** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).

Figure S14. Chiral HPLC chromatogram of biotransformation product (*S*)-6 (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).

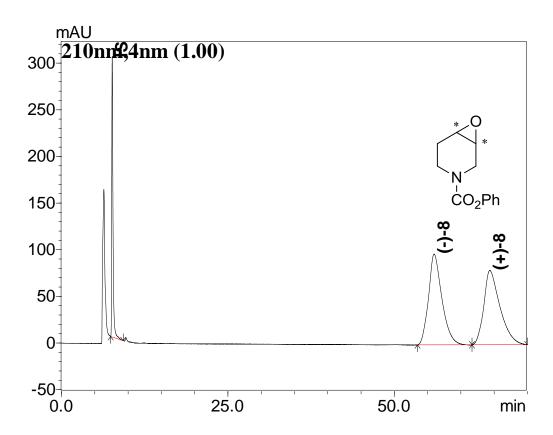


Figure S15. Chiral HPLC chromatogram of racemic substrate **7** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).

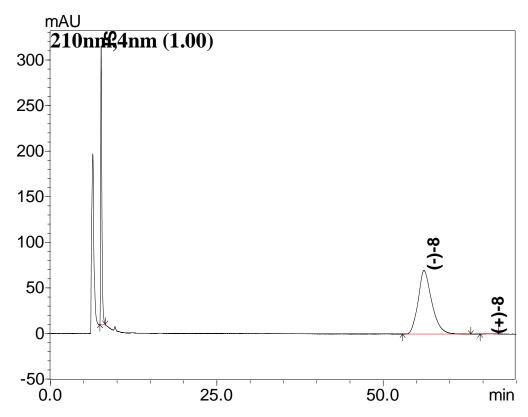


Figure S16. Chiral HPLC chromatogram of biotransformation product (*S*)-**7** (Column: Daicel AS-H (250 \times 4.6 mm, 5 μ m); eluent: 10% IPA: 90% *n*-hexane; flow rate: 0.5 mL min⁻¹).

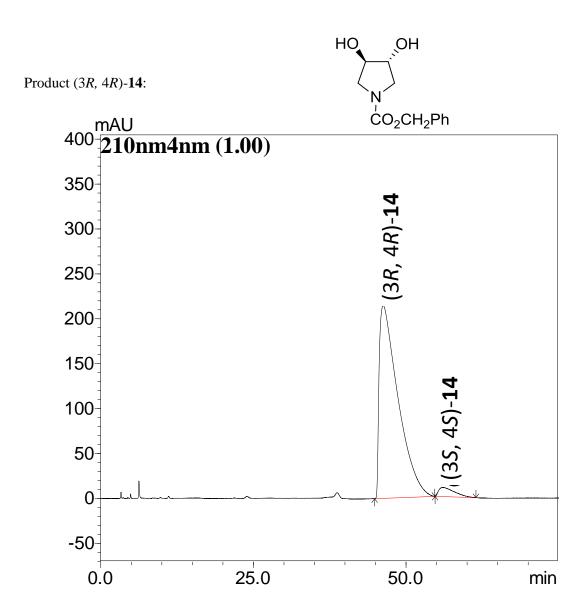

Racemic 8:

Figure S17. Chiral HPLC chromatogram of racemic substrate **8** (Column: Daicel OB-H (250 \times 4.6 mm, 5 μ m); eluent: 40% IPA: 60% *n*-hexane; flow rate: 0.5 mL min⁻¹).

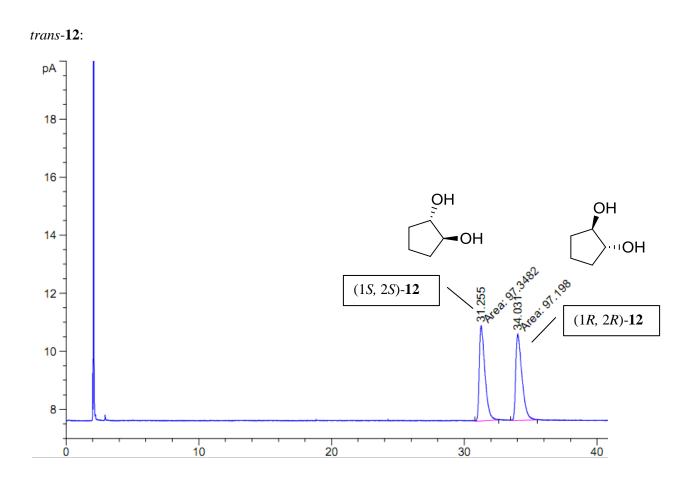


Figure S18. Chiral HPLC chromatogram of biotransformation product (–)-**8** (Column: Daicel OB-H (250 \times 4.6 mm, 5 μ m); eluent: 40% IPA: 60% *n*-hexane; flow rate: 0.5 mL min⁻¹).

