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Synthesis of Dendritic Ligands

Scheme S1. Synthesis of generation 2 dendrimer ligands.

NN
NN v ]
NN ; |
o o 9 LiAlH, : NN NN i
HO X e ———— X H O i
o— K,CO3, KI o— THF, 4 h, 70 °C OH H 0—§ =R |
e DMF, 16 h, 80 °C d & ' NN :
H
2a,3a 2b, 3b i H
| o H
x " R X:2=H,3=R i
/\/\/\/\/\po H
socl, « NaN; « Z "
———e
2,6-ditert butyl 4-methy! pyridine DMF, 16 h, 80 °C THFIH,0, 16 h, 75 °C 5
DCM, 3 h, 1t ¢ Ns = N POt
o " N=N

R
2c, 3¢ 2d, 3d 2,3

Methyl 3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate, 2a. Was synthesized as reported
previously.! To a reaction flask was added 5-(chloromethyl)-1,2,3-tris(dodecyloxy)benzene (9.34
g, 13.74 mmol), methyl 3,5 dihydroxybenzoate (0.66 g, 3.92 mmol), K.COs (2.17 g, 15.70
mmol), KI (0.20 g, cat), and DMF (100 mL). The reaction mixture was heated to 80 °C for 20
hours and was subsequently cool to room temperature, diluted with CHCI; (150 mL), washed
with H20 (2 x 50 mL)), and 1 M HCI (2 x 50 mL). The resulting organic layers were dried with
NayS0s, filtered, and concentrated under vacuum. The crude product was purified with column
chromatography (hexanes = hexanes:EtOAc 100:5), to afford pure 2a as a white solid (4.33 g,
76 %). 'H NMR (CDCls) § 7.31 (d, J = 2.3 Hz, 2H), 6.81 (t, J = 2.4 Hz, 1H), 6.63 (s, 4H), 4.96
(s, 4H), 3.99 (q, J = 6.6 Hz, 12H), 3.91 (s, 3H), 1.84 — 1.75 (m, 12H), 1.50 (q, J = 7.6, 7.1 Hz,
12H), 1.36 — 1.26 (m, 96H), 0.92 — 0.87 (m, 18H); 1*C NMR (CDCl3) 6 166.83, 159.96, 153.50,
138.29, 132.16, 131.49, 108.55, 107.39, 106.41, 73.56, 70.85, 69.30, 52.32, 32.14, 32.12, 30.55,
29.95, 29.93, 29.90, 29.85, 29.83, 29.81, 29.62, 29.59, 29.56, 26.34, 26.31, 22.87, 14.26;
MALDI-TOF (m/z): [M+Na]" calcd. for CoyH;5,0,0Na, 1476.22; found 1479.089.



Methyl 3.,4,5-tris((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate, 3a. As for 2a. Methyl 3,4,5
trihydroxybenzoate (0.33 g, 1.81 mmol), 5-(chloromethyl)-1,2,3-tris(dodecyloxy)benzene (4.00
g, 5.89 mmol), KoCOs (1.0 g, 7.25 mmol), KI (cat), 50 mL DMF. 3a was isolated as an off-white
solid (2.79 g, 73 %). 'H NMR (CDCIl3) 6 7.38 (s, 2H), 6.63 (s, 4H), 6.60 (s, 2H), 5.04 (d, J = 5.1
Hz, 6H), 3.93 (t, /= 6.6 Hz, 4H), 3.91 — 3.86 (m, 14H), 3.76 (t,J = 6.4 Hz, 3H), 1.77 — 1.69 (m,
18H), 1.49 — 1.40 (m, 18H), 1.32 — 1.26 (m, 144H), 0.88 (t, J= 6.7 Hz, 27H); 3*C NMR (CDCls)
0 166.72, 153.50, 153.24, 152.79, 142.78, 138.13, 138.08, 132.60, 131.88, 125.46, 109.88,
106.51, 105.98, 75.37, 73.61, 73.53, 71.91, 69.32, 69.14, 52.38, 32.18, 32.17, 30.66, 30.64,
30.05, 30.01, 30.00, 29.97, 29.94, 29.92, 29.90, 29.86, 29.81, 29.73, 29.69, 29.64, 29.62, 26.45,
26.41, 26.40, 22.92, 14.33; MALDI-TOF (m/z): [M+Na]" caled. for Ci37H242014Na, 2134.82;
found 2140.689.

