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y = 1.0311x + 0.0042
R2 = 0.9771
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Figure S1.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCHO. The values of the two 

parameters have been obtained using the Hirshfeld population analysis.
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y = 1.3426x + 0.0118
R2 = 0.9549
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Figure S2.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHNO2. The values of the two 

parameters have been obtained using the Hirshfeld population analysis.

y = 1.0489x + 0.002
R2 = 0.9978
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Figure S3.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCN. The values of the two 

parameters have been obtained using the Hirshfeld population analysis.
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y = 1.0186x + 0.0003
R2 = 0.9998
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Figure S4.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCH3. The values of the two 

parameters have been obtained using the Hirshfeld population analysis.
 

y = 0.9996x - 0.0014
R2 = 0.9286
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Figure S5.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHOCH3. The values of the two 

parameters have been obtained using the Hirshfeld population analysis.
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y = 0.999x + 0.0044
R2 = 0.9198
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Figure S6.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCl. The values of the two 

parameters have been obtained using the population analysis of QTAIM.

y = 1.0726x + 0.003
R2 = 0.9411
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Figure S7.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCHO. The values of the two 

parameters have been obtained using the population analysis of QTAIM.

y = 0.8305x + 0.0175
R2 = 0.9755
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Figure S8.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHNO2. The values of the two 

parameters have been obtained using the population analysis of QTAIM.
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y = 1.1334x + 0.0058
R2 = 0.9975
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Figure S9.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCN. The values of the two 

parameters have been obtained using the population analysis of QTAIM.

y = 1.0442x - 0.001
R2 = 0.9944
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Figure S10.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCH3. The values of the two 

parameters have been obtained using the population analysis of QTAIM.

y = 1.0454x + 0.0013
R2 = 0.813
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Figure S11.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHOCH3. The values of the two 

parameters have been obtained using the population analysis of QTAIM.
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y = 1.4206x + 0.0132
R2 = 0.9248
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Figure S12.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCl. The values of the two 

parameters have been obtained using the Mulliken population analysis.

y = 1.3195x + 0.005
R2 = 0.9567
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Figure S13.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCHO. The values of the two 

parameters have been obtained using the Mulliken population analysis.

y = 1.3x + 0.0064
R2 = 0.9472
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Figure S14.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHNO2. The values of the two 

parameters have been obtained using the Mulliken population analysis.
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y = 0.9894x - 0.0017
R2 = 0.9921
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Figure S15.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCN. The values of the two 

parameters have been obtained using the Mulliken population analysis.

y = 0.9974x - 0.0004
R2 = 0.9997
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Figure S16.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCH3. The values of the two 

parameters have been obtained using the Mulliken population analysis.

y = 0.9738x - 0.0032
R2 = 0.7671
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Figure S17.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHOCH3. The values of the two 

parameters have been obtained using the Mulliken population analysis.
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y = 1.0093x + 0.0062
R2 = 0.9383
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Figure S18.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCl. The values of the two 

parameters have been obtained using the Natural Population Analysis.

y = 1.306x - 0.0046
R2 = 0.8711
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Figure S19.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCHO. The values of the two 

parameters have been obtained using the Natural Population Analysis.

y = 1.3134x + 0.0032
R2 = 0.9198
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Figure S20.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHNO2. The values of the two 

parameters have been obtained using the Natural Population Analysis.
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y = 1.0498x + 0.0013
R2 = 0.999
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Figure S21.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCN. The values of the two 

parameters have been obtained using the Natural Population Analysis.

y = 1.034x + 1E-04
R2 = 0.9996
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Figure S22.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHCH3. The values of the two 

parameters have been obtained using the Natural Population Analysis.

y = 1.0021x - 0.0038
R2 = 0.8478
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Figure S23.  values calculated with the first model (Eq. 10) vs.  calculated max
AN max

AN
with the second model (Eq. 25) for the molecule CH2CHOCH3. The values of the two 

parameters have been obtained using the Natural Population Analysis.
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y = 0.03x + 0.0002
R2 = 0.9858
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Figure S24. Linear regression  (Eq. 11, first model) versus  (Eq. 24, second A Af
model) for the molecule CH2CHCHO. Both parameters have been obtained using the 

Hirshfeld population analysis.

y = 0.0434x + 0.0002
R2 = 0.9775
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Figure S25. Linear regression  (Eq. 11, first model) versus  (Eq. 24, second A Af
model) for the molecule CH2CHNO2. Both parameters have been obtained using the 

Hirshfeld population analysis.
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y = 0.0366x - 8E-05
R2 = 0.9998
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Figure S26. Linear regression  (Eq. 11, first model) versus  (Eq. 24, second A Af
model) for the molecule CH2CHCN. Both parameters have been obtained using the 

Hirshfeld population analysis.