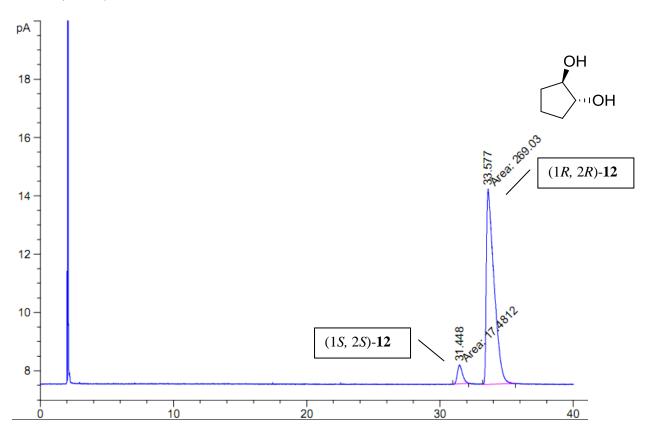

Figure S19. Chiral HPLC chromatogram of biotransformation product (3R, 4R)-**12** (Column: Daicel AS-H $(250 \times 4.6 \text{ mm}, 5 \mu\text{m})$; eluent: 5% IPA: 95% *n*-hexane; flow rate: 1.0 mL min⁻¹).

Figure S20-S24: Chiral GC chromatograms

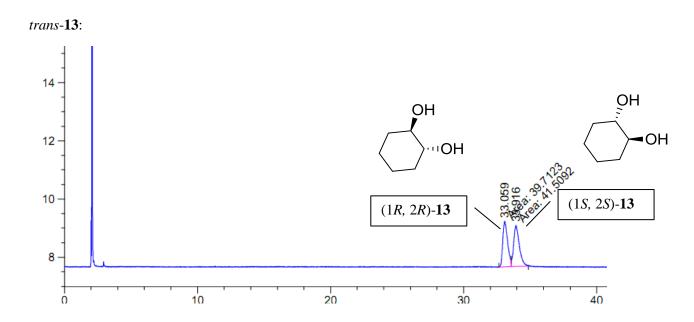


Figure S20. Chiral GC chromatogram of *trans*-12 (Column: Macherey-Nagel Lipodex-E (25 m \times 0.25 mm); temperature: 100 °C constant; pressure: 11.093 psi).

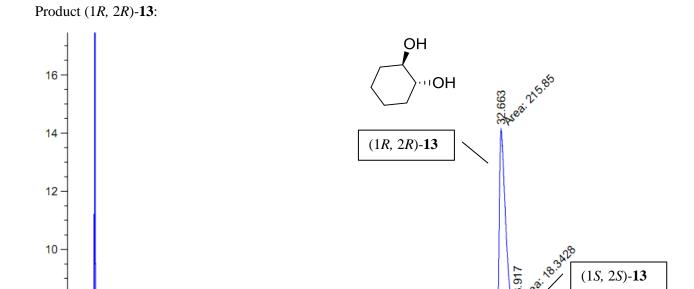

Product (1*R*, 2*R*)-**12**:

Figure S21. Chiral GC chromatogram of biotransformation product (1R, 2R)-12 (Column: Macherey-Nagel Lipodex-E (25 m \times 0.25 mm); temperature: 100 °C constant; pressure: 11.093 psi).