(3,5-Bis((3.4,5-tris(dodecyloxy)benzyl)oxy)phenyl)methanol, 2b. In a reaction flask was
combined LiAlIH4 (0.60 g, 15.84 mmol) and THF (100 mL) at 0 °C, followed by slow addition of
2a (5.75 g, 3.96 mmol). The reaction mixture was then heated to 70 °C for 4 hours. Then the
reaction mixture was cooled to 0 °C before being quenched slowly with ice water. The solution
was then concentrated under reduced pressure, dissolved in CHCl3 (100 mL), and washed with 1
M HCI (2 x 50 mL), followed by being dried with Na>SOs, filtered, and concentrated under
pressure. 2b was isolated as a white solid (4.74 g, 84 %). 'H NMR (CDCl;) § 6.63 — 6.60 (m,
6H), 6.54 (t, J = 2.4 Hz, 1H), 4.90 (s, 4H), 4.62 (s, 2H), 3.97 (q, J = 6.3 Hz, 12H), 1.82 — 1.73
(m, 12H), 1.51 — 1.45 (m, 12H), 1.34 — 1.27 (m, 96H), 0.91 — 0.88 (m, 18H); '*C NMR (CDCl;)
0 160.30, 153.45, 143.77, 138.15, 131.91, 106.37, 105.79, 101.37, 77.43, 73.58, 70.62, 69.30,
65.27,32.12, 32.11, 30.53, 29.94, 29.92, 29.89, 29.88, 29.84, 29.83, 29.81, 29.62, 29.57, 29.55,
26.33, 26.31, 22.86, 14.26; MALDI-TOF (m/z): [M+Na]" caled. for Co3Hi64O9Na, 1448.23;
found 1451.045.



(3,4,5-Tris((3,4,5-tris(dodecyloxy)benzyl)oxy)phenyl)methanol, 3b. As for 2b. 3a (1.00 g,
0.48 mmol), LiAlH4 (0.06 g, 1.45 mmol), THF (25 mL). Isolated as a white solid (0.88 g, 88 %).
'"H NMR (CDCl5) 6 6.64 (d, J = 4.5 Hz, 8H), 4.95 (d, J = 9.5 Hz, 6H), 4.53 (s, 2H), 3.97 — 3.90
(m, 7H), 3.87 (t, J = 6.4 Hz, 8H), 3.77 (t, J= 6.3 Hz, 3H), 1.79 — 1.72 (m, 18H), 1.52 — 1.50 (m,
4H), 1.48 — 1.41 (m, 14H), 1.36 — 1.28 (m, 144H), 0.91 (t, J = 6.7 Hz, 27H); *C NMR (CDCl;) ¢
153.34, 153.13, 152.96, 137.83, 137.80, 137.62, 137.34, 133.00, 132.31, 106.66, 106.26, 105.67,
75.31, 73.46, 73.37, 71.54, 69.14, 68.95, 67.96, 65.07, 32.10, 30.60, 30.57, 29.98, 29.96, 29.94,
29.92, 29.87, 29.83, 29.79, 29.76, 29.69, 29.64, 29.61, 29.57, 29.56, 26.40, 26.38, 26.35, 26.31,
22.84, 14.20; MALDI-TOF (m/z): [M+Na]" calcd. for Ci36H242013Na, 2106.82; found 2112.689.

