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S1. Initial Investigation Into Synthesis of Furandioate-Adipate Copolyesters
with 2,5-Hexanediol (2,5-HDO)

Table S1. Initial Synthesis of Furandioate-Adipate Copolyesters with 2,5-Hexanediol (2,5-
HDO)

Entry Polymer F:D* M/ M/ DP° T, Yield® Appearance
kDa kDa /°C 1%

1 2,5-PHA 0.00 25 38 15 -37 81 Beige, sticky, stretchy
gum

2 2,5-PHAF0.3 0.30 4.2 6.9 1.7 -24 64 Amber, sticky, viscous
liquid

3 2,5-PHAF0.4 0.39 3.9 6.8 1.7 -15 66 Golden brown, sticky,
viscous liquid

4 2,5-PHAF0.5 0.54 4.2 8.5 20 -1 79 Golden brown, sticky,
tacky solid

5 2,5-PHAF0.6 0.58 1.0 2.9 28 -7 62 Golden brown, sticky,
deformable solid

6 2,5-PHAF0.7 0.72 3.7 7.0 19 14 89 Golden brown, hard,
tough solid

7 2,5-PHAF0.8 0.81 0.7 1.5 25 4 48 Caramel brown, hard,
tough solid

8 2,5-PHAF0.9 0.83 0.8 1.8 23 0 59 Caramel brown, hard,
tough solid

9 2,5-PHF 1.00 1.0 2.1 22 22 57 Rust red, hard, brittle,
glassy solid

a Furandioate:total diester molar ratios of the copolymer formed, where F = furandioate and D =
furandioate + adipate, determined by *H NMR spectroscopy. ® Determined by GPC. ¢ Determined by

DSC. 9 Determined from mass formed, assuming removal of all ethanol and excess diol. Reaction
conditions: as stated in main manuscript for 1° alcohol conditions.

Table S2. Catalyst Screen for 2,5-PHAF0.7 Synthesis.

Entry Catalyst Mg/ M.s2/  DP? Yield®/ Appearance
kDa kDa %
1 Zr(O'Pr)s 0.7 1.2 1.6 36 Orange, viscous liquid
2 Ti(acac)s 1.3 1.8 1.3 22 Orange, soft, sticky solid
3 Bi2Os 15 2.8 2.0 79 Yellow, tacky solid
4 Ti(O'Pr)a 3.7 7.0 1.9 89 Orange, hard, tough solid
5 Sbh,0s 3.9 8.4 2.1 84 Grey, hard, tough solid

a Determined by GPC. ? Determined from mass formed, assuming removal of all ethanol and excess
diol. Reaction conditions: as stated in main manuscript for 1° alcohol conditions.
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Table S3. Years Remaining of Known Reserves of Each Metal Used Catalyst Screen.*

Element Remaining years until depletion of known reserves
Zr 50 - 100
Bi 5-50
Ti >500
Sb 5-50

Table S4. The Hazards of Ti(O'Pr), and Sb,Os. Data Taken from Sigma-Aldrich.?*

Catalyst Hazards
Ti(O'Pr)s H226 - Flammable liquid and vapour
H319 - Causes serious eye damage
H336 - May cause drowsiness or dizziness
Sh,03 H351 - Suspected of causing cancer

Table S5. The Effects of Varying Catalyst Concentration, Amount of 2,5-HDO Diol Added
and Time of Diethyl Adipate (DEA) addition.

Entry Diol : Diester Ti(O'Pr)s/ TimeDEA M2/ W2 P?  Yield?/
feed ratio % mol added / h kDa kDa %
1 1.25:1 1 2 3.7 7.0 1.9 89
2 1.25:1 2 2 2.4 4.5 1.9 77
3 25:1 2 2 1.2 2.7 2.2 87
4 25:1 2 0 1.4 3.2 2.4 86
5 1.25+05:1 1+1 2 1.6 4.0 2.5 77

2 Determined by GPC. P Determined from mass recovered, assuming removal of all ethanol and excess
diol. ¢ Second addition of 2,5-HDO diol (0.5 mol equivalent to total diester) and catalyst added prior to
application of vacuum. Reaction conditions: as stated in main manuscript for 1° alcohol conditions
except for changes stated in table.

Table S6. Effects of Increasing Polycondensation Time (T polycond)-

Entry  Tpoycond/ M2/ M2/ D2 Yield® Appearance
h kDa kDa %
1 20 1.0 2.9 2.8 62 Golden brown, tough, sticky solid
2 35 1.6 3.1 1.9 38 Black, deformable, sticky solid

2 Determined by GPC. P Determined from mass formed, assuming removal of all ethanol and excess
diol. Reaction conditions: as stated in main manuscript for 1° alcohol conditions except for changes
stated in table.
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Table S7. Effects of Increasing the Time Before DEA Addition (entries 1 vs 2)
and Increasing Diol Excess (entries 2 to 6).