y = 0.0138x - 2E-05
R2 = 0.9996
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Figure S27. Linear regression  (Eq. 11, first model) versus  (Eq. 24, second A Af
model) for the molecule CH2CHCH3. Both parameters have been obtained using the 

Hirshfeld population analysis.
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y = 0.0091x - 6E-06
R2 = 0.9445
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Figure S28. Linear regression  (Eq. 11, first model) versus  (Eq. 24, second A Af
model) for the molecule CH2CHOCH3. Both parameters have been obtained using the 

Hirshfeld population analysis.
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Figure S29.  values calculated with the second model (Eq. 24) vs.  parameter Af A
calculated with the first model (Eq. 8) for the molecule CH2CHCHO. The values of the 

two parameters have been obtained using the Hirshfeld population analysis.
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Figure S30.  values calculated with the second model (Eq. 24) vs.  parameter Af A
calculated with the first model (Eq. 8) for the molecule CH2CHNO2. The values of the 

two parameters have been obtained using the Hirshfeld population analysis.

y = 0.4229x -0.9924
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Figure S31.  values calculated with the second model (Eq. 24) vs.  parameter Af A
calculated with the first model (Eq. 8) for the molecule CH2CHCN. The values of the 

two parameters have been obtained using the Hirshfeld population analysis.
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Figure S32.  values calculated with the second model (Eq. 24) vs.  parameter Af A
calculated with the first model (Eq. 8) for the molecule CH2CHCH3. The values of the 

two parameters have been obtained using the Hirshfeld population analysis.
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y = 0.4786x -1.0056

R2 = 0.9372
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Figure S33.  values calculated with the second model (Eq. 24) vs.  parameter Af A
calculated with the first model (Eq. 8) for the molecule CH2CHOCH3. The values of the 

two parameters have been obtained using the Hirshfeld population analysis.

y = 0.0159x2 + 0.3312x + 0.9654
R2 = 0.9447
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Figure S34. Parabolic regression  versus  for the molecule CH2CHCHO.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = 0.032x2 + 0.8138x + 1.844
R2 = 0.9602
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Figure S35. Parabolic regression  versus  for the molecule CH2CHNO2.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.

y = 0.6007x2 + 3.2929x + 4.3769
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Figure S36. Parabolic regression  versus  for the molecule CH2CHCN.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = 17.068x2 + 14.616x + 3.0459
R2 = 0.9704
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Figure S37. Parabolic regression  versus  for the molecule CH2CHCH3.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.

y = -0.2006x2 - 0.1123x + 0.7185
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Figure S38. Parabolic regression  versus  for the molecule CH2CHOCH3.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = -0.4372x2 - 2.6985x - 3.7194
R2 = 0.9924
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Figure S39. Parabolic regression  versus  for the molecule CH3CHSH.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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Figure S40. Parabolic regression  versus  for the molecule CH3COOCH3.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = -0.1358x2 - 1.1761x - 1.8614
R2 = 0.9591
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Figure S41. Parabolic regression  versus  for the molecule CH3COOH.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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Figure S42. Parabolic regression  versus  for the molecule CH2CHNH2.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = -0.0371x2 - 0.6517x - 1.232
R2 = 0.971
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Figure S43. Parabolic regression  versus  for the molecule CH2CHOH.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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Figure S44. Parabolic regression  versus  for the molecule CH3CONH2.   AA ff 2
A1

The values of the parameters have been obtained using the Hirshfeld population 
analysis.
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y = 0.014x-1.0235

R2 = 0.9999
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Figure S45. Electrophilicities  versus the local parameter  for the CH2CHCHO A A
molecule. We have used the Hirshfeld population analysis in both cases.
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Figure S46. Electrophilicities  versus the local parameter  for the CH2CHNO2  A A
molecule. We have used the Hirshfeld population analysis in both cases.
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R2 = 0.9998

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

Figure S47. Electrophilicities  versus the local parameter  for the CH2CHCN A A
molecule. We have used the Hirshfeld population analysis in both cases.
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Figure S48. Electrophilicities  versus the local parameter  for the CH2CHCH3 A A
molecule. We have used the Hirshfeld population analysis in both cases.
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y = 0.0043x-0.9962

R2 = 0.9927
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Figure S49. Electrophilicities  versus the local parameter  for the CH2CHOCH3 A A
molecule. We have used the Hirshfeld population analysis in both cases.
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y = 0.0837x - 6E-05
R2 = 1
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Figure S50. Atomic values  versus local parameter  for the CH2CHCHO A max
AN

molecule using the Hirshfeld population analysis.

y = 0.1002x + 4E-05
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Figure S51. Atomic values  versus local parameter  for the CH2CHNO2 A max
AN

molecule using the Hirshfeld population analysis.
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y = 0.0873x - 9E-06
R2 = 0.9999
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Figure S52. Atomic values  versus local parameter  for the CH2CHCN A max
AN

molecule using the Hirshfeld population analysis.

y = 0.057x - 7E-06
R2 = 0.9995
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Figure S53. Atomic values  versus local parameter  for the CH2CHCH3 A max
AN

molecule using the Hirshfeld population analysis.
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y = 0.0456x + 1E-05
R2 = 0.9982
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Figure S54. Atomic values  versus local parameter  for the CH2CHOCH3 A max
AN

molecule using the Hirshfeld population analysis.
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Figure S55. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCl  r

molecule. 