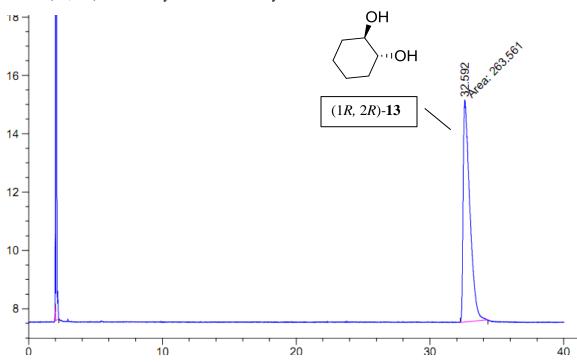
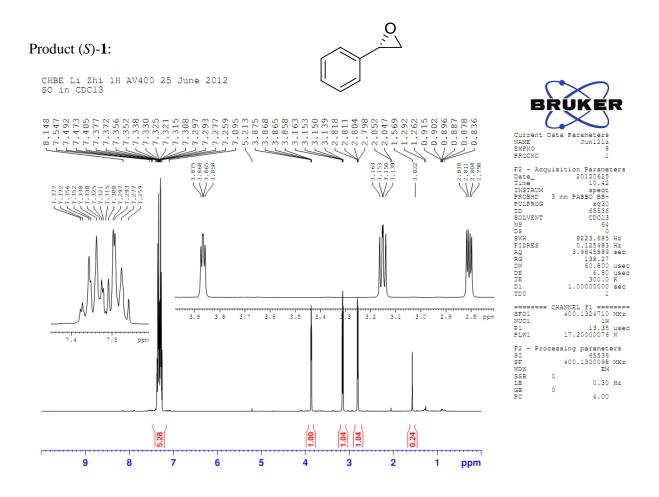


Figure S22. Chiral GC chromatogram of *trans-***13** (Column: Macherey-Nagel Lipodex-E (25 m \times 0.25 mm); temperature: 100 $^{\circ}$ C constant; pressure: 11.093 psi).


Figure S23. Chiral GC chromatogram of biotransformation product (1R, 2R)-13 (before crystallization). (Column: Macherey-Nagel Lipodex-E (25 m \times 0.25 mm); temperature: 100 °C constant; pressure: 11.093 psi)

Product (1R, 2R)-13 after crystallization in ethyl acetate:

Figure S24. Chiral GC chromatogram of biotransformation product (1*R*, 2*R*)-**13** (after crystallization). (Column: Macherey-Nagel Lipodex-E (25 m × 0.25 mm); temperature: 100 °C constant; pressure: 11.093 psi)

Figure S25-S32. ¹H NMR spectra

Figure S25. ¹H NMR spectrum of biotransformation product (*S*)-1 (400 MHz, CDCl₃, TMS).

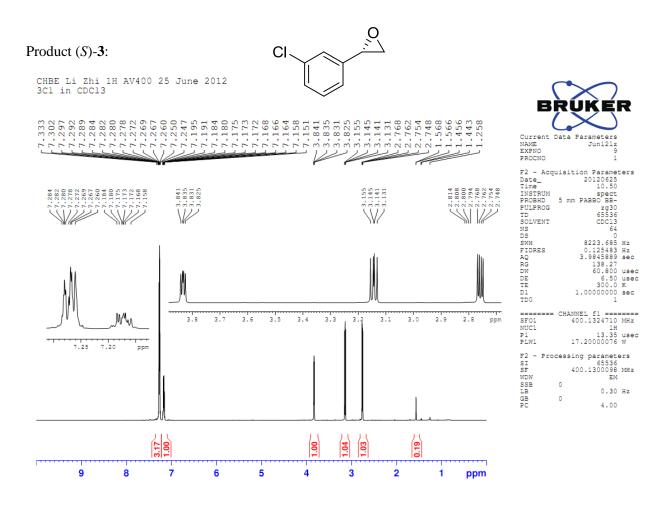
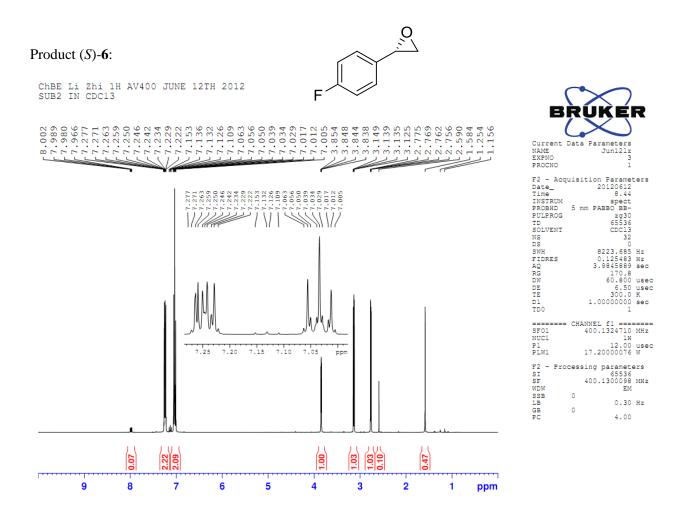



Figure S26. ¹H NMR spectrum of biotransformation product (S)-3 (400 MHz, CDCl₃, TMS).