5,5'-(((5-(Chloromethyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(1,2,3
tris(dodecyloxy)benzene), 2¢. 2b (1.10 g, 0.77 mmol) was combined with 25 mL DCM and
cooled to 0 °C before adding 2,6-ditert butyl 4-methyl pyridine (0.47 g, 2.31 mmol), then SOCl
(0.17 mL, 2.31 mmol). The reaction was warmed to room temperature and stirred for 3 hours
under N> atm. The reaction mixture was then concentrated under vacuum, dissolved in CHCl3
(100 mL) and washed with 1 M HCI (2 x 50 mL). The organic layer was dried with Na;SO4 and
filtered before being concentrated under vacuum. 2¢ was isolated as a yellow solid (0.98 g, 88
%). '"H NMR (CDCls) 6 6.65 (s, 2H), 6.61 (s, 4H), 6.58 (s, 1H), 4.92 (s, 4H), 4.52 (s, 2H), 3.97
(q,J=6.1 Hz, 12H), 1.82 — 1.74 (m, 12H), 1.47 (t, J= 7.5 Hz, 12H), 1.34 — 1.27 (m, 96H), 0.89
(t, J = 6.8 Hz, 18H); C NMR (CDCl;) ¢ 160.33, 153.53, 139.73, 138.30, 131.67, 107.86,
106.51, 102.30, 73.64, 70.82, 69.38, 46.51, 32.16, 32.14, 30.56, 29.97, 29.95, 29.92, 29.87,
29.84, 29.65, 29.61, 29.58, 26.36, 26.33, 22.90, 14.31; MALDI-TOF (m/z): [M+Na]" calcd. for
Co3H163C10gNa, 1466.19; found 1469.005.
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5,5',5"-(((5-(Chloromethyl)benzene-1,2,3-triyl)tris(oxy))tris(methylene))tris(1,2,3-
tris(dodecyloxy)benzene), 3c. As for 2c. 3b (1.15 g, 0.56 mmol), 2,6-ditert butyl 4-methyl
pyridine (0.34 g, 1.69 mmol), SOCl; (0.13 mL, 1.69 mmol), CH>Cl> (25 mL). 3¢ was isolated as
a yellow solid (1.07 g, 91 %). 'H NMR (CDCls) 6 6.69 (s, 2H), 6.62 (d, J = 5.2 Hz, 6H), 5.00 (s,
4H), 4.97 (s, 2H), 4.47 (s, 2H), 3.95 (t, /= 6.5 Hz, 5H), 3.88 (t, /= 6.3 Hz, 10H), 3.77 (t,J=6.3
Hz, 3H), 1.78 — 1.71 (m, 18H), 1.50 — 1.43 (m, 18H), 1.33 — 1.27 (m, 144H), 0.89 (t, J = 6.2 Hz,
27H); *C NMR (CDCly) 6 153.37, 153.12, 153.06, 138.75, 137.97, 137.88, 133.11, 132.77,
132.01, 108.93, 107.16, 106.43, 105.82, 77.43, 75.32, 73.43, 73.36, 71.84, 69.15, 68.96, 58.30,
46.63, 37.45, 32.08, 32.07, 30.57, 30.54, 30.17, 29.95, 29.92, 29.89, 29.87, 29.84, 29.82, 29.79,
29.76, 29.73, 29.71, 29.63, 29.59, 29.54, 29.52, 29.50, 26.36, 26.32, 26.29, 22.81, 15.42, 14.19;
MALDI-TOF (m/z): [M+Na]" calcd. for Ci36H241C1012Na, 2124.78; found 2130.649.
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5,5'-(((5-(Azidomethyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(1,2,3-
tris(dodecyloxy)benzene), 2d. 2¢ (1.00 g, 0.69 mmol) was combined with NaN3 (0.13 g, 2.08
mmol), and 30 mL DMF and was heated at 70 °C for 16 hours. The reaction mixture was cooled
to room temperature and diluted in CHCl3 (100 mL) then washed with water (2 x 50 mL). The
organic layers were dried with Na>SOs, filtered, concentrated under vacuum, then the product
was precipitated out of cold MeOH. 2d was isolated as yellow solid (0.92 g, 92 %). 'H NMR
(CDCly) ¢ 6.61 (s, 4H), 6.59 (d, J = 2.2 Hz, 1H), 6.56 (d, J = 2.2 Hz, 2H), 4.92 (s, 4H), 4.27 (s,
2H), 3.99 — 3.93 (m, 12H), 1.81 — 1.73 (m, 12H), 1.49 — 1.44 (m, 12H), 1.34 — 1.26 (m, 96H),
0.90 — 0.86 (m, 18H); '3C NMR (CDCl;) 6 160.51, 153.56, 138.33, 137.83, 131.67, 107.41,
106.52, 102.07, 73.66, 70.84, 69.40, 55.09, 32.17, 32.15, 30.58, 29.99, 29.97, 29.93, 29.88,
29.85, 29.66, 29.62, 29.59, 26.37, 26.35, 26.32, 22.91, 14.33; MALDI-TOF (m/z): [M+Na]"
calced. for Co3H163N308Na, 1473.23; found 1476.045.
