Supplementary Information for:

Neocuproine as a Redox-Active Ligand Platform on Iron and Cobalt

Kate A. Jesse, Alexander S. Filatov, Jiaze Xie, and John S. Anderson*

Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States

*Correspondence to: jsanderson@uchicago.edu

Table of Contents

General Methods	5
Syntheses	7
NMR Spectra	9
Figure S1. ¹ H NMR of 1-Fe in CD ₃ CN	9
Figure S2. ¹⁹ F NMR of 1-Fe in CD ₃ CN.	9
Figure S3. ¹ H NMR of 3-Fe in C ₆ D ₆	10
Figure S4. ¹ H NMR of 3-Fe with excess AgOTf in CD ₃ CN stacked with 1-Fe and 3-Fe	10
Figure S5. ¹ H NMR of 1-Co in CD ₃ CN.	11
Figure S6. ¹ H NMR of 1-Co and [Co(neocuproine)(OTf) ₂ (MeCN)] in CD ₃ CN	11
Figure S7. ¹⁹ F NMR of 1-Co and [Co(neocuproine)(OTf) ₂ (MeCN)] in CD ₃ CN	12
Figure S8. ¹⁹ F NMR of 1-Co in CD ₃ CN.	12
Figure S9. ¹ H NMR of 2-Co in CD ₃ CN.	13
Figure S10. ¹⁹ F NMR of 2-Co in CD ₃ CN.	13
Figure S11. ¹ H NMR of 3-Co in C ₆ D ₆ .	14
Figure S12. ¹ H NMR of 3-Co with excess AgOTf in CD ₃ CN stacked with 1-Co, 2-Co, an Co where 1-Co and 2-Co are in CD ₃ CN and 3-Co is in C ₆ D ₆	
Figure S13. ¹⁹ F NMR of 1-Fe with 3 equivalents of 1,2-difluorobenzene as an internal standard in acetonitrile.	15
Figure S14. ¹⁹ F NMR of 1-Co with 3 equivalents of 1,2-difluorobenzene as an internal standard in acetonitrile.	15
Figure S15. ¹⁹ F NMR of 1-Fe at -30 °C and room temperature in CD ₃ CN	16
Figure S16. ¹⁹ F NMR of 1-Fe at -30 °C and room temperature in CD ₃ CN	16
UV-vis Spectra	17
Figure S17. UV-vis spectrum of 1-Fe in acetonitrile	17
Figure S18. UV-vis spectrum of 3-Fe in benzene.	
Figure S19. UV-vis spectrum of 1-Co in acetonitrile	18
Figure S20. UV-vis spectrum of 2-Co in acetonitrile.	
Figure S21. UV-vis spectrum of 3-Co in benzene.	19
IR Spectra	
Figure S22. IR (KBr pellet) of 1-Fe.	
Figure S23. IR (KBr pellet) of 3-Fe.	
Figure S24. IR (KBr pellet) of 1-Co.	

Figure S25. IR (KBr pellet) of 2-Co.	21
Figure S26. IR (KBr pellet) of 3-Co.	21
EPR	22
Figure S27. EPR spectrum of 1-Co in acetonitrile, RT	22
Figure S28. EPR of 10 mM 3-Co in acetonitrile at 10 K.	22
CV	23
Figure S29. CV of 1.5 mM 1-Fe in acetonitrile	23
Figure S30. CV of 1.5 mM 1-Co in acetonitrile	23
Solid State Magnetic Measurements (SQUID)	24
Figure S31. Variable temperature χT data of 1-Fe at 1 Tesla.	24
Figure S32. Variable temperature χT data of 3-Fe at 1 Tesla.	24
Figure S33. Variable temperature χT data of 1-Co at 1 Tesla	25
Figure S34. Variable temperature χT data of 2-Co at 1 Tesla	25
Figure S35. Variable temperature χT data of 3-Co at 1 Tesla	26
XAS	26
Figure S36. EXAFS spectrum in R-space at the Fe K-edge absorption of 3-Fe	26
Figure S37. EXAFS spectrum in K-space at the Fe K-edge absorption of 3-Fe	27
Table S1. EXAFS Fit Parameters for 3-Fe	27
Figure S38. EXAFS spectrum in R-space at the Co K-edge absorption of 3-Co	28
Figure S39. EXAFS spectrum in K-space at the Co K-edge absorption of 3-Co	28
Table S2. EXAFS Fit Parameters for 3-Co	29
Figure S40. XAS of 1-Fe, 3-Fe, Fe(MeCN) ₂ (OTf) ₂ , and the Fe(0) foil	29
Figure S41. XAS K-edge derivative plot of 1-Fe, 3-Fe, Fe(MeCN)2(OTf)2, and the	Fe(0) foil.
Figure S42. XAS of 1-Co , 2-Co , 3-Co and the Co(0) foil	
Figure S43. XAS K-edge derivative plot of 1-Co , 2-Co , 3-Co and the Co(0) foil	
SXRD	31
General Description	31
Table S3. Crystallographic Data	
DFT	
General Description	
Figure S44. Spin density plots of 2-Co and 3-Co at an iso value of 0.003	34
Table S4. Mulliken Spin Density on Ligand vs. Cobalt	34

Table S5. Corresponding Orbital Overlap from Broken Symmetry Calculations	34
Optimized Coordinates	37
References	39

General Methods

All chemicals were purchased from commercial suppliers and used without further purification. All manipulations were carried out under an atmosphere of N₂ using standard Schlenk and glovebox techniques. Glassware was dried at 180 °C for a minimum of two hours and cooled under vacuum prior to use. Solvents were dried on a solvent purification system from Pure Process Technologies and stored over 4 Å molecular sieves under N₂. Tetrahydrofuran (THF) was stirred over NaK alloy and run through an additional alumina column prior to use to ensure dryness. Solvents were tested for H₂O and O₂ using a standard solution of sodium-benzophenone ketyl radical anion. C₆D₆, CDCl₃, and CD₂Cl₂ were dried over 4 Å molecular sieves under N₂. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker DRX 400 or 500 spectrometers. Chemical shifts are reported in ppm units referenced to residual solvent resonances for ¹H and ¹³C{¹H} spectra. UV-Vis Spectra were recorded on a Bruker Evolution 300 spectrometer and analyzed using VisionPro software. Experiments requiring a dip probe utilized Hellma Analytics Excalibur Standard Tauchsonde Granzquarz-Tauchsonde (serial no. 13594). IR spectra were obtained on a Bruker Tensor II spectrometer with the OPUS software suite. All IR samples were prepared as KBr pellets in a homemade press. EPR spectra were recorded on an Elexsys E500 Spectrometer with an Oxford ESR 900 X-band cryostat and a Bruker Cold-Edge Stinger. EPR data was fit using a least-squares fit in SpinCount. Electrochemical measurements were performed using a BAS Epsilon potentiostat and analyzed using BAS Epsilon software version 1.40.67NT. Cyclic voltammetry measurements were made using a glassy carbon working electrode, platinum wire counter electrode, and silver wire pseudo-reference electrode, and referenced to internal Fc/Fc⁺. Magnetic measurements were performed on either a Quantum Design MPMS 3 equipped with a superconducting quantum interference device (SQUID) or using a Quantum Design MPMS-XL SQUID magnetometer. Corrections were made for the diamagnetic contributions from the polycarbonate capsules and eicosane used to secure the sample by measuring field vs. moment in duplicate for each to determine a moment per gram correction. The x values reported are the molar magnetic susceptibilities. Magnetic data (χT vs. T) plots and reported values have been normalized to one formula unit. Zero-field ⁵⁷Fe Mössbauer spectra were obtained at 80 K using a ⁵⁷Co/rhodium source. Samples were prepared in an MBraun nitrogen glove box. A typical sample contained approximately 60 mg of compounds suspended in a plastic cap. Another cap with a slightly smaller diameter was squeezed into the previous sample cap to completely encapsulate the solid sample mixture. All spectra were analyzed using the WMOSS Mössbauer Spectral Analysis Software. Complex 1-Fe was fit with a Voigt line shape. Note that the accuracy of the fit parameters may be overestimated as the error in the Fe foil calibration is 0.01 mm/s. Single crystal X-ray diffraction data were collected in-house using Bruker D8 Venture diffractometer equipped with Mo microfocus X-ray tube ($\lambda = 0.71073 \text{ Å}$) or at the Advanced Photon Source of Argonne National Laboratory (beamline 15-ID-B,C,D) using X-ray radiation with a wavelength of $\lambda = 0.41328$ Å. X-ray near-edge absorption spectra (XANES) and X-ray absorption fine structure (XAFS) spectra were employed to probe the local environment around Fe. Data were acquired at the Advanced Photon Source at Argonne National Labs with a bending magnet source with ring energy at 7.00 GeV. Fe K-edge data were acquired at the MRCAT 10- BM beam line. EXAFS data were collected in the fluorescence mode using fluorescence ion chamber in Stern-Heald geometry. Absorption was calibrated and concurrently referenced during measurement to a Fe foil. Data collected was

processed using the Demeter software suite¹ by extracting the EXAFS oscillations $\chi(k)$ as a function of photoelectron wavenumber k. The theoretical paths were generated using FEFF6 and the models were done in the conventional way using the fitting program Artemis. The initial model was taken from an X-ray crystal structures of the Fe and Co compounds. EXAFS data were modelled in R-space with k-weights of 1, 2 and 3 until a satisfactory fit describing the system was obtained.