Entry Diol : Diester TimeDEA M2/ M./ P?® Yield®/

feed ratio added / h kDa kDa %
1 1.25:1 2 3.7 7.0 1.9 88
2 1.25:1 4 2.8 4.9 1.8 84
3 2:1 4 14 22 1.6 91
4 25:1 4 15 22 15 81
5¢ 25:1 4 10 16 15 87
6 3:1 4 12 17 15 96

2 Determined by GPC. P Determined from mass formed, assuming removal of all ethanol and excess
diol. Double amount (2 mol%) of Ti(O'Pr), catalyst. Reaction conditions: as stated in main manuscript
for 1° alcohol conditions except for changes stated in table.

Optimum conditions selected for polymerisations involving secondary alcohol diols:

Diol : diester ratio of 2.0 : 1.0; catalyst loading of 1 mol% with respect to the total moles of diester; 4
h reaction of diol and FDEE prior to addition of DEA, total reaction time dictated by onset of
Weissenberg effect. These conditions were used in the synthesis of all copolyesters involving secondary
alcohols (2,5-HDO, 1,4-PDO and 2,7-0ODO).

S2. Oxolane Formation Observed in Dean-Stark Distillate
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Figure S1. 'H NMR spectrum of distillate collected in Dean-Stark trap during synthesis of 2,5-
PHAFO0.7. CDCls; solvent, 400 MHz.
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Figure S2. 'H NMR spectrum of pure 2,5-dimethyloxolane (2,5-DMO) for comparative purposes to
Figure S1. CDCls; solvent, 400 MHz.
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Figure S3. *H NMR spectrum of distillate collected in Dean-Stark trap during synthesis of 1,4-
PPAF0.5. CDCl; solvent, 400 MHz. Small quantities of 2-methyl oxolane are present alongside
ethanol and diol, as expected.
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Figure S4. 'H NMR spectrum of distillate collected in Dean-Stark trap during synthesis of 1,6-
PHAFO0.5. CDClI; solvent, 400 MHz. Essentially ethanol, as expected.
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Figure S5. *H NMR spectrum of distillate collected in Dean-Stark trap during synthesis of 2,7-
POAFO0.6. CDClI; solvent, 400 MHz. Essentially ethanol and small quantities of diol (2,7-OD0), as
expected.
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!H-NMR Spectra of Polyesters, Including End-Group Analysis
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Figure S6. *"H NMR Spectrum of 1,4-PBA. CDCI; solvent, 400 MHz, TMS standard.
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Figure S7. 'H NMR Spectrum of 1,4-PBAF0.5. CDCl; solvent, 400 MHz, TMS standard.
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Figure S8. 'H NMR Spectrum of 1,4-PBAF0.6. CDClI; solvent, 400 MHz, TMS standard.
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Figure S9. *H NMR Spectrum of 1,4-PBAF0.7. CDCl; solvent, 400 MHz, TMS standard.
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Figure S10. *H NMR Spectrum of 1,4-PPA. CDCl; solvent, 400 MHz, TMS standard.
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Figure S12. *H NMR Spectrum of 1,4-PPAF0.6. CDCl; solvent, 400 MHz, TMS standard.
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Figure S18. 'H NMR Spectrum of 2,5-PHAF0.7. CDCl; solvent, 400 MHz, TMS standard.
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Figure S19. *H NMR Spectrum of 2,5-PHF. CDCls solvent, 400 MHz, TMS standard.
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Figure S21. *H NMR Spectrum of 1,6-PHAF0.5. CDCl; solvent, 400 MHz, TMS standard.
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Figure S22. 'H NMR Spectrum of 1,6-PHAF0.6. CDCl; solvent, 400 MHz, TMS standard.
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Figure S24. 'H NMR Spectrum of 1,6-PHF. CDCI; solvent, 400 MHz, TMS standard.
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Figure S25. *H NMR Spectrum of 2,7-POA. CDCl; solvent, 400 MHz, TMS standard.
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Figure S26. 'H NMR Spectrum of 2,7-POAF0.5. CDCl; solvent, 400 MHz, TMS standard.
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Figure S27. *H NMR Spectrum of 2,7-POAF0.6. CDCl; solvent, 400 MHz, TMS standard.
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Figure S28. 'H NMR Spectrum of 2,7-POAF0.7. CDCl; solvent, 400 MHz, TMS standard.
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Figure S29. *H NMR Spectrum of 2,7-POF. CDCls solvent, 400 MHz, TMS standard.