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5,5',5"-(((5-(azidomethyl)benzene-1,2,3-triyl)tris(oxy))tris(methylene))tris(1,2,3-
tris(dodecyloxy)benzene), 3d. As for 2d. 3¢ (1.50 g, 0.713 mmol), NaN3 (0.14 g, 2.14 mmol),
DMF (30 mL). 3d was isolated as a yellow solid (1.44 g, 96 %). '"H NMR (CDCls) § 6.64 (d, J =
2.2 Hz, 6H), 6.62 (s, 2H), 5.02 (s, 4H), 5.00 (s, 2H), 4.22 (s, 2H), 3.96 (t, J = 6.7 Hz, 5H), 3.90
(t, J=6.4 Hz, 10H), 3.80 (t, /= 6.3 Hz, 3H), 1.79 — 1.73 (m, 18H), 1.51 — 1.43 (m, 18H), 1.35 —
1.29 (m, 144H), 0.90 (t, J = 6.7 Hz, 27H); '3C NMR (CDCls) 6 153.47, 153.31, 153.20, 138.68,
138.05, 137.97, 132.86, 132.09, 131.19, 108.52, 106.81, 106.51, 105.82, 75.41, 73.53, 73.46,
71.96, 69.33, 69.25, 69.06, 55.33, 55.09, 32.15, 32.13, 30.63, 30.60, 30.01, 29.98, 29.96, 29.94,
29.91, 29.88, 29.86, 29.83, 29.80, 29.77, 29.69, 29.65, 29.60, 29.58, 29.56, 26.42, 26.38, 26.35,
22.88, 14.27; MALDI-TOF (m/z): [M+Na]" calcd. for Ci3sH241N3012Na, 2131.82; found
2137.689.
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(9-(1-(3,4,5-Tris(dodecyloxy)benzyl)-1H-1,2,3-triazol-4-yl)nonyl)phosphonic acid, 1.
Compound 1 was synthesized as reported previously.? 5-(azidomethyl)-1,2,3-
tris(dodecyloxy)benzene (1.7 g, 2.50 mmol), 10-undeconoic phosphonic acid (0.5 g, 2.74 mmol),
CuSO4-5H,0 (cat), sodium ascorbate (cat), THF (3 mL), and H>O (0.5 mL) were combined and
stirred for 12 hours at 75 °C with microwave irradiation. The solution was diluted with CHCI3
(100 mL) and washed with 4 M HCI (2 x 50 mL) then 1 M HCI (50mL), before being dried with
NaxSOs, filtered, and concentrated under vacuum. The crude product was diluted in a small
amount of CHCl3 and precipitated out of cold MeOH as pure 1 as a white powder, yield (1.58 g,
69 %). '"H NMR (CDCls) 6 10.43 (s, 2H), 7.24 (s, 1H), 6.44 (s, 2H), 5.36 (s, 2H), 3.91 (q, J= 7.0
Hz, 6H), 2.68 (t, /= 7.8 Hz, 2H), 1.79 — 1.71 (m, 8H), 1.65 — 1.59 (m, 4H), 1.49 — 1.41 (m, 8H),
1.33 — 1.25 (m, 54H), 0.87 (t, J = 6.7 Hz, 9H); *C NMR (CDCl;) § 153.79, 148.53, 138.74,
129.50, 121.16, 106.94, 73.67, 69.48, 54.85, 32.14, 30.55, 30.35, 30.22, 29.96, 29.95, 29.92,
29.90, 29.88, 29.86, 29.82, 29.65, 29.60, 29.58, 29.40, 29.18, 29.04, 29.00, 28.90, 27.08, 26.33,
26.32, 25.96, 25.46, 22.90, 22.40, 22.36, 14.31; MALDI-TOF (m/z): [M+Na]" calcd. for
CsaH100N3O6PNa, 940.724; found 941.825.
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(9-(1-(3,5-Bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzyl)-1 H-1,2,3-triazol-4-
yl)nonyl)phosphonic acid, 2. As for 1, 2d (0.50 g, 0.34 mmol), 10-undeconoic phosphonic acid
(0.09 g, 0.38 mmol), CuSO4-5H>0 (cat), sodium ascorbate (cat), THF (3 mL), H>O (0.5 mL), 16
hours at 75 °C under microwave irradiation. Isolated 2 as a yellow solid (0.35 g, 61 %). 'H NMR
(CDCl3) 0 7.23 (s, 1H), 6.58 (s, SH), 6.50 (s, 2H), 5.40 (s, 2H), 4.86 (s, 4H), 3.98 — 3.92 (m,
12H), 2.67 (t, J = 8.1 Hz, 2H), 1.82 — 1.71 (m, 16H), 1.65 — 1.61 (m, 2H), 1.49 — 1.42 (m, 14H),
1.35 — 1.26 (m, 106H), 0.89 — 0.86 (m, 18H); *C NMR (CDCl;) 6 160.57, 153.47, 148.62,
138.19, 136.86, 131.39, 121.23, 107.26, 106.37, 102.17, 100.12, 73.58, 70.76, 69.27, 54.47,
32.12, 32.10, 30.53, 29.94, 29.92, 29.89, 29.84, 29.81, 29.62, 29.60, 29.58, 29.55, 29.37, 29.20,
29.04, 28.87, 2632, 2544, 22.87, 14.28; MALDI-TOF (m/z): [M+Na]" calcd. for
Ci104H184N3011PNa, 1705.36; found 1708.284.