Syntheses

[Fe(neocuproine)₂(OTf)][OTf] (1-Fe)

Fe(MeCN)₂(OTf)₂ (1.60 g, 3.67 mmol) and neocuproine (1.54 g, 7.37 mmol) were dissolved separately in acetonitrile (7 mL each). The solutions were combined with stirring for 30 minutes to form a deep yellow solution. The reaction mixture was concentrated under vacuum to a saturated solution in acetonitrile (4 mL) and crystallized via two layer crystallization with Et₂O (13 mL) overnight. Yield: 1.541 g (2.00 mmol, 83.3%). Single crystals of **1-Fe** suitable for X-ray diffraction were obtained by vapor diffusion of Et₂O into a concentrated solution of **1-Fe** in acetonitrile. ¹H NMR (400 MHz, CD₃CN, RT): δ = 55.5 (s, 4H), 32.6 (s, 4H), 1.1 (s, 4H), -34.3 (bs, 12H). ¹⁹F{¹H} NMR (500 MHz, CD₃CN, RT): δ -64 (bs). Magnetic Susceptibility: Evans' Method (CD₃CN, RT, μ _B): μ _{eff} = 5.06; SQUID: χ *T* = 3.65 cm³K/mol. IR (KBr pellet, cm⁻¹): 3066 (C-H, w), 1594 (m), 1500 (m). Mössbauer (80 K, mm/s) δ = 1.186(2); Δ *E*_Q = 3.404(3). UV-vis, nm in acetonitrile, (ε, M⁻¹cm⁻¹): 450 (140). Anal. Calc. C, 46.76; H, 3.14; N, 7.26; Found: C, 46.58; H, 3.30; N, 7.08.

[Co(neocuproine)₂(OTf)][OTf] (1-Co)

[Co(MeCN)]₆[(OTf)₂] (1.70 g, 2.18 mmol) and neocuproine (2.70 g, 12.96 mmol) were dissolved separately in acetonitrile (7 mL each). The solutions were combined with stirring overnight to form a deep purple solution. The reaction mixture was concentrated under vacuum to a saturated solution in acetonitrile (4 mL) and washed with benzene (10 mL x 5) to remove excess neocuproine. This was then crystallized via two layer crystallization using a concentrated solution of **1-Co** in acetonitrile (4 mL) with Et₂O (13 mL) overnight. Yield: 1.10 g (1.42 mmol, 50.5%). Single crystals of **1-Co** suitable for X-ray diffraction were obtained by vapor diffusion of Et₂O into a concentrated solution of **1-Co** in acetonitrile. ¹H NMR (400 MHz, CD₃CN, RT): δ = 58.5 (s, 4H), 44.9 (s, 4H), 13.2 (s, 4H), -65.6 (bs, 12H). ¹⁹F{¹H} NMR (500 MHz, CD₃CN, RT): δ = -75 (bs). Note: when excess neocuproine is present in solution, a single, very broad peak at δ = 12 ppm can be seen in the ¹H NMR spectrum. Magnetic Susceptibility: Evans' Method (CD₃CN, RT, μ _B): μ _{eff} = 4.30; SQUID: χ T = 2.78 cm³K/mol. EPR (g_z, g_x, g_y): 2.35, 2.08, 1.87. IR (KBr pellet, cm⁻¹): 3076 (C-H, w), 1598 (m), 1503 (m). UV-vis, nm in acetonitrile, (ϵ , M⁻¹cm⁻¹): 427 (620), 521 (210), 541 (210), 577 (250). Anal. Calc. C, 46.57; H, 3.13; N, 7.24; Found: C, 46.38; H, 3.29; N, 7.21.

[Fe(neocuproine-radical)₂] (3-Fe)

1-Fe (210 mg, 0.27 mmol) and KC₈ (70 mg, 0.52 mmol) were stirred in Et₂O (15 mL) to form a suspension, which turned deep red-black over 30 minutes. The reaction was allowed to stir overnight, then condensed to a solid under vacuum. This was taken up in benzene (200 mL) and filtered through dry Celite to remove graphite and salt byproducts. This was condensed under vacuum to produce a pure, dark maroon powder. Yield: 45 mg (0.095 mmol, 34.9%). Crystals used to confirm connectivity by SXRD were obtained by vapor diffusion of petroleum ether into a concentrated solution of 3-Fe in THF. 1 H NMR (400 MHz, C₆D₆, RT): δ = 119.9 (s, 4H), 25.5 (s,

4H), -78.6 (bs, 12H). Magnetic Susceptibility: Evans' Method (C₆D₆, RT, μ _B): μ _{eff} = 2.90; SQUID: $\chi T = 1.05$ cm³K/mol. IR (KBr pellet, cm⁻¹): 2919 (C-H, w), 1615 (m), 1590 (m), 1503 (s). Mössbauer (80 K): $\delta = 0.787(1)$; $\Delta E_Q = 1.427(3)$. UV-vis, nm in benzene, (ϵ , M⁻¹cm⁻¹): 365 (4700), 397 (3400), 487 (4100), 523 (3200), 782 (1400). Anal. Calc. C, 71.20; H, 5.12; N, 11.86; Found: C, 71.19; H, 5.18; N, 11.88.

[Co(neocuproine-radical)₂] (3-Co)

1-Co (1.00 g, 1.29 mmol) and KC₈ (350 mg, 2.59 mmol) were stirred in a mixture of Et₂O:THF (3:1, 15 mL) to form a suspension that began to turn deep red-black immediately. The reaction was allowed to stir 1 hour, filtered through dry Celite to remove graphite, then condensed to a solid under vacuum. This was taken up in benzene (700 mL) and filtered to remove salt byproducts. This was condensed under vacuum to produce a dark maroon powder. Yield: 169 mg (0.35 mmol, 27.5%). Crystals used to confirm connectivity by SXRD were obtained by vapor diffusion of petroleum ether into a concentrated solution of **3-Co** in THF. ¹H NMR (400 MHz, C₆D₆, RT): δ = 59.4 (s, 4H), 20.1 (s, 8H), -54.3 (bs, 12 H). Magnetic Susceptibility: Evans' Method (C₆D₆, RT, μ_B): μ_{eff} = 2.08; SQUID: $\chi T = 0.56$ cm³K/mol. EPR (g_z, g_x, g_y): 2.70, 2.36, 2.063. IR (KBr pellet, cm⁻¹): 3036 (C-H, w); 2916 (C-H, w), 1617 and 1590 (s), 1494 (s). UV-vis, nm in benzene, (ε, M⁻¹cm⁻¹): 358 (2500), 400 (1600), 500 (3600), 634 (1200), 884 (1500 M⁻¹cm⁻¹). Anal. Calc. C, 55.77; H, 3.87; N, 8.97; Found: C, 55.04; H, 4.17; N, 8.24. Note that the combustion analysis for this compound is slightly off of the predicted value. We anticipate that this is due to the sensitivity of this reduced complex.

[Co(neocuproine-radical)(neocuproine)][OTf] (2-Co)

3-Co (20 mg, 0.04 mmol) was dissolved in THF (10 mL) and a solution of AgOTf (11 mg, 0.04 mmol) in THF (5 mL) was added slowly with stirring. This was allowed to stir for an hour, filtered to remove Ag⁰, then concentrated under vacuum to a black powder. Yield: 18 mg (0.03 mmol, 66.7%). Single crystals suitable for X-ray diffraction could be obtained via vapor diffusion of petroleum ether into a concentrated solution of **2-Co** in THF or via vapor diffusion of Et₂O into a concentrated solution of **2-Co** in acetonitrile. SXRD data reported was obtained from the latter conditions of Et₂O and acetonitrile. ¹H NMR (400 MHz, CD₃CN, RT): δ = 48.4, 47.4 (two s, 8H), 23.0 (s, 4H), -29.8 (bs, 12H). ¹⁹F{¹H} NMR (500 MHz, CD₃CN, RT): δ = -79. Magnetic Susceptibility: Evans' Method (CD₃CN, RT, μ_B): μ_{eff} = 2.94; SQUID: χT = 1.54 cm³K/mol. IR (KBr pellet, cm⁻¹): 3065 (C-H, w), 1593 (m), 1498 (m). UV-vis, nm in acetonitrile, (ε, M⁻¹cm⁻¹): 508 (2000), 826 (2000). Anal. Calc. C, 70.73; H, 5.09; N, 11.78; Found: C, 70.18; H, 5.19; N, 11.09. Note that the combustion analysis for this compound is slightly off of the predicted value. We anticipate that this is due to the sensitivity of this reduced complex.

