Supplementary Information

Atomic layer deposition of a Sb₂Se₃ Photo-absorber Layer using Selenium Dimethyldithiocarbamate as new Se precursor

Neha Mahuli^a, Debabrata Halder^b, Ankan Paul^b and Shaibal K Sarkar^c

^aCentre for Research in Nanotechnology and Science, ^cDepartment of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400 076 Mumbai, India

^bSchool of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, 700 032 Kolkata, India.

SI-1: Literature review of Se precursors investigated for metal selenide ALD

Sr.	Se Precursor	Vapor	Decompos	Safety	Availability	Referen	Note
No		pressure	ition temp	quotient		ce	
1.	H ₂ Se	High		Extremely	Limited	1,2	NA
		(gaseous		toxic and	(due to		
		precursor		flammable	toxicity)		
2.	Diethylseleniu	NA	Decompos	Extremely	Commercial	3	Not a ideal ALD precursor.
	$m + H_2$		ed Se	toxic and	ly available		Limited ALE report.
			vapors	flammable	but with		Not suitable for most
			only		limited		exchange reaction with most
					usage		often used metal precursors
3.	$Se + H_2$	NA	NA	Extremely	Commercial	4	Not an ideal ALD precursor.
				toxic and	ly available		Limited ALE report.
				flammable	but with		Not suitable for most
					limited		exchange reaction with most
					usage		often used metal precursors
4.	(R ₃ Si) ₂ Se	Data not	Data not	Data not	Commercial	5,6	Lab scale synthesis reported
		available	available	available	ly NOT		with 83% yield.
					available		
5.	Selenium	Low, solid	200°C	NO, unless	YES	This	
	Dimethyldithi	precursor		exposed to		report	
	ocarbamate			large amount			

SI-2: Substrate preparation:

Commercially available TEC 7 fluorine doped tin oxide (FTO) coated conducting glass substrates (from Dyesol, Australia) are used as substrates for ex-situ measurement purposes. The substrates are ultrasonically cleaned in acetone, alconox solution, DI water and isopropyl alcohol (IPA) sequentially for 15 min each. Dense TiO_2 (d- TiO_2) blocking layer is then spin coated at the spin program of 2500 rpm for 60 sec and then sintered in air at 500°C for 1 hr followed by natural cooling. The solution used for d- TiO_2 spin coating is prepared in two steps where step one contains 369 μ L of TTIP to 2.53 mL of IPA stirred vigorously for 5 min. In the second step, a solution of 35 μ l HCl in 2.53 mL of IPA is then added dropwise and stirred for 2 hours before spin coating on the FTO substrates. A mesoporous TiO_2 (p- TiO_2) is then spin coated on d- TiO_2 layer using a commercially available 30 NRD titania paste (from Dyesol, Australia) where the paste is diluted in an anhydrous ethanol (from Sigma Aldrich) in 1:3 weight ratio and spin coated at 1000 rpm for 60 sec. The samples are then sintered again in air at 500°C for 1 hr followed by natural cooling.

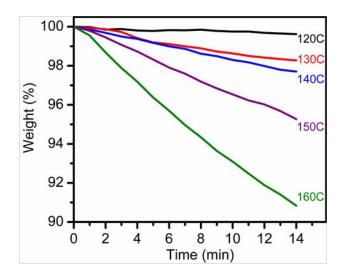


Figure SI-1: Isothermal TGA data for SDMDTC in N_2 ambience at different temperatures namely 120°C, 130°C, 140°C, 150°C and 160°C.

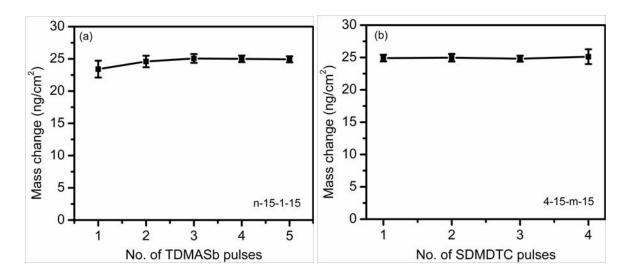
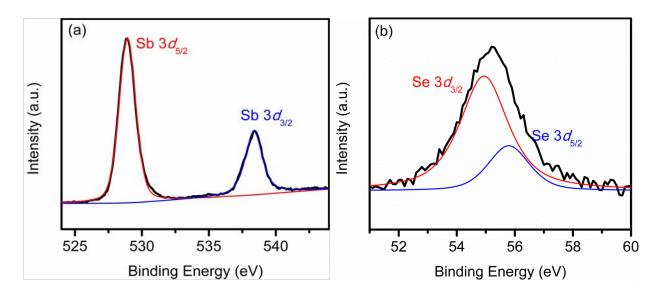



Figure SI-2: Mass changes versus precursor exposures of (a) TDMASb and (b) SDMDTC for self-saturation studies during Sb_2Se_3 deposition.