Figure S27. ¹H NMR spectrum of biotransformation product (*S*)-**6** (400 MHz, CDCl₃, TMS).

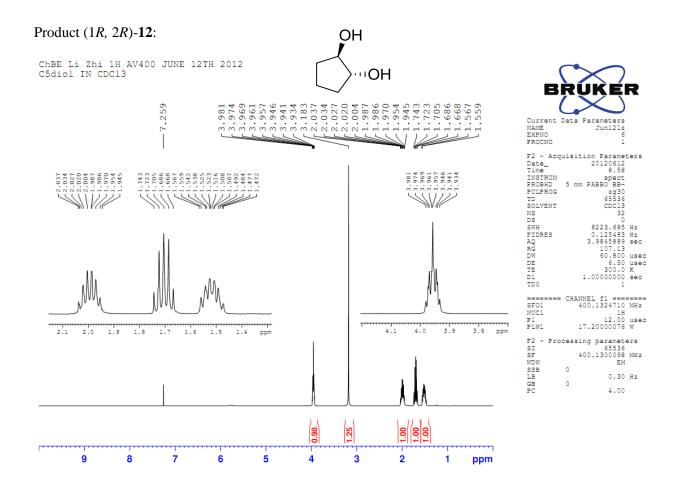


Figure S28. ¹H NMR spectrum of biotransformation product (1*R*, 2*R*)-12 (400 MHz, CDCl₃, TMS).

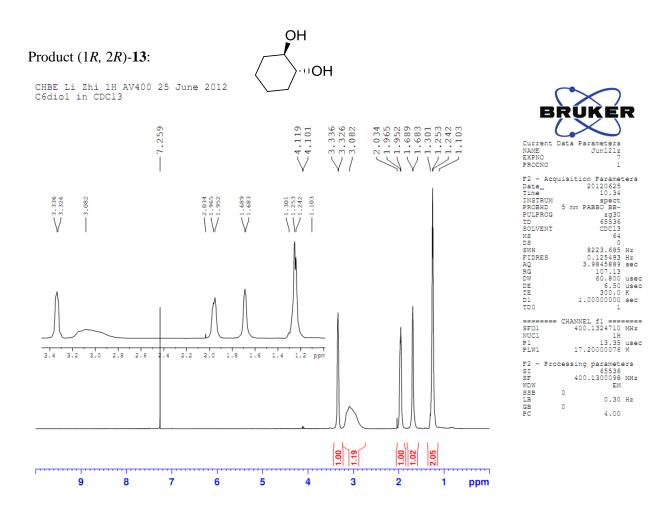


Figure S29. ¹H NMR spectrum of biotransformation product (1*R*, 2*R*)-13 (400 MHz, CDCl₃, TMS).

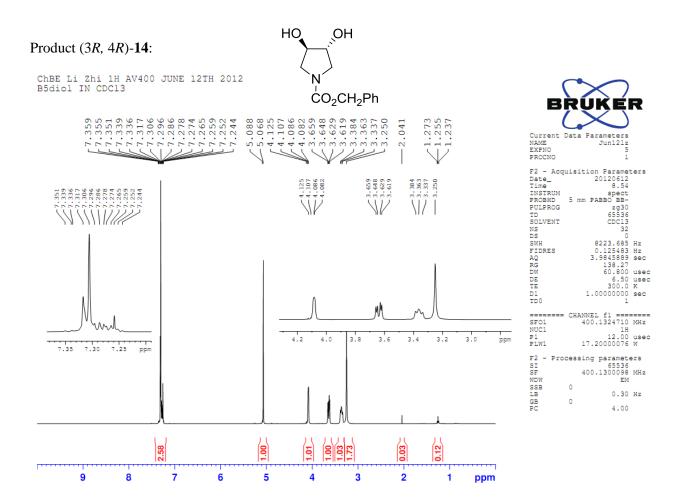


Figure S30. ¹H NMR spectrum of biotransformation product (3*R*, 4*R*)-14 (400 MHz, CDCl₃, TMS).