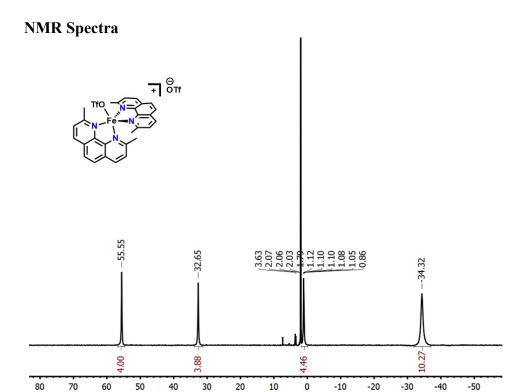


Figure S1. ¹H NMR of 1-Fe in CD₃CN.

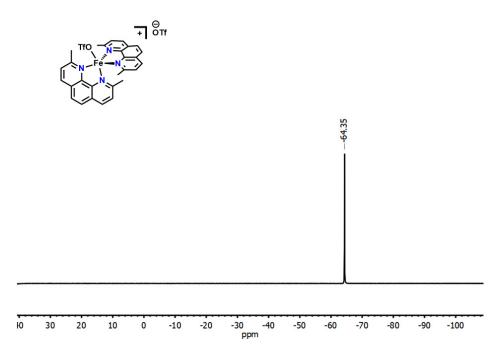


Figure S2. ¹⁹F NMR of 1-Fe in CD₃CN.

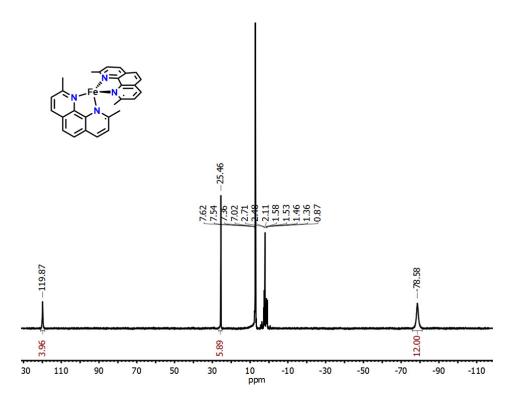


Figure S3. ¹H NMR of 3-Fe in C₆D₆.

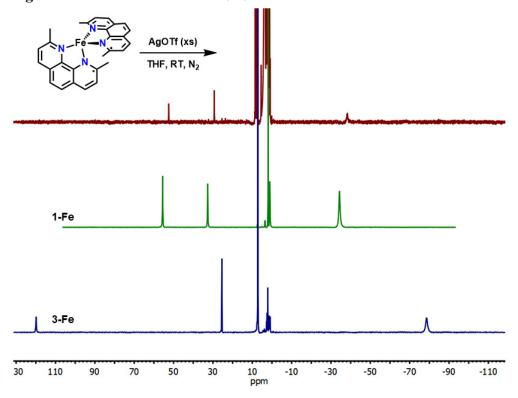


Figure S4. ¹H NMR of 3-Fe with excess AgOTf in CD₃CN stacked with 1-Fe and 3-Fe.

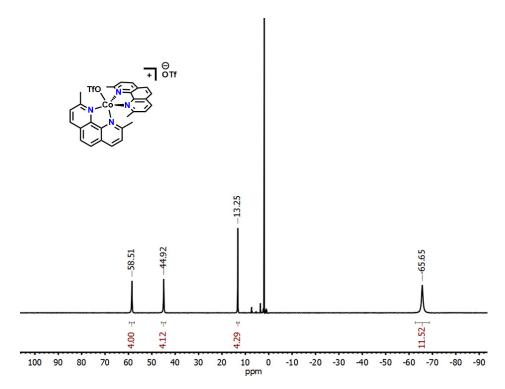


Figure S5. ¹H NMR of 1-Co in CD₃CN.

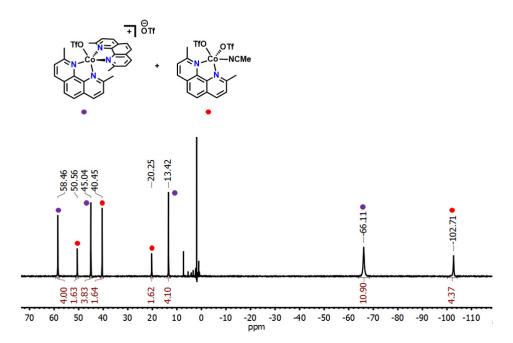
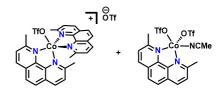



Figure S6. ¹H NMR of 1-Co and [Co(neocuproine)(OTf)₂(MeCN)] in CD₃CN

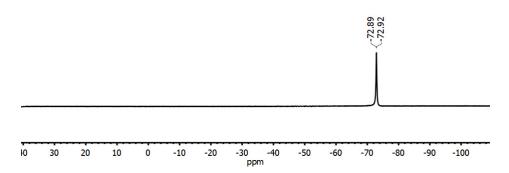


Figure S7. ¹⁹F NMR of 1-Co and [Co(neocuproine)(OTf)₂(MeCN)] in CD₃CN

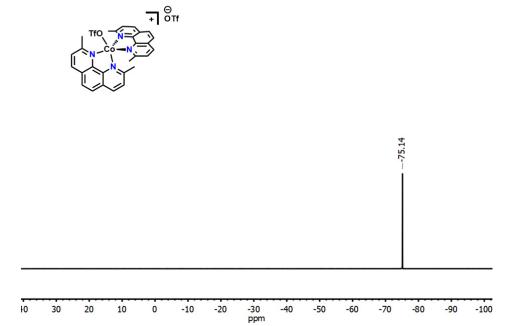


Figure S8. ¹⁹F NMR of 1-Co in CD₃CN.

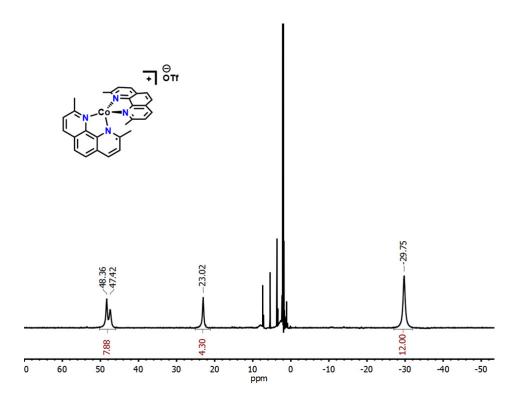
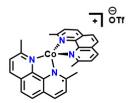



Figure S9. ¹H NMR of 2-Co in CD₃CN.

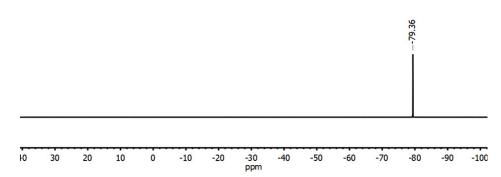


Figure S10. ¹⁹F NMR of 2-Co in CD₃CN.

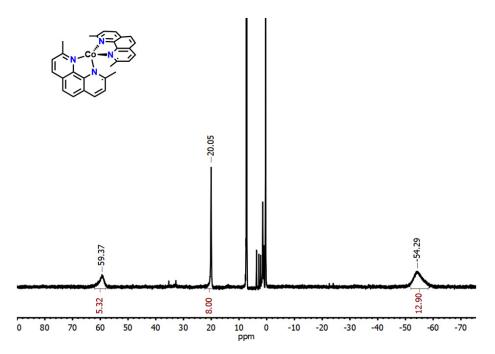


Figure S11. ¹H NMR of 3-Co in C₆D₆.

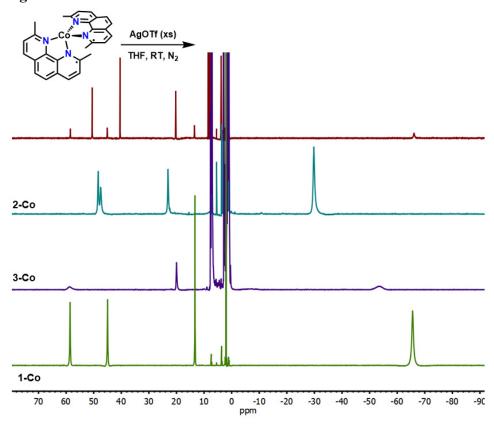
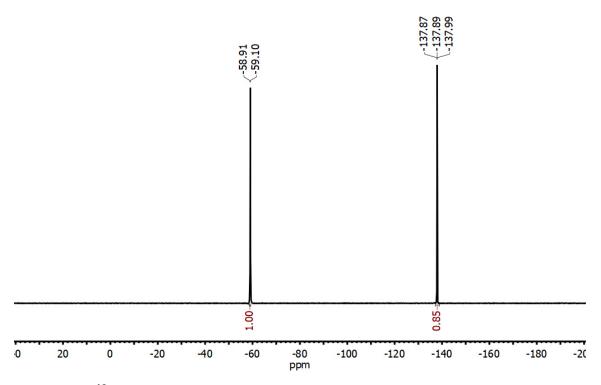
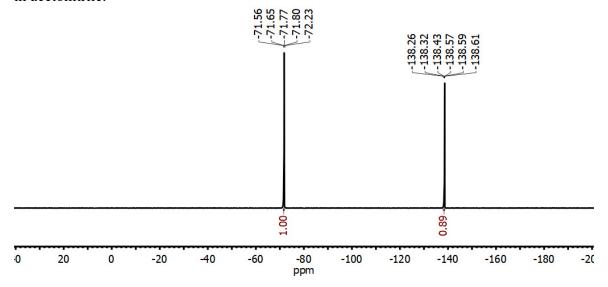




Figure S12. ¹H NMR of 3-Co with excess AgOTf in CD₃CN stacked with 1-Co, 2-Co, and 3-Co where 1-Co and 2-Co are in CD₃CN and 3-Co is in C₆D₆.