(9-(1-(3,4,5-Tris((3,4,5-tris(dodecyloxy)benzyl)oxy)benzyl)-1 H-1,2,3-triazol-4-
yDnonyl)phosphonic acid, 3. As for 1, 3d (0.30 g, 0.14 mmol), 10-undeconoic phosphonic acid
(0.04 g, 0.16 mmol), CuSO4-5H>0 (cat), sodium ascorbate (cat), THF (3 mL), HO (0.5 mL), 20
hours at 75 °C under microwave irradiation. Isolated 3 as a yellow solid (0.20 g, 62 %). '"H NMR
(CDCl3) 0 7.17 (s, 1H), 6.58 (d, J = 13.8 Hz, 8H), 5.35 (s, 2H), 4.95 (s, 6H), 3.92 (t, J = 6.5 Hz,
5H), 3.86 (t, /= 6.4 Hz, 10H), 3.74 (t, /= 6.4 Hz, 3H), 2.68 (s, 2H), 1.74 — 1.63 (m, 21H), 1.48 —
1.39 (m, 21H), 1.31 — 1.24 (m, 154H), 0.88 (t, J = 6.8 Hz, 27H); 3*C NMR (CDCl;) 6 153.54,
153.50, 153.28, 139.31, 138.08, 138.03, 132.75, 131.85, 129.44, 108.77, 106.41, 105.87, 75.44,
73.61, 73.54, 71.96, 69.32, 69.11, 32.17, 32.16, 30.67, 30.66, 30.05, 30.03, 30.01, 29.98, 29.95,
29.92, 29.88, 29.83, 29.75, 29.71, 29.68, 29.63, 29.61, 29.04, 28.92, 28.77, 28.66, 26.48, 26.45,
26.42, 22.92, 14.32; MALDI-TOF (m/z): [M+Na]" calcd. for Ci47H262N3015PNa, 2363.965;
found 2369.834.



