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Synthesis

General

All of the organic solvents used in the synthesis were of analytical grade. Anhydrous butanol for the
cyclotetramerization was freshly distilled from magnesium. Unsubstituted zinc phthalocyanine (ZnPc) was
purchased from Sigma-Aldrich. All of the other chemicals for the syntheses were purchased from certified
suppliers (i.e., Sigma-Aldrich, TCI Europe, Acros, and Merck) and used as received. Deionized water was
prepared using Millipore purification system (Merck-Millipore, Darmstadt, Germany). Thin layer
chromatography was performed on Merck aluminum sheets coated with silica gel 60 F,s,. Merck Kieselgel 60
(0.040-0.063 mm) was used for column chromatography. The melting points were measured on an
Electrothermal IAg200-series digital melting-point apparatus (Electrothermal Engineering, Southend-on-Sea,
Essex, Great Britain). The infrared spectra were measured on a Nicolet 6700 spectrophotometer in ATR mode.
The *H and 3C NMR spectra were recorded on a VNMR S500 NMR spectrometer. The chemical shifts are
reported relative to Si(CHj;), and were referenced to the signal of the solvent. The UV-Vis spectra were recorded
using a Shimadzu UV-2600 spectrophotometer. Elemental analysis was carried out using a Vario Micro Cube
Elemental Analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Fluorescence emission and
excitation spectra were measured using a FSs5 spectrofluorimeter (Edinburgh Instruments) equipped with an
extension to the near-infrared region (photomultiplier R2658P). The samples and reference were excited at 580
nm (TPyzPz 45 and 6¢), 595 nm (TPyzPz 35 and 5¢, 7n, 8p) or 600 nm (TPyzPz 14 and 24). MS (APCI) was recorded
in positive mode on Agilent 500 Ion Trap LC/MS (Agilent Technologies, Santa Clara, California, USA) by direct
infusion into detector of the sample dissolved in methanol (MeOH). The MALDI-TOF mass spectra were
recorded in a positive reflectron mode on a 4800 MALDI TOF/TOF mass spectrometer (AB Sciex, Framingham,
MA, USA). The trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]-malononitrile was used as a matrix.
The instrument was calibrated externally with a five-point calibration using a Peptide Calibration Mix1 kit
(LaserBio Laboratories, Sophia- Antipolis, France). Compounds 4-hydroxy-3,5-diisopropylbenzaldehyde’, 102,
133 and 174 and TPyzPzs 1a3, 24%, 705, 8p° and 9Zn and gH® were prepared according the literature.

Synthesis of precursors

5-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16-yl)-6-(2-(2-hydroxyethoxy)ethoxy)pyrazine-2,3-
dicarbonitrile (11): 2,2"-oxydi(ethan-1-ol) (240 mg, 2.26 mmol) was dissolved in 1M NaOH in water (2.26 mL)
and compound 10 (875 mg, 2.06 mmol) was added in tetrahydrofuran (THF) (15 mL). Reaction mixture was
stirred for 1 hour at rt. Solvents were evaporated to dryness under reduced pressure and directly purified by
column chromatography on silica with acetone as a mobile phase (R¢ product = 0.19). Yellow oil, yield 801 mg
(79 %). 'H-NMR (acetone-ds, 500 MHz) 3.52 - 3.55 (4H, m, crown-H); 3.61 - 3.65 (16H, m, crown-H); 3.82 (4H,
t, J = 6 Hz); 3.89 - 3.91 (2H, m); 4.05 - 4.09 (4H, m) and 4.54 - 4.56 ppm (2H, m, CH,OAr); 3C-NMR (acetone-
ds, 125 MHz) 150.6, 148.1, 125.4, 116.5, 115.7, 115.4, 73.5, 73.4, 71.43, 71.30, 71.24, 71.23, 71.17, 69.0, 68.4, 62.00, 61.96
and 52.7 ppm; IR (ATR, cm™) 2918, 2850, 2226(CN), 1558, 1515, 1449, 1428, 1351, 1292, 1224, 1121, 925 and 759. MS
(APCI*) m/z: 496.3 [M+H]".