Figure S13. ¹⁹F NMR of **1-Fe** with 3 equivalents of 1,2-difluorobenzene as an internal standard in acetonitrile.

Figure S14. ¹⁹F NMR of **1-Co** with 3 equivalents of 1,2-difluorobenzene as an internal standard in acetonitrile.

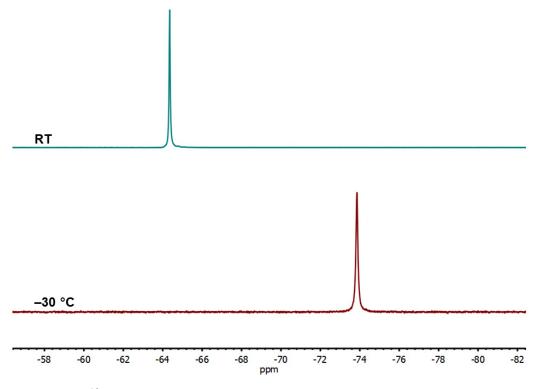
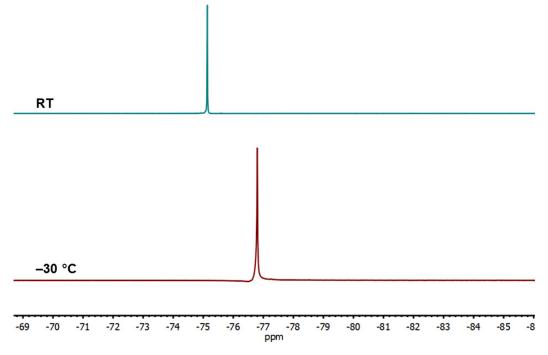



Figure S15. ¹⁹F NMR of 1-Fe at -30 °C and room temperature in CD₃CN.

Figure S16. ¹⁹F NMR of **1-Fe** at -30 °C and room temperature in CD₃CN.

Wolar Absorptivity Coefficient & 1000 | 10

Wavelength (nm)

Figure S17. UV-vis spectrum of 1-Fe in acetonitrile.

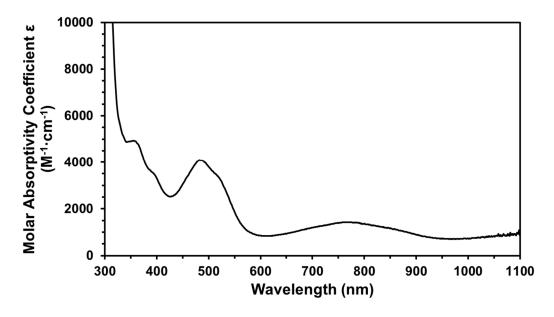


Figure S18. UV-vis spectrum of 3-Fe in benzene.

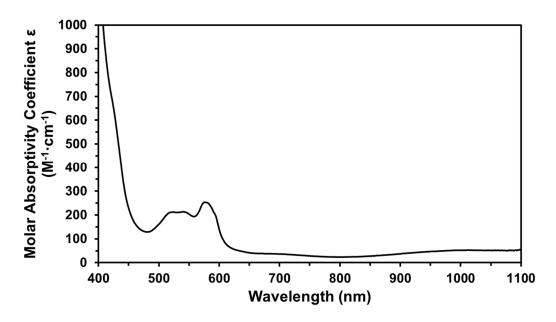


Figure S19. UV-vis spectrum of 1-Co in acetonitrile.

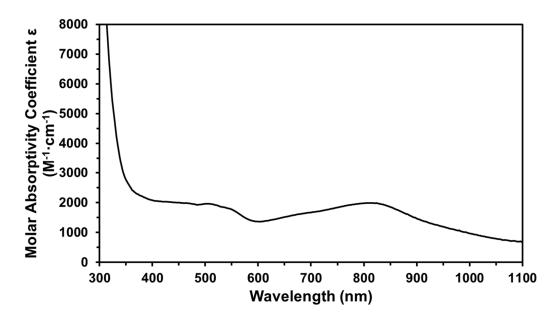


Figure S20. UV-vis spectrum of 2-Co in acetonitrile.

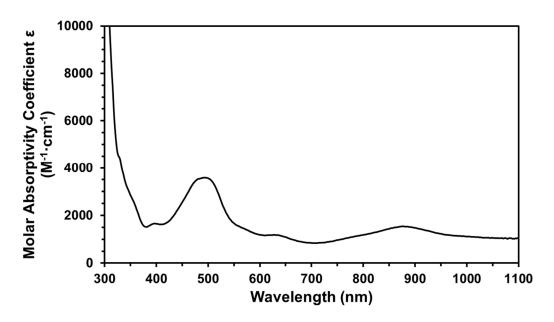


Figure S21. UV-vis spectrum of 3-Co in benzene.

IR Spectra

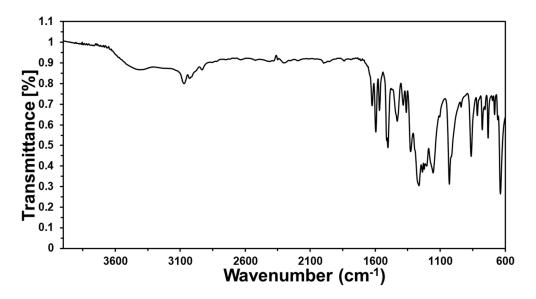


Figure S22. IR (KBr pellet) of 1-Fe.

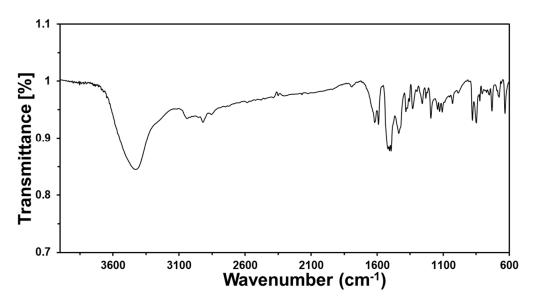


Figure S23. IR (KBr pellet) of 3-Fe.

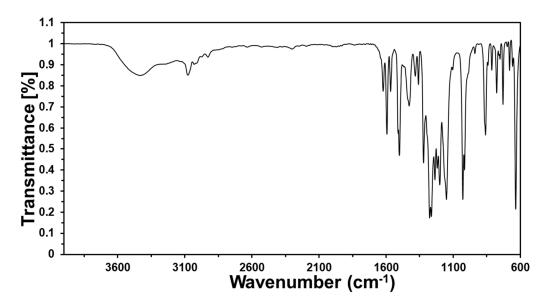


Figure S24. IR (KBr pellet) of 1-Co.

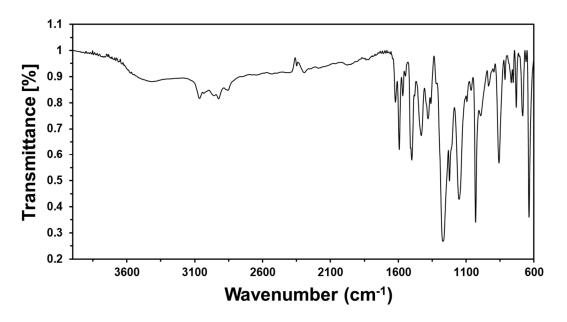


Figure S25. IR (KBr pellet) of 2-Co.