518



S4. Chromatograms from GPC Analysis of Copolyesters
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Figure S30. Overlayed GPC chromatograms for the 1,4-BDO series of polyesters. Experimental
details in main manuscript. Raw eluogram data and mass distribution available via the data access
statement in the main manuscript.
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Figure S31. Overlayed GPC chromatograms for the 1,4-PDO series of polyesters. Experimental
details in main manuscript. Raw eluogram data and mass distribution available via the data access
statement in the main manuscript.
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Figure S32. Overlayed GPC chromatograms for the 2,5-HDO series of polyesters. Experimental
details in main manuscript. Raw eluogram data and mass distribution available via the data access
statement in the main manuscript.
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Figure S33. GPC chromatogram for 1,6-PHA. Experimental details in main manuscript. Raw
eluogram data and mass distribution available via the data access statement in the main manuscript.
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Figure S34. Overlayed GPC chromatograms for the 2,7-ODO series of polyesters. Experimental
details in main manuscript. Raw eluogram data and mass distribution available via the data access
statement in the main manuscript.
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SS.

Literature Values for GPC and DSC Analysis of Known Polyesters

Table S8. Literature values of equivalent polyesters where available.

Polymer Mn/kDa Mw/kDa D  Ty4/°C Tm/°C Reference
1,4-PBA 45 67 1.5 -62 67 Wwu*
1,4-PBAF0.5 48 93 2 20 70 Wu*
1,4-PBAF0.6 43 96 23 -11 112 wu*
1,4-PBAF0.7 35 68 19 0 132 Wu*
1,4-PBF - - - 36 168 wu*
1,4-PPA 4.2 19 46 -52 - van der Klis®
1,4-PPF 8.1 30 3.6 47 - van der Klis®
2,5-PHA 5.5 20 36 -39 - van der Klis®
2,5-PHA 8.9 15 1.7 -36 - Arnaud®
2,5-PHAF0.5 11 16 15 2 - Arnaud®
2,5-PHF 3.3 5.5 1.7 32 - Arnaud®
2,5-PHF 5.7 14 24 51 - van der Klis®
1,6-PHA - 37 -59 58 - Rohindra’
1,6-PHF 14 41 29 8 145 Haernvall®
2,7-POA 18 38 2.1 -44 - Arnaud®
2,7-POAF0.5 9.9 19 2 -8 - Arnaud®
2,7-POF 6.4 9.9 1.6 34 - Arnaud®
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S6. DSC Analysis of Copolyesters

All DSC analysis involved two heating cycles, below only the 2" heating cycle is shown, Tgand Tr
determined from these cycles. Full DSC results, including initial and first cycles and full data range, is
given in the raw data files as mentioned in the main manuscript.
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Figure S35. DSC Trace of 1,4-PBA. Experimental details in main manuscript. Displaying second
heating cycle only, Tqand T determined from second heating cycle.
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Figure S36. DSC Trace of 1,4-PBAF0.5. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S37. DSC Trace of 1,4-PBAF0.6. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S38. DSC Trace of 1,4-PBAFO0.7. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S39. DSC Trace of 1,4-PBF. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S40. DSC Trace of 1,4-PPA. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.

S25



10

0.5+
o5 /
g -
g 004
™ -9.98°C(1)
® -13.32°C 04118Ji{g-"C)
L |
T £61°C '

0.5

-10 . . . | . . . | . . .

-50 0 50 100
Exoc Up Tempe[atu re (“C) Universal V4.5A TA Instruments

Figure S41. DSC Trace of 1,4-PPAF0.5. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S42. DSC Trace of 1,4-PPAF0.6. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S43. DSC Trace of 1,4-PPAF0.7. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S44. DSC Trace of 1,4-PPF. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S45. DSC Trace of 2,5-PHA. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S46. DSC Trace of 2,5-PHAFO0.5. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S47. DSC Trace of 2,5-PHAF0.6. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S48. DSC Trace of 2,5-PHAFO0.7. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S49. DSC Trace of 2,5-PHF. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S50. DSC Trace of 1,6-PHA. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S51. DSC Trace of 1,6-PHAF0.5. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S52. DSC Trace of 1,6-PHAFO0.6. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S53. DSC Trace of 1,6-PHAFO0.7. Experimental details in main manuscript. Displaying second
heating cycle only, Tqand T determined from second heating cycle.
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Figure S54. DSC Trace of 1,6-PHF. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S55. DSC Trace of 2,7-POA. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S56. DSC Trace of 2,7-POAFO0.5. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S57. DSC Trace of 2,7-POAF0.6. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.
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Figure S58. DSC Trace of 2,7-POAFO0.7. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T, determined from second heating cycle.
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Figure S59. DSC Trace of 2,7-POF. Experimental details in main manuscript. Displaying second
heating cycle only, Ty and T determined from second heating cycle.