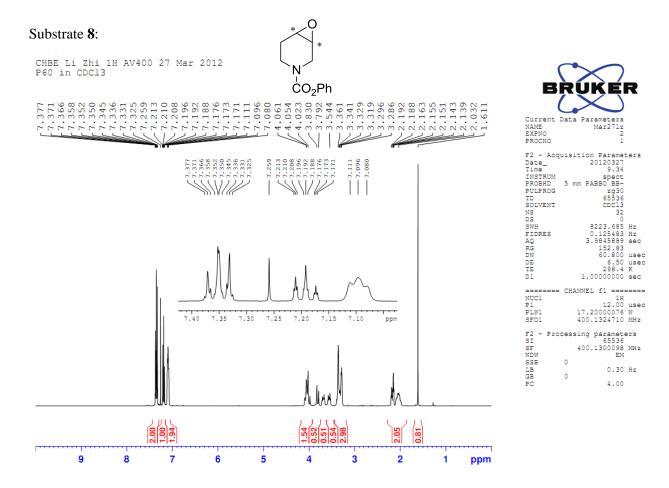


Figure S31. ¹H NMR spectrum of substrate 8 (400 MHz, CDCl₃, TMS).

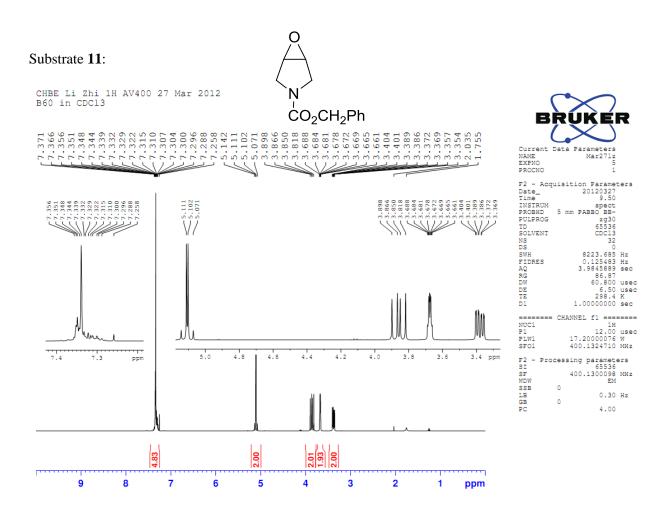


Figure S32. ¹H NMR spectrum of substrate 11 (400 MHz, CDCl₃, TMS).

References:

- (S1) Pedragosa-Moreau, S.; Morisseau, C.; Zylber, J.; Archelas, A.; Baratti, J.; Furstoss, R. *J. Org. Chem.* **1996**, *61*, 7402–7407.
- (S2) Chang, D.; Heringa, M. F.; Witholt, B.; Li, Z. J. Org. Chem. 2003, 68, 8599–8606.
- (S3) Jia, X.; Wang, Z.; Li, Z. Tetrahedron: Asymmetry 2008, 19, 407–415.
- (S4) Xu, Y.; Li, A.; Jia, X.; Li, Z. Green Chem. 2011, 13, 2452–2458.
- (S5) Hollmann, F.; Lin, P.-C.; Witholt, B.; Schmid, A. J. Am. Chem. Soc. 2003, 125, 8209–8217.
- (S6) Forbes, D. C.; Bettigeri, S. V.; Patrawala, S. A.; Pischek, S. C.; Standen, M. C. *Tetrahedron* **2009**, 65, 70–76.
- (S7) Matsumoto, K.; Oguma, T.; Katsuki, T. Angew. Chem. Int. Ed. 2009, 48, 7432–7435.
- (S8) Bellucci, G.; Capitani, I.; Chiappe, C.; Marioni, F. J. Chem. Soc., Chem. Comm. 1989, 1170-1171
- (S9) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M. J. Org. Chem. 2004, 69, 5966–5973.