Additional Figures and Microscopy
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Figure S1. TGA of the NCs functionalized with OA and the dendrimer ligands, highlighting

successful ligand exchange, due to change in observed thermal decomposition of ligands from
about 190 °C to above 300 °C.
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Figure S2. TEM images of self-assembled mono or bilayers on various subphases for each
dendritic ligand.
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Figure S3. 2D GISAXS images of self-assembled mono or bilayers on various subphases for
each dendritic ligand. Data was converted into reciprocal-space, including correction for Ewald
sphere curvature. Data is displayed as the (gx, ¢-) projection (where the ¢, component is ignored
for plotting purposes).
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Figure S5. Angle (azimuthal) linecuts extracted from GISAXS for (a) OA@NC, (b) 1@NC, (c)
2@NC, and (d) 3@NC. Data was extracted along the angular direction at a constant ¢
corresponding to the most intense peak along g (g of 0.110 A™! to 0.130 A™!, depending on
material).
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Figure S6. Large area view of bilayer film of 1@NC.
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Figure S7. TEM tilt tomography of multilayer film of 3@NC.
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Figure S8. TEM tilt tomography of bilayer film of 2@NC.
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Scaling Theory for Branching Ligand Architecture

We provide a detailed derivation of a generalized scaling law for branching graft architecture.
We start with the scaling relations for the end-to-end distance for non-grafted branching chains
in both a good and theta solvent as shown in Eq. 1.1 and 1.2, respectively.>*

R ~ N5/2(d+2) y—1/2(d+2),,1/(d+2) (L)

R ~ N7/4@+1) g(5-2d)/4(d+1)
(1.2)

where R is the end-to-end distance, N is the chain length, A is the branching activity, v is the
excluded volume of the chain’s statistical segment, and d is the dimensionality. Here, A is
defined such that NA = 1 converges to the linear chain limit. We are interested in the 3D limit to
capture our experimental systems. For d = 3, Eq. I.1 and 1.2 become:

R ~ N1/24-1/10,1/5 (L.3)

R ~ N7/16 4-1/16 (1.4)
As a consistency check, in the limit of a linear chain, A ~ N ' and Eq. 1.3 and 1.4 converge to the

well known good and theta scaling behavior for linear chains — R ~ N**v!* and R ~ N,

respectively.

Using Eq. 1.3 and 1.4, we now define a parameter a = Rgood/Rinera that measures how much a chain
swells relative to its equilibrium conformation when placed in a good solvent environment.

a’ ~ NY2y[NA]-3/16 (L.5)

Again, Eq. 1.5 converges to its linear chain analog of & ~ N'?v when NA = 1. In general, values
for NA are always greater than 1 for branching chains. Thus, by inspection, it is immediately
clear that branching reduces the amount a chain of length N can swell relative to its linear
counterpart. This is a direct manifestation of junctions along a branching chain’s backbone that
place physical constraints on how much a local segment can swell.