S7. Visual Appearance of Polyesters from Optimised Reaction Conditions

Figure S60. 1,4-PBAF series.
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Figure S61. 1,4-PPAF series.
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Figure S62. 2,5-PHAF series.
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Figure S63. 1,6-PHAF series.
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Figure S64. 2,7-POAF series.

S8.

Thickness of Films Prepared

Table S9. Film thickness range following multiple

measurements over the film sample

Polymer Film thickness / mm
1,4-PBAF0.6 0.27-0.29
1,4-PBAF0.7 0.32-0.34
1,4-PPAF0.7 0.28-0.32
2,5-PHAF0.6 0.26 - 0.30
2,5-PHAF0.7 0.32-0.34
1,6-PHAF0.7 0.28 - 0.30
2,7-POAF0.7 0.28 - 0.30
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SO. Tensile Property Study of Polyester Films
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Figure S65. 1,4-PBAFO0.6 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100

N (max) static load cell and screw action rubber grip claws. Four specimen dumbbells studied of

dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min
extension at ambient temperature and pressure.
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Figure S66. 1,4-PBAFO0.7 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100
N (max) static load cell and screw action rubber grip claws. Four specimen dumbbells studied of

dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min
extension at ambient temperature and pressure.
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Figure S67. 1,4-PPAFO0.7 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100

N (max) static load cell and screw action rubber grip claws. Four specimen dumbbells studied of

dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min

extension at ambient temperature and pressure. Instrument run to maximum extension of 500 mm.
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Figure S68. 2,5-PHAF0.6 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100

N (max) static load cell and screw action rubber grip claws. Four specimen dumbbells studied of

dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min

extension at ambient temperature and pressure Instrument run to maximum extension of 500 mm.
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Figure S69. 2,5-PHAFO.7 (entry 5, Table 2 in main manuscript) Tensile Stress vs. Extension.

Recorded on an Instron 3367 fitted with a 100 N (max) static load cell and screw action rubber grip

claws. Four specimen dumbbells studied of dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as
gripping sites at either end). 5 mm/min extension at ambient temperature and pressure.
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Figure S70. 2,5-PHAFQ.7 (entry 6, Table 2 in main manuscript) Tensile Stress vs. Extension.
Recorded on an Instron 3367 fitted with a 100 N (max) static load cell and screw action rubber grip
claws. Four specimen dumbbells studied of dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as
gripping sites at either end). 5 mm/min extension at ambient temperature and pressure.
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Figure S71. 1,6-PHAFO.7 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100
N (max) static load cell and screw action rubber grip claws. Six specimen dumbbells studied of
dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min
extension at ambient temperature and pressure.
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Figure S72. 2,7-POAFO0.7 Tensile Stress vs. Extension. Recorded on an Instron 3367 fitted with a 100

N (max) static load cell and screw action rubber grip claws. Four specimen dumbbells studied of

dimension 0.3 x 20 x 3 mm (with 10 x 10 mm squares as gripping sites at either end). 5 mm/min

extension at ambient temperature and pressure.

S10. Trends in Water Contact Angle vs Furan Content and Polyester Chain
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Figure S73. Graph displaying the water contact angles. Method for water contact angle determination

is detailed in experimental section of main manuscript. Data labels represent M, values in kDa
determined by GPC, those without values were insoluble in the GPC solvent.
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S11. Polyester Synthesis Using CaLB Enzyme as Catalyst

Table S10. Enzyme Catalysed Synthesis of Adipate Polyesters With 2° Alcohol Diols

Diol NMR Conversion [%] GPC
Diol Ester Mhn Mw b
2,3-BDO 96 96 1.5 kDa 2.4 kDa 2.10
2,5-HDO 82 97 1.2 kDa 2.4 kDa 2.06
2,7-O0DO 83 99 1.4 kDa 2.9 kDa 2.06

0.006 mol of dimethyl adipate (1.045 g) and 0.006 mol of diol (2,3-butanediol (2,3-BDO), 2,5-
hexanediol (2,5-HDO) or 2,7-octanediol (2,7-ODO0), diester:diol ratio=1.0:1.0) were accurately
weighted in a 25 mL round bottom flask. The mixture was then stirred at 85 °C until a homogeneous
melt was obtained. 10% w w * (calculated on the total amount of the monomers) of immobilised CaLB
N435 was then added and the reaction was run for 6 hat 1 atm. A vacuum of 20 mbar was subsequently
applied for an additional 18 h maintaining the reaction temperature at 85 °C (total reaction time: 24 h).
The reaction product was recovered by adding DCM in order to dissolve the solid reaction products.
The biocatalyst was then removed via a filtration step and the solvent evaporated under vacuum. The
polymers were then characterised without additional purification steps.
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