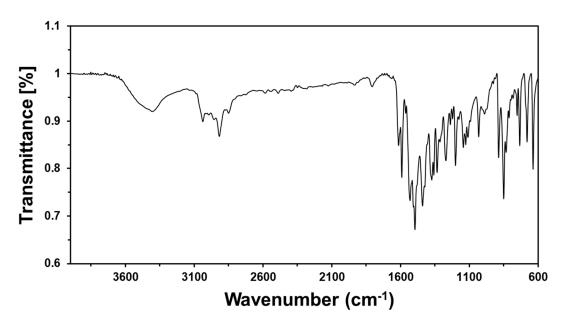
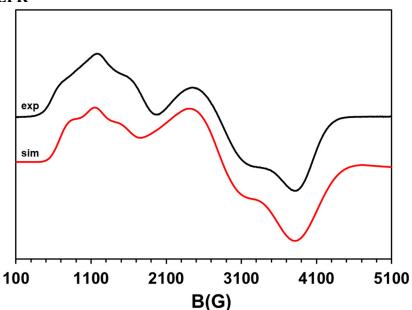
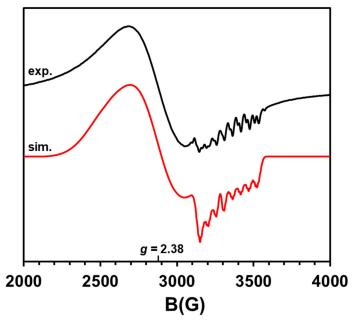




Figure S26. IR (KBr pellet) of 3-Co.

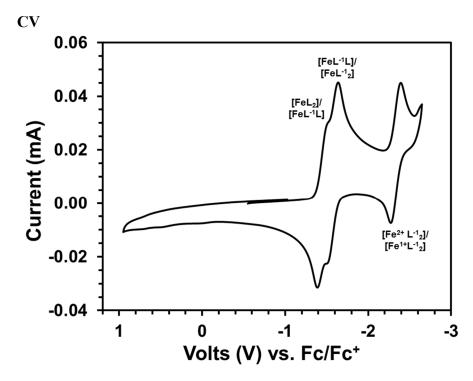

EPR

Figure S27. EPR spectrum of **1-Co** in acetonitrile, RT. MW power = 0.63 mW, MW frequency = 9.63 GHz. Simulated parameters: $g_z = 2.35$, $g_y = 2.08$, $g_x = 1.87$, $A_z = 380$, $A_y = 30$, $A_x = 1$, D = 3.2, E/D = 0.22, sD = 0.026, sE/D = 0.055, Linewidth =100. Co hyperfine splitting is in MHz. The nuclear spin of ⁵⁹Co is 7/2.

Figure S28. EPR of 10 mM **3-Co** in acetonitrile at 10 K (black) and a simulation of the data (red). $g_z = 2.700$, $g_y = 2.360$, $g_x = 2.063$, $g_{1z} = 0.15$, $g_{1y} = 0.1$, $g_{1x} = 0.003$. Co hyperfine coupling parameters (MHz): $A_x = 153$, $A_y = 10$, $A_z = 10$. N hyperfine coupling parameters (4 equivalent centers, MHz): $A_x = 31.60$, $A_y = 0.78$, $A_z = 0.63$. MW Frequency = 9.631 GHz. MW Power = 2.00 mW. Linewidth = 2. The nuclear spin of ⁵⁹Co and ¹⁴N is 7/2 and 1 respectively.

Figure S29. CV of 1.5 mM **1-Fe** in acetonitrile where L = neocuproine and $L^{-1} =$ neocuproine radical ligand. Electrolyte: 5 mM [Bu₄N][PF₆], Scan rate: 100 mV/s. Scanning oxidatively.

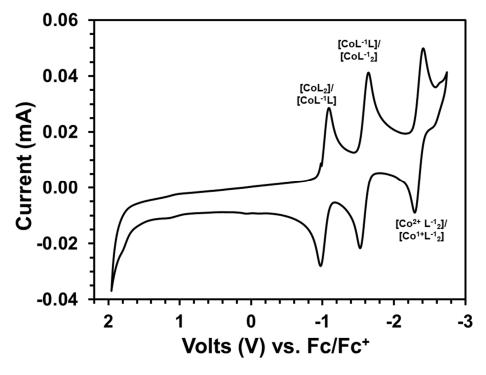
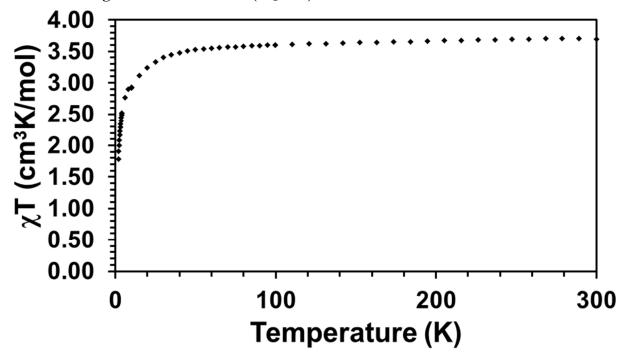
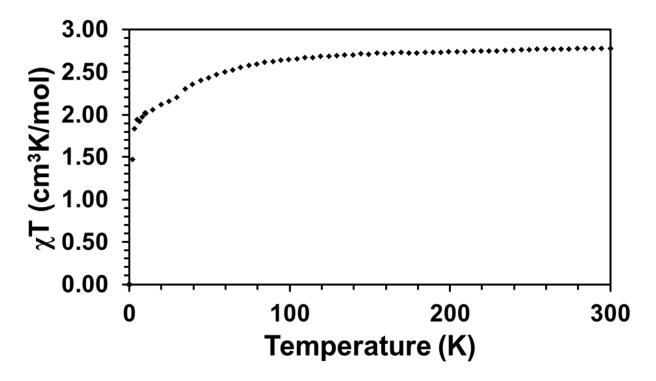
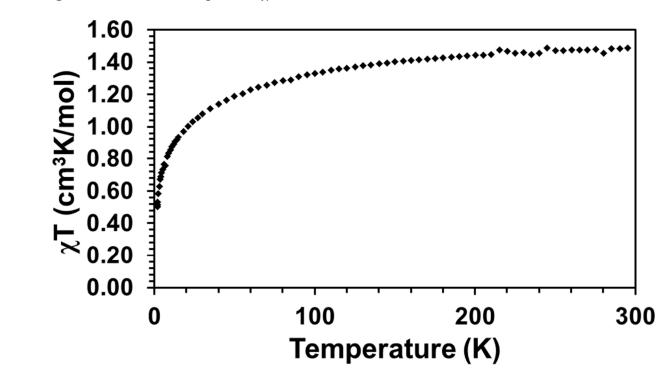
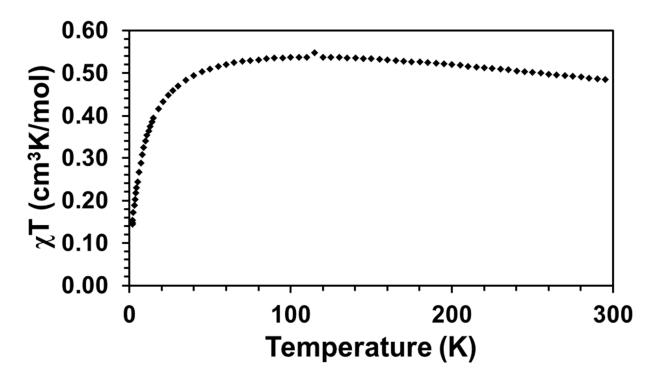
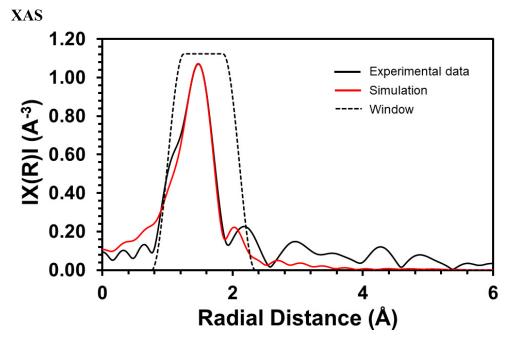



Figure S30. CV of 1.5 mM 1-Co in acetonitrile where L = neocuproine and $L^{-1} =$ neocuproine radical ligand. Electrolyte: 5 mM [Bu₄N][PF₆], Scan rate: 100 mV/s. Scanning oxidatively.


Solid State Magnetic Measurements (SQUID)


Figure S31. Variable temperature χT data of **1-Fe** at 1 Tesla.


Figure S32. Variable temperature χT data of **3-Fe** at 1 Tesla.


Figure S33. Variable temperature χT data of **1-Co** at 1 Tesla.

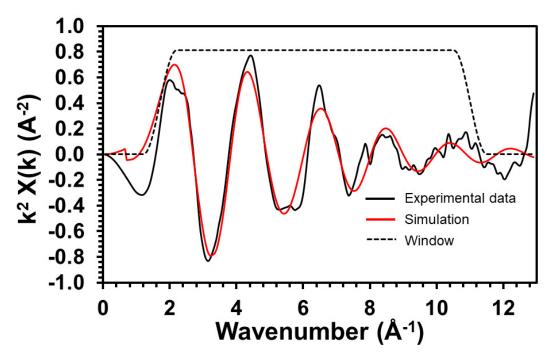

Figure S34. Variable temperature χT data of **2-Co** at 1 Tesla.

Figure S35. Variable temperature χT data of **3-Co** at 1 Tesla.