Figure SI-2(a) represents the mass gain per cycle as a function of TDMASb exposure where single pulse of 1 sec is kept constant in the SDMDTC half cycle. The surface sites are seen to saturate completely with minimum of 3 TDMASb exposures of 1 sec each. However, growth rate seems to saturate with a single exposure of 1 sec of SDMDTC in the second half cycle as shown in figure SI-2(b). Hence, 3 exposures of TDMASb and single exposure of SDMDTC are required to saturate the surface reactions for each ALD cycle producing a steady state mass gain of ca. 25 ng/cm^2 . This corresponds to the growth rate of ca. 0.28 Å/cyl as the saturated growth of Sb₂Se₃.

Figure SI-3: Deconvolution of high resolution core scan of (a) Sb 3d and (b) Se 3d for as-deposited samples.

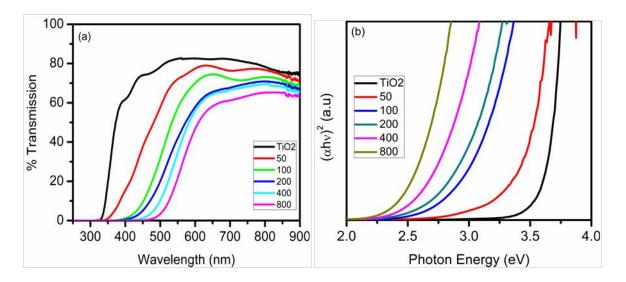


Figure SI-4: (a) Optical transmission spectra of bare and ALD Sb_2Se_3 coated TiO_2 films at 150°C and (b) the corresponding Tauc plot with n=2 for direct band gap calculations.

SI-7: Urbach energy calculation:

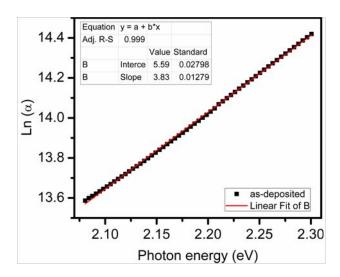


Figure SI-5: Linear fitting curve for the Urbach energy calculation of as-deposited Sb₂Se₃ ALD grown films.

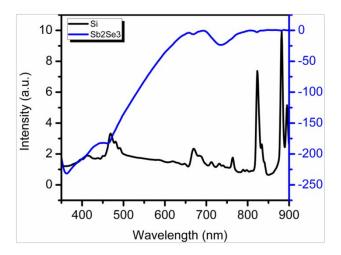


Figure SI-6: Xe light spectra measured by Si detector (black) and Sb_2Se_3 SPS spectra (blue) under the monochromatic light in the wavelength range of 900-300 nm.

REFERENCES

- Browning, R.; Kuperman, N.; Moon, B.; Solanki, R. Atomic Layer Growth of InSe and Sb₂Se₃ Layered Semiconductors and Their 1. Heterostructure. Electronics 2017, 6 (2), 27.
 - Hsu, C. T. Epitaxial Growth of II-VI Compound Semiconductors by Atomic Layer Epitaxy. Thin Solid Films 1998, 335 (1), 284-291.
- 2. 3. Kimura, R.; Konagai, M.; Takahashi, K. Atomic Layer Epitaxy of ZnSe on GaAs(100) by Metalorganic Molecular Beam Epitaxy. Journal of Crystal Growth 1992, 116 (3), 283-288.
- Guziewicz, E.; Godlewski, M.; Kopalko, K.; Łusakowska, E.; Dynowska, E.; Guziewicz, M.; Godlewski, M. M.; Phillips, M. Atomic Layer Deposition of Thin Films of ZnSe—Structural and Optical Characterization. Thin Solid Films 2004, 446 (2), 172-177.
- Pore, V.; Hatanpää, T.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of Metal Tellurides and Selenides Using Alkylsilyl 5. Compounds of Tellurium and Selenium. Journal of the American Chemical Society 2009, 131 (10), 3478-3480.
- Sarnet, T.; Hatanpaa, T.; Vehkamaki, M.; Flyktman, T.; Ahopelto, J.; Mizohata, K.; Ritala, M.; Leskela, M. (Et,Si), Se as a Precursor for Atomic Layer Deposition: Growth Analysis of Thermoelectric Bi₂Se₃. Journal of Materials Chemistry C 2015, 3 (18), 4820-4828.