The above results are for free chains in solution. To bridge Eq. I.1 - L5 to the grafting limit, we
utilize an analogous scaling argument employed by Vo et al.’ for linear grafts on the surface of
anisotropic particles. Again, we define three relevant regimes for chain behavior as a function of
the radial distance » away from the grafting surface — swollen (semi-dilute), un-swollen (theta),
and stretched (flat-brush).

We start with the radial region around the core where chains are swollen. In this limit, the chain
swells due to favorable interactions with the solvent and we can apply Eq. 1.5 in conjunction with
the constraint that local and global monomer volume fraction within a layer » must be equal to
give:

E(r) ~ rf~1/2Q3/2 (1.6)
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R 2 —1,,-2/50)3 A1/5
n(r) (b) S Q°A (18)

-y —1
W(r) ~ (1) F/2,72/50)=3/2 A 1/5

b (1.9)

where ¢ is the correlation blob size, # is the number of monomers, i is the volume fraction, b is
the kuhn length, and f'is the number of grafts and is related to the grafting density o via the
relation o ~ f /12 with r, representing the in-sphere radius of the shape of interest. In order to
keep Eq. 1.6 - 1.9 generalized for an arbitrary core shape, we introduced the parameter Q that
defines both the shape and specific position on the particle surface.

As we move radially inward, there exists a cross-over value of 7y where the local monomer
concentration is high enough that no additional solvent can penetrate into the brush layer. At this
point, chains can no longer swell due to solvent interaction and must relax back to their theta
conformation. The transition value of ¢ can be directly solved for by setting a(r) ~ 1 in Eq. 1.7 to
give

rg ~ bfY2y=7/5Q073/2p1/5 (1.10)

Enforcing a(r) = 1 also enables us to derive the analog of Egs. 1.6 and 1.8 - 1.9 for the theta
regime:

&) ~ rf Q7 (L11)

n(r) N (%)16/7 j'_8/7924/7A1/7 (1'12)

-\ —8/7 5 /14 5 /12
LJ/'(T') ~ (%) f.l/14Ql\)/14AJ./7 (I 13)

Moving further radially inward, we will eventually hit another cross-over value of 7. where the
chains are so confined that they are forced to fully extend to an all-trans conformation. In this
fully-stretched limit, the monomer concentration becomes uniform. Setting y(r) ~ 1 in Eq. [.13
allows for us to solve for . to be

1, ~ bfi2Q=3/21/5 (1.14)

Knowing y(r) ~ 1 and a(r) ~ 1 trivially makes &(r) ~ b and n(r) ~ 1 for the stretched regime.
Table I.1 and Eq. .15 provide a summary of the derived scaling behavior in the various regimes
along with the cross-over distances.
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Table SI 1: Scaling Behavior for Anisotropic Grafting

Swollen Theta Stretched
&) rﬂ3/2f_1/2 TQ3/2f_1/2 b
n(r) r2f=1y=2/503 A1/5p=2 716/7 £=8/7()24/7 g1/7p=16/7 1
w(r) ro1f1/2=2/50=3/2 g1/5 1517 £5/14)15/14 41/7p5/7 1
o(r) r1/8f—1/16v7/4093/16A—1/40b—1/8 1 1
Swollen: r > bfl/zv‘7/50‘3/2/11/5

Unswollen:  pf/20=3/2p1/5 < r < bfL/2y=7/5Q73/21/5 (1.15)
Core: r < bf1/29‘3/2/11/5

In order to predict the corona size that results from grafting we integrate the w(r) across all
relevant regimes as follows

Nfb3] P (r)d7
0

where N is the total chain length, R is the center-to-chain distance of interest, and d~r ~ r*Q3dr.
Expanding over the relevant regimes gives:

Te Te R )
N[ Nf 208 dr +f b‘sﬁfﬁ/1'1957/1'1'1'9/7(151' Jr-/ bf1/21/_2/593/21\1/51'({7'
0 Te To (1.16)