Figure S36. EXAFS spectrum in R-space at the Fe K-edge absorption of **3-Fe**. The experimental data (black), simulated fit (red), and window (dashed) are shown.

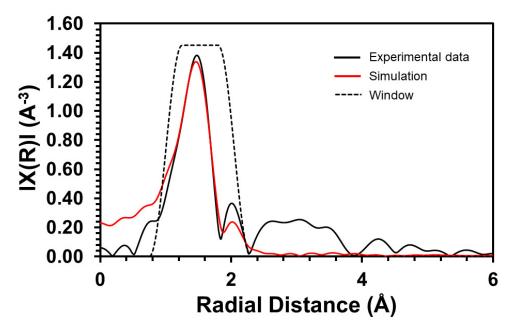
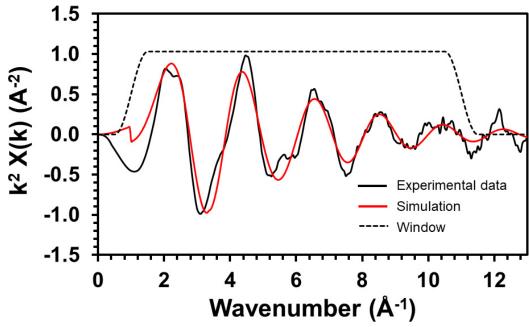

Figure S37. EXAFS spectrum in K-space at the Fe K-edge absorption of **3-Fe**. The experimental data (black), simulated data (red), and window (dashed) are shown.

Table S1. EXAFS Fit Parameters for 3-Fe


*Complex 3-Fe	N	R (Å)	$\sigma^2 (\mathring{A}^2)$	R-factor	Reduced chi-square
Fe-N1	2	1.95(1)	0.006(2)	0.014	5873
Fe-N2	2	2.02(1)			
	2				0 1

 $\Delta E_0 = 1.771 \text{ eV}$; $S_0^2 = 0.882$; Independent Points: 6; Fitting Range: k: 1.7-11 Å⁻¹; R: 1.0-2.1 Å

^{*}N, Coordination numbers; R, interatomic distances; σ^2 , Debye-Waller factors (the mean-square deviations in interatomic distance). The values in parentheses are the estimated standard deviations; ΔE_0 , change in the photoelectron energy; S_0^2 , amplitude reduction factor.

Figure S38. EXAFS spectrum in R-space at the Co K-edge absorption of **3-Co**. The experimental data (black), simulated fit (red), and window (dashed) are shown.

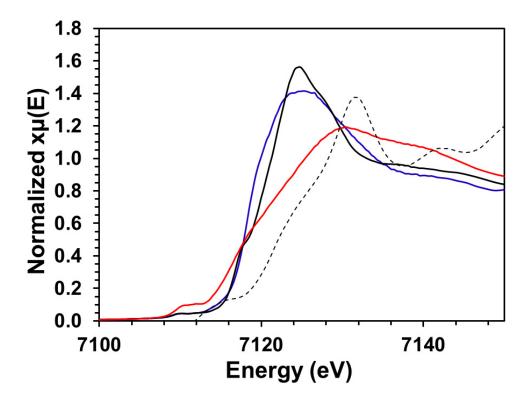
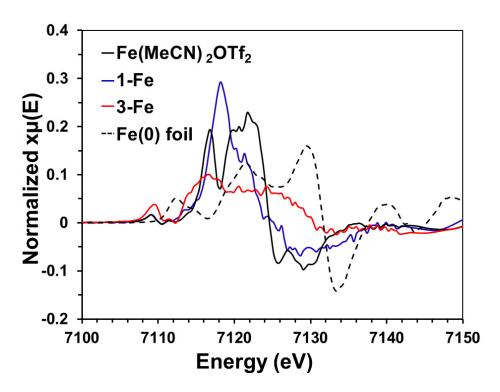
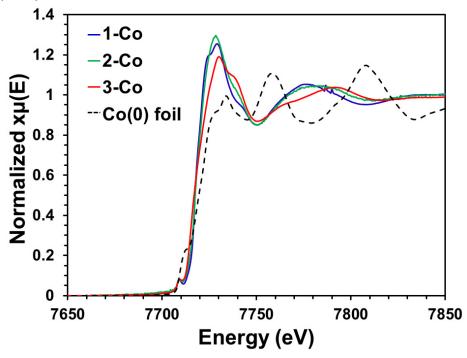

Figure S39. EXAFS spectrum in K-space at the Co K-edge absorption of **3-Co**. The experimental data (black), simulated data (red), and window (dashed) are shown.

Table S2. EXAFS Fit Parameters for 3-Co


*Complex 3-Co	N	R (Å)	$\sigma^2 (\mathring{A}^2)$	R-factor	Reduced chi-square
Co-N1	2	1.96(2)	0.006(3)	0.020	481
Co-N2	2	2.00(2)			

 $\Delta E_0 = 3.764 \text{ eV}$; $S_0^2 = 0.995$; Independent Points: 6; Fitting Range: k: 1.0-11 Å⁻¹; R: 1.0-2.05 Å


*N, Coordination numbers; R, interatomic distances; σ^2 , Debye-Waller factors (the mean-square deviations in interatomic distance). The values in parentheses are the estimated standard deviations; ΔE_0 , change in the photoelectron energy; S_0^2 , amplitude reduction factor.

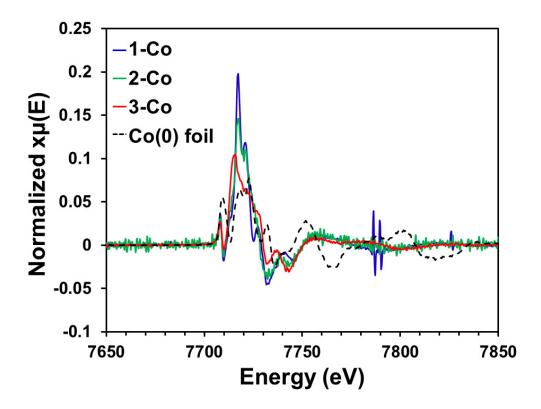

Figure S40. XAS of **1-Fe**, **3-Fe**, Fe(MeCN)₂(OTf)₂, and the Fe(0) foil. Inflection points (eV): **1-Fe** (7118), **3-Fe** (7116), Fe(MeCN)₂(OTf)₂ (7116), and Fe(0) foil (7112).

Figure S41. XAS K-edge derivative plot of **1-Fe**, **3-Fe**, Fe(MeCN)₂(OTf)₂, and the Fe(0) foil. Inflection points (eV): **1-Fe** (7118), **3-Fe** (7116), Fe(MeCN)₂(OTf)₂ (7116), and Fe(0) foil (7112).

Figure S42. XAS of **1-Co**, **2-Co**, **3-Co** and the Co(0) foil. Inflection points (eV): **1-Co** (7717), **2-Co** (7717), **3-Co** (7716), and Co(0) foil (7709).

Figure S43. XAS K-edge derivative plot of **1-Co**, **2-Co**, **3-Co** and the Co(0) foil. Inflection points (eV): **1-Co** (7717), **2-Co** (7717), **3-Co** (7716), and Co(0) foil (7709).

SXRD

General Description

Suitable crystals reported in this manuscript were mounted on a cryo-loop and transferred into the cold nitrogen stream of a Bruker D8 Venture diffractometer. Crystal structure of complex 1-Fe (CCDC 189232) and 3-Co (CCDC 1898231) were collected at The Advanced Photon Source at Argonne National Laboratory (beamline 15-ID-B,C,D). The diffraction data were measured at 100 K using synchrotron X-ray radiation with a wavelength of $\lambda = 0.41328$ Å. Data were collected using ϕ scans. Data reduction and integration were performed with the Bruker APEX3² software package. Data were scaled and corrected for absorption effects using the multi-scan procedure as implemented in SADABS.³ The structure was solved by SHELXT⁴ and refined by a full-matrix least-squares procedure using OLEX2⁵ (XL refinement program⁶). The crystallographic data of 1-Co (CCDC 1898228), 1-Co and [Co(neocuproine)(OTf)₂MeCN] (CCDC 1898233), 2-Co (CCDC 1898229) and 3-Fe (CCDC 1898230) were collected by using Mo K_{α} radiation (0.71073 Å). The final unit cell was obtained from the xyz centroids of 19263 (1-Co), 16878 (1-Co and [Co(neocuproine)(OTf)₂MeCN]), 8164 (2-Co), 7799 (3-Co), 15933 (1-Fe), and 8042 (3-Fe) reflections after integration. Intensity data were corrected for Lorentz and polarization effects, scale variation for decay and absorption: a multiscan absorption correction was applied, based on the intensities of symmetry-related reflections measured at different angular setting (SADABS).⁷ The structures were solved by direct methods using the program SHELXS⁸ integrated in Olex 2.⁹

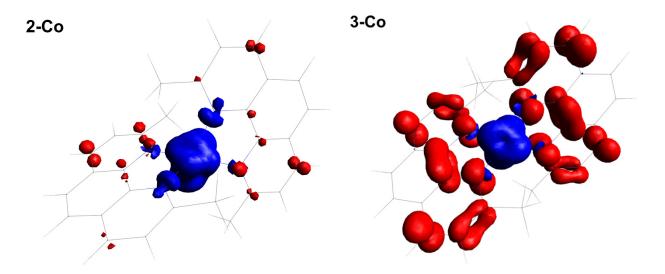
Most of the hydrogen atoms were generated by geometrical considerations and constrained to idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms. Structure refinement was performed with the program package *SHELXL*⁷ integrated in Olex 2.¹⁰ Crystallographic data are presented in the table below.