Figure S56. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCl  r

molecule. 
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Figure S57. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCHO  r

molecule.

Figure S58. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCHO  r

molecule.
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Figure S59. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHNO2  r

molecule.

Figure S60. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHNO2  r

molecule.
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Figure S61. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHNO2  r

molecule.

Figure S62. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCN  r

molecule.



S30

Figure S63. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCN  r

molecule.

Figure S64. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCN  r

molecule.
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Figure S65. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCH3  r

molecule.

Figure S66. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCH3  r

molecule.
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Figure S67. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHCH3  r

molecule.

Figure S68. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHOCH3  r

molecule.
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Figure S69. Left) Fukui function  calculated with a parabolic   expansionQuadraticrf
approximation (Eq. 23) and right) hardness function  (Eq. 13) for the CH2CHOCH3  r

molecule.
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APPENDIX I. Justification of some relationships between parameters of models 1 
and 2.

In this appendix, some expressions used in comparisons of the main text will be 

justified. Starting from the model 1 and truncating from the quadratic term we obtain 

the expression (A1), this approximation is clearly very rough, for that reason it will only 

be used to justify the correlations studied in this work.

(A1)       rrrr 20

2
1  E

From here we can obtain:

(A2)         





 

2maxmax0

2
1 rrrr 

From model 2, truncating from the first term, we can obtain the expression (A3). This 

approach is also very crude and, as the previous one, it will only be used to justify the 

correlations studied in this work.

(A3)    max
max Nf  rr

Deriving (A1) we obtain:

(A4)   rr   0

And from here we get:

(A5)   rr max00  

And clearing:

(A6)   r
r




0
max 

Reordering (A2):

(A7)           





  rrrrr maxmaxmax0

2
1 

Substituting two terms  for  and a third for  we obtain: rmax   maxNf r  r 0

(A8)           





  rrrrr  0

maxmax
0

2
1 NfNf

and clearing:

(A9)     rrr fNf   max
0

2
1

Now, we start from:
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(A10)     2model1model maxmax rr  

that is a reasonable starting point. Substituting the expressions  previously  rmax

obtained:

(A11)    max

0

Nf  r
r



Reordering:

(A12)   r
r

f
N







 1
max

0

Finally, clearing:

(A13)   r
r

f
 

If we start from (A2) and take into account (A6), replacing and operating we get: 

(A14)   
     

 2

2020

2
1

r
r

r
r





 

Simplifying:

(A15)   
 r

r



2

20



If we combine (A6) and (A2) and we operate we obtain:

(A16)         






















2max
max

0
max0

2
1 r

r
rr 




Finally, simplifying and operating we obtain:

(A17)   rr max
0

2
 
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APPENDIX II. Summary of the nomenclature and definitions.

: Fukui function. It is defined as: rf

   (A18)   















N
rrf

 fk
+: atomic index: condensed-to-atom Fukui function for the “k” atom (nucleophilic 

attack)

 fk
-: atomic index: condensed-to-atom Fukui function for the “k” atom (electrophilic 

attack) 

, atomic index: condensed-to-atom Fukui function for the “k” atom for neutral 0
kf

(or radical) attack.

: global electrophilicity

: condensed Philicity to the “k” atom (electrophilic attack)
k

: condensed Philicity to the “k” atom (nucleophilic attack)
k

: global electronic chemical potential (negative of the electronegativity). 

Calculated as:

 (A19)


 











N
E

: atomic hardness calculated for the neutral molecule.000 ,, kBA  

: atomic hardness calculated for the cation.
kBA  ,,
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: atomic hardness calculated for the anion.
kBA  ,,

: global chemical hardness. Calculated as:

 (A20)


 










 2

2

N
E

: Global charge variation when the neutral molecule turns into a cation.N

: Global charge variation when the neutral molecule turns into an anion.N

: global maximum amount of electron charge.maxN

: atomic maximum amount of electron charge for the A atom.max
AN

: global total energy decrease.minE

 and  correspond to the Kohn–Sham one-electron eigenvalues for the H L

HOMO and the LUMO.

s(r): softness function. It is defined as:

  (A21)   
















rrs

: condensed-to-atom softness (nucleophilic, electrophilic  0, orsk 

and attack).

: atomic parameter which represents the coefficient of the cubic term in A

the cubic approximation. It is defined as: 
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  (A22)
0

3

3














NA

A
A N

E