Integrating and grouping terms give
R~ NB2f1/2,2/50=3/2\~1/5 32 13/14,,2/50)=6/T A9/35 (948/? _ Uflﬁ/!’))+b2'f1/2/597.‘£!\71/5 (Ufm/s _ 1) (L17)

We are interested only in the dominant term in N. Dropping all other terms gives
R ~ Nl/zbf1/4V1/SQ_3/4A_1/1O (118)

In its current form, Eq. 1.18 is hard to directly compare with the linear grafting result. To better
facilitate comparison, we can rewrite it as:

1/10

5 15 N b1 rpol/?
R~ 1/5 ]/ubZ/S v e
o7 Y Qr,| | VA2

(1.19)
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For a linear chain, the corona size is:

r 1 13/5
R~ 1,V /31/51205 [ﬁ ﬁ]
To

(1.20)

1/10
in the branching result. Note here that

roal/?
NAQ3/2]
convergence to the linear limit is now convoluted by both the effect of grafting ( 7,6"?) and of
the core shape ( Q*?). As a result, rather than NA ~ 1 resulting in a linear chain in the free chain
limit, we get NA ~ r,6"2Q 2. Eq. 1.19 gives us a way to directly compare the effect of
branching versus linear chains. From Eq. 1.5, we noted that branching alters the degree of
swelling a chain experiences. This is analogous to rescaling the kuhn length b of the chain. Thus,
we can group the extra factor together with the #*° dependency in both Eq. 1.19 and 1.20 to give

By inspection, we gain a factor of [

roal/? 1/4
NAQB/?]

bbr‘am::h ~ bﬁ-in.nm‘ [

(1.21)

Setting Q ~ 1 to remove the effect of core shape gives the kuhn length rescaling employed in the
main text. Lastly, we can define the free energy for the chain

F R? NS
KT~ NTGA-1/16 TV QR
S (2R) (1.22)

This free energy can then be used as a Boltzmann weighting factor to determine the probability P
of grafting to various locations on the surface of any arbitrarily defined anisotropic particle. Eq.
.23 defines the partitioning probability and will be heavily utilized to understand how corona
morphology drives self-assembly as well as for mapping our theoretical predictions to
simulation.

exp(—F/kT)

P T exo— AT a7 (1.23)
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Mapping of Scaling Prediction to Simulation

Here, we provide an example of how we mapped the theoretical scaling results from the previous
section to a set of parameters for use in simulation. We first compute the partitioning probability
of ligands on the surface of the nanoplate. This is performed via generating grid points on the
particle surface and computing P from Eq. 1.23 at each point. A set of potential mean forces was
then computed between two grafted particles using P as an additional weighting probability of
for interactions between each point on the particles’ surface. While exact, creating a unique bead
type for each point the particle surface become prohibitively expensive for a molecular dynamics
simulations (Fig. S9a). In order to reduce the complexity of the simulation model, we categorize
the continuous probability distribution into 3 distinct group based on the value, P, of the scaled
grafting probabilities: low for P € [0,0.33), medium for P € [0.33,0.5), and high for P € [0.5,1]
(Fig. S9b). Potential mean forces for surface points falling within each probability range are then
averaged together to give an effective potential of interaction that can be readily employed in
simulation (Fig. S9c¢). We then create a rigid body of smaller surface beads that sit on the
nanoplate and attribute interaction strengths to each bead based on the bead type (red, blue, or
green) for used in simulation. Standard mixing rules apply for cross interactions between particle

types.

a
1
= —Low
—Medium
0.5 —High
0 L
§-O.5
b
-1
-1.5
) .
0 0.2 0.4 0.6 0.8

Figure S9. Mapping of Scaling Theory to Simulation. a). Original partitioning probabilities for
ligand to surface nanoplate. b). Categorization of surface points based on bracketing range for
partitioning probabilities (low: red, medium: blue, and high: green). ¢). Averaged potential mean
force computed from surface point interactions for each bracketing range used simulation.
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