B-level alerts are present for 8042 (**3-Fe**) and 7799 (**3-Co**). This is a direct reflection of the low quality of data that could be obtained for these single crystals despite multiple collection attempts in house and at Argonne National Lab using synchrotron radiation. The limitations of the collected data should be considered in any analyses of the aforementioned crystal structures and we have discussed the data in the text cautiously to reflect the data quality.

Table S3. Crystallographic Data

	,	1-Fe	1-Co	1-Co and [Co(neocuproine)(OTf) ₂ MeCN]
Emp	oirical formula	$C_{64}H_{58}F_{12}Fe_2N_8O_{13}S_4\\$	$C_{64}H_{57.66}Co_{2}F_{12}N_{8}O_{13}S_{4} \\$	$C_{48}H_{39}Co_{2}F_{12}N_{7}O_{12}S_{4} \\$
Forn	nula weight	1615.12	1620.94	1379.96
Tem	perature/K	100(2)	100(2)	100(2)
Crys	stal system	monoclinic	monoclinic	monoclinic
Spac	ce group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c
a/Å		15.5650(16)	15.5656(10)	17.7028(12)
b/Å		31.997(3)	31.720(2)	18.0869(13)
c/Å		14.5894(14)	14.5502(9)	17.8196(12)
α / $^{\circ}$		90	90	90
β/°		108.194(2)	107.712(2)	106.615(2)
$\gamma/^{\circ}$		90	90	90
Volu	ume/Å ³	6902.8(12)	6843.4(8)	5467.4(7)
Z		4	4	4
$\rho_{\rm calc}$	g/cm ³	1.554	1.573	1.676
μ/m	m ⁻¹	0.155	0.708	0.868
F(00	00)	3304	3311	2792
Crys	stal size/mm ³	$0.5\times0.2\times0.1$	$0.48\times0.18\times0.09$	$0.3\times0.2\times0.2$
Rad	iation	synchrotron $(\lambda = 0.41328)$	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$
	range for data ection/°	1.48 to 31.418	4.226 to 59.56	4.45 to 63.892
Inde	ex ranges	$-20 \le h \le 20, -41 \le k \le 41, -18 \le l \le 18$	$ \begin{array}{l} -21 \leq h \leq 21, -44 \leq k \leq 42, -20 \\ \leq l \leq 19 \end{array} $	$-26 \le h \le 26, -24 \le k \le 24,$ $-26 \le l \le 24$
	ections ected	175890	155696	98889

Independent reflections	$\begin{array}{lll} 15933 & [R_{int} = \ 0.0763, \\ R_{sigma} = 0.0280] \end{array}$	$19263 \; [R_{int} = 0.0469, \; R_{sigma} = 0.0374]$	$\begin{array}{lll} 16878 & [R_{int} & = & 0.0440, \\ R_{sigma} = 0.0371] & \end{array}$
Data/restraints/pa rameters	15933/0/957	19263/0/957	16878/0/855
Goodness-of-fit on F ²	1.029	1.065	1.03
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0548, wR_2 = 0.1410$	$R_1 = 0.0580, wR_2 = 0.1278$	$R_1 = 0.0411, wR_2 = 0.0975$
Final R indexes [all data]	$R_1 = 0.0618, WR_2 = 0.1452$	$R_1 = 0.0888, wR_2 = 0.1414$	$R_1 = 0.0620, wR_2 = 0.1058$
Largest diff. peak/hole / e Å ⁻³	1.34/-1.08	1.07/-0.99	1.08/-0.59


Table S3. Crystallographic Data (Cont.)

	2-Co	3-Fe	3-Со
Empirical formula	C29H24CoF3N4O3S	C28H24FeN4	C28H24CoN4
Formula weight	624.51	472.36	475.44
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	tetragonal	monoclinic
Space group	P21/n	P41212	C2/c
a/Å	11.4765(5)	16.0367(17)	22.723(2)
b/Å	11.0667(5)	16.0367(17)	22.757(2)
c/Å	21.0321(10)	34.722(4)	18.3309(19)
$lpha/^{\circ}$	90	90	90
β/°	98.187(2)	90	107.775(2)
γ/°	90	90	90
Volume/Å3	2644.0(2)	8930(2)	9026.3(16)
Z	4	16	16
pcalcg/cm3	1.569	1.405	1.399
μ/mm-1	0.79	0.7	0.188
F(000)	1280	3936	3952
Crystal size/mm3	$0.47 \times 0.45 \times 0.28$	$0.28 \times 0.18 \times 0.14$	$0.01 \times 0.002 \times 0.002$
Radiation	MoKα ($\lambda = 0.71073$)	$MoK\alpha (\lambda = 0.71073)$	synchrotron ($\lambda = 0.41328$)
2Θ range for data collection/°	4.322 to 63.868	4.29 to 50.402	1.51 to 28.34
Index ranges	$-16 \le h \le 17, -16 \le k \le 15, -28 \le 1 \le 30$	$-19 \le h \le 19, -19 \le k \le 19,$ $-41 \le l \le 41$	$-26 \le h \le 26, -26 \le k \le 26, -21 \le 1 \le 21$
Reflections collected	46539	75194	91673
Independent reflections	8164 [Rint = 0.0269, Rsigma = 0.0254]	8042 [Rint = 0.1829, Rsigma = 0.1167]	7799 [Rint = 0.1507, Rsigma = 0.0740]
Data/restraints/par	8164/0/374	8042/1080/605	7799/1086/604
ameters	010 11 012 11	00 12/1000/000	7799710007001
Goodness-of-fit on F2	1.039	1.084	1.166
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0375, wR2 = 0.0866	R1 = 0.1361, WR2 = 0.3045	R1 = 0.1616, $wR2 = 0.3721$
Final R indexes [all data]	R1 = 0.0513, wR2 = 0.0924	R1 = 0.2004, wR2 = 0.3403	R1 = 0.1666, $wR2 = 0.3743$

DFT

General Description

Geometry optimization calculations were performed with ORCA¹⁰ software suite using density functional theory (DFT). Geometries were fully optimized starting from coordinates generated from a molecular model built in Avogadro. The B3P functional was used with a basis set of def2-SVP on H, def2-TZVPP on Co and N, and def2-TZVP on C atoms. The resulting structures were confirmed to be minima on the potential energy surface by frequency calculations using ORCA¹⁰. Frequency calculations were also conducted using the B3P functional and previously listed basis sets for each atom type. Single point broken symmetry calculations using flipspin were then run to obtain the final spin density plots and Mullikan spin densities.

Figure S44. Spin density plots of **2-Co** and **3-Co** at an iso value of 0.003. Mulliken spin density (Co, ligands): **2-Co**: 2.25, -0.25, **3-Co**: 2.41, -1.54. Plots were generated in ORCA using orca_plot as gaussian cube files with a grid density of 100 x 100 x 100 then modeled in Avogadro.

Table S4. Mulliken Spin Density on Ligand vs. Cobalt

	2-Co	3-Co
Spin density on Co	2.246546	2.411682
Spin density on ligands	-0.24655	-1.54113
Spin density on ligands - Spin density on N	-0.02311	-0.37009

Table S5. Corresponding Orbital Overlap from Broken Symmetry Calculations

	2-Co	3-Co
Orbital	overlap	overlap
0:00	1	1

	•	
1:00	1	1
2:00	1	1
3:00	1	1
4:00	1	1
5:00	1	1
6:00	1	1
7:00	1	1
8:00	1	1
9:00	1	1
10:00	1	1
11:00	1	1
12:00	1	1
13:00	1	1
14:00	1	1
15:00	1	1
16:00	1	1
17:00	1	1
18:00	1	1
19:00	1	1
20:00	1	1
21:00	1	1
22:00	1	1
23:00	1	1
24:00:00	1	1
25:00:00	1	1
26:00:00	1	1
27:00:00	1	1
28:00:00	1	1
29:00:00	1	1
30:00:00	1	1
31:00:00	1	1
32:00:00	1	1
33:00:00	1	1
34:00:00	1	1
35:00:00	1	1
36:00:00	1	1
37:00:00	1	1
38:00:00	1	1
39:00:00	1	1
40:00:00	1	1
41:00:00	1	1
42:00:00	1	1
43:00:00	1	1
44:00:00	1	1
45:00:00	1	1
	1 *	

46:00:00	1	1
47:00:00	1	1
48:00:00	1	1
49:00:00	1	1
50:00:00	1	1
51:00:00	1	1
52:00:00	1	1
53:00:00	1	1
54:00:00	1	1
55:00:00	1	1
56:00:00	1	1
57:00:00	1	1
58:00:00	1	1
59:00:00	1	1
60:00:00	1	1
61:00:00	1	1
62:00:00	1	1
63:00:00	1	1
64:00:00	1	1
65:00:00	1	1
66:00:00	1	1
67:00:00	1	1
68:00:00	1	1
69:00:00	1	1
70:00:00	1	1
70:00:00	1	1
72:00:00	1	1
73:00:00	1	1
74:00:00	1	1
75:00:00	1	1
76:00:00	1	1
77:00:00	1	1
78:00:00	1	1
79:00:00	1	1
80:00:00	1	1
81:00:00	1	1
82:00:00	1	1
83:00:00	1	1
84:00:00	1	1
85:00:00	1	1
86:00:00	1	1
87:00:00	1	1
88:00:00	1	1
89:00:00	1	1
90:00:00	1	1
90.00.00	1	1

91:00:00	1	0.99999
92:00:00	1	0.99999
93:00:00	1	0.99999
94:00:00	1	0.99999
95:00:00	1	0.99999
96:00:00	1	0.99999
97:00:00	1	0.99999
98:00:00	1	0.99999
99:00:00	1	0.99999
100:00:00	1	0.99998
101:00:00	1	0.99998
102:00:00	1	0.99998
103:00:00	1	0.99998
104:00:00	1	0.99998
105:00:00	0.99999	0.99998
106:00:00	0.99999	0.99997
107:00:00	0.99999	0.99995
108:00:00	0.99999	0.99994
109:00:00	0.99998	0.99993
110:00:00	0.99998	0.99988
111:00:00	0.99997	0.99988
112:00:00	0.99997	0.99985
113:00:00	0.99997	0.99978
114:00:00	0.99996	0.99975
115:00:00	0.99994	0.99971
116:00:00	0.99992	0.99967
117:00:00	0.99982	0.99962
118:00:00	0.99892	0.99945
119:00:00	0.99764	0.99845
120:00:00	0.99344	0.99509
121:00:00	0.89337	0.60613
122:00:00	0	0.54091
123:00:00	0	0

Optimized Coordinates			Н	5.229257	4.518453	4.274210	
				C	1.592612	7.122920	6.153937
2-Co				C	1.721161	5.733823	6.003519
C	5.920407	7.859000	4.281296	C	2.849053	5.196166	5.431691
C	6.075995	6.456177	4.070344	C	5.465888	10.544234	4.804538
C	5.098653	5.585557	4.425935	C	6.690543	10.128511	4.253508
C	3.882298	6.049797	5.011957	C	6.914598	8.803633	3.978322
C	3.689315	7.431072	5.202436	C	0.363121	7.725634	6.750654
C	4.723189	8.349408	4.836342	Н	-0.231558	8.228963	5.979346
Н	7 000478	6 096116	3 629753	Н	0.627001	8 477849	7 499883

Н	-0.262537	6.965277	7.221761	\mathbf{C}	3.815357	6.129541	4.929821
C	5.232300	11.977917	5.145287	C	3.712114	7.524763	5.154597
Н	5.885234	12.634070	4.568219	C	4.757734	8.387725	4.784303
Н	5.440149	12.149821	6.207546	Н	6.869626	6.078611	3.397077
Н	4.188671	12.251188	4.970884	Н	5.067167	4.565805	4.096961
N	4.495450	9.668916	5.063577	C	1.611656	7.285655	6.168536
N	2.563122	7.952711	5.759809	C	1.673474	5.910850	5.998080
Н	7.451411	10.871688	4.042564	C	2.769414	5.321827	5.364633
Н	7.853641	8.477432	3.541889	C	5.602273	10.571795	4.742703
H	0.914835	5.092082	6.341340	C	6.746083	10.371793	4.093638
H	2.950849	4.122264	5.306869	C	6.908344	8.779836	
Co	2.539470	9.964125	5.676234				3.781347
N	1.511773	11.604903	5.087393	C	0.430728	7.938545	6.810756
N	2.344394	10.852546	7.525611	Н	-0.119252	8.544701	6.080723
C	1.439608	11.862781	7.461036	Н	0.747789	8.616793	7.609509
C	0.976902	12.248495	6.163176	Н	-0.250328	7.195061	7.230150
C	0.965697	12.544459	8.598734	C	5.428484	12.005804	5.123197
C	-0.015087	13.571369	8.449361	Н	6.236772	12.620078	4.722275
C	-0.469914 0.028206	13.920717 13.281444	7.221773 6.045716	Н	5.413421	12.114262	6.213533
C C	2.866244	10.529520	8.708747	Н	4.473153	12.393219	4.752944
C	2.459845	11.180683	9.885340	N	4.605433	9.726816	5.077608
C	1.505904	12.167447	9.838016	N	2.606574	8.096832	5.748885
C	-0.364917	13.644618	4.749336	Н	7.513822	10.850015	3.834143
C	1.130574	11.976760	3.860659	Н	7.803232	8.429422	3.276727
C	0.189650	12.999882	3.670266	Н	0.850494	5.300517	6.353799
Н	-0.091708	13.276722	2.660448	Н	2.811509	4.247532	5.212350
Н	-1.093749	14.436628	4.607328	Co	2.791626	10.074740	5.851898
Н	-0.384866	14.069751	9.339672	N	1.571343	11.497779	5.167042
Н	-1.211063	14.705848	7.109206	N	2.402668	10.900933	7.628350
Н	2.902016	10.881536	10.828928	C	1.426288	11.864644	7.514212
Н	1.170370	12.662435	10.744240	C	0.995246	12.188881	6.216715
C	3.910874	9.465757	8.741925	C	0.860095	12.506356	8.644587
Н	3.631564	8.639799	8.083472	C	-0.152446	13.494463	8.428290
Н	4.070643	9.091125	9.754014	C	-0.557857	13.817377	7.176666
Н	4.861924	9.867673	8.374926	C	0.003918	13.181171	6.023066
C	1.745643	11.273930	2.696672	C	2.838910	10.567591	8.858487
H	2.833338	11.405280	2.703420				
Н	1.357075	11.659234	1.753707	C	2.318222	11.158987	10.000137
Н	1.539594	10.198833	2.740117	C	1.322244	12.132421	9.901554
				C	-0.370648	13.482658	4.718333
3-Co)			C	1.185254	11.817280	3.910811
C	5.911765	7.877729	4.138619	C	0.237346	12.798313	3.663887
C	5.985969	6.469294	3.894071	H	-0.034867	13.020861	2.637904
C	4.990439	5.634226	4.279567	Н	-1.124613	14.239910	4.528291
	オ・ノノリオング	J.UJ-744U	7.417301	Н	-0.590332	13.981978	9.294273

Η	-1.324745	14.571474	7.023159	Н	4.801523	9.875290	8.384869
Η	2.699505	10.852938	10.967841	C	1.825009	11.061220	2.794289
Η	0.908525	12.598008	10.790828	Н	2.910908	11.210852	2.799286
\mathbf{C}	3.910805	9.531237	8.923019	Н	1.434036	11.383547	1.827968
Η	3.580473	8.607548	8.434538	Н	1.644180	9.985199	2.902736
Н	4.189279	9.304083	9.953302				

References

- [1] Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. *J. Synchr. Radn.*, **2005**, *12*, 537-541; Newville, M., IFEFFIT: interactive EXAFS analysis and FEFF fitting. *J. Synchr. Radn.* **2001**, *8*, 322-324; Rehr, J. J.; Albers, R. C. *Rev. Mod. Phys.* **2000**, *72*, 621-654.
- [2] Bruker AXS, version 2015.5-2, 2015.
- [3] Bruker AXS, version 2014/5, Krause, Herbst-Irmer, Sheldrick & Stalke, J. Appl. Cryst. 2015, 48, 3-10.
- [4] Version 2018/2: Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.
- [5] Version 1.2.10; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. *J. Appl. Crystallogr.* **2009**, *42*, 339-34.
- [6] Version 2018/3, Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.
- [7] Bruker. APEX3 (Version 2015.9-0), SAINT (Version 8.37A) and SADABS (Version 2016/2). Bruker AXS Inc., Madison, Wisconsin, USA, **2015**.
- [8] G. Sheldrick, Acta Cryst. A 2008, 64, 112-122.
- [9] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, 42, 339-341.
- [10] Fenn, T. D., Schnieders, M. J. & Brunger, A. T. Acta Crystallogr. 2010, D66, 1024-1031.
- [11] Neese, F. "The Orca Program System" Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 73-78.; H Kr: A. Schaefer, H. Horn and R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; Rb Xe: A. Schaefer, C. Huber and R. Ahlrichs, J. Chem. Phys. 1994 100, 5829; F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.