5-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16-yl)-6-(2-(2-((tetrahydro-2H-pyran-3-
yl)oxy)ethoxy)ethoxy)pyrazine-2,3-dicarbonitrile (12): Mixture of compound 11 (800 mg, 1.61 mmol), 3,4-
dihydro-2H-pyran (543 mg, 6.46 mmol) and pyridinium p-toluenesulfonate (32 mg, 0.13 mmol) in chloroform
(20 mL) was refluxed for 4 h. Colour changed to orange. Then, water was added (60 mL) and product was
extracted with ethyl acetate (4x). Organic layers were collected, dried over anhydrous Na,SO,, evaporated to
dryness and crude product was purified by column chromatography on silica with ethyl acetate/MeOH 8:1as a
mobile phase (R¢ product = 0.47). Yellow oil, yield 510 mg (55 %). 'H-NMR (CDCl;, 500 MHz) 1.48 - 1.60 (4H, m,
pyran-H); 1.67 - 1.84 (2H, m, pyran-H); 3.46 - 3.52 (1H, m, pyran-H); 3.61 - 3.68 (18H, m, crown-H); 3.75 (4H, t,
J=6Hz); 3.81 - 3.86 (4H, m); 4.03 (4H, br s); 4.49 - 4.52 (2H, m, CH,OAr) and 4.59 ppm (1H, t, J = 4 Hz, pyran-
H); 3C-NMR (CDCl,, 125 MHz) 148.9, 146.6, 124.9, 115.8, 114.5, 114.2, 99.1, 77.3, 77.0, 76.7, 70.7, 70.5, 70.44, 70.43,
68.4, 67.3, 66.6, 62.4, 52.0, 30.5, 25.3 and 19.5 ppm; IR (ATR, cm™) 2965, 2866, 2226(CN), 1556, 1513, 1426, 1350,
1288, 1224, 1120, 1076, 1033, 987, 930, 872 and 814. MS (APCI*) m/z: 580.3 [M+H]*, 496.7 [M-C;HsO]*.

5-((1,4,7,10-tetraoxacyclododecan-2-yl)methoxy)-6-chloropyrazine-2,3-dicarbonitrile (14): 5,6-
dichloropyrazine-2,3-dicarbonitrile (500 mg, 2.51 mmol) was added to a mixture of 2-hydroxymethyl-12-crown-
4 (570 mg, 2.76 mmol) and triethylamine (509 mg, 5.03 mmol) in THF (15 mL). Reaction mixture turned red,
stirring continued for 2.5 h at rt. Solvent and triethylamine were evaporated under reduced pressure and crude
product was directly purified by column chromatography on silica with ethyl acetate as a mobile phase (R¢
poduct = 0.51). Yellow solid, yield 543 mg (59 %). Melting point 111.5-115.2 °C; 'H-NMR (acetone-ds, 500 MHz)
3.55 - 3.85 (14H, m, crown-H); 4.23 (1H, m, CH); 4.53 (1H, dd, J, = 7 Hz, J, = 7 Hz, CH,OAr) and 4.69 ppm (1H,
dd, J; = 4 Hz, J, = 4 Hz, CH,OAr); 3C-NMR (acetone-ds, 125 MHz) 158.6, 143.4, 130.3, 124.7, 113.88, 113.86, 77.6,
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72.4, 72.3, 7.4, 71.3, 71.17, 71.15 and 70.8 ppm; IR (ATR, cm™) 2927, 2864, 2242(CN), 1545, 1528, 1461, 1437, 1356,
1306, 1231, 1159, 1128, 1101, 1065, 1041, 1027, 976, 943, 919, 853 and 830.

5-((1,4,7,10-tetraoxacyclododecan-2-yl)methoxy)-6-(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-
yl)pyrazine-2,3-dicarbonitrile (15): 1-aza-15-crown-5 (596 mg, 2.72 mmol) in THF (5 mL) was added to a
mixture of compound 14 (530 mg, 1.44 mmol) and anhydrous K,CO; (397 mg, 2.87 mmol) in THF (10 mL). It
turned orange immediately. Stirring continued for next 3h at rt. Solvent was evaporated under reduced pressure
and crude product was purified by column chromatography on silica with ethyl acetate/acetone 1:1 as a mobile
phase (R¢ poduct = 0.21). Yellow oil, yield 743 mg (94 %). 'H-NMR (acetone-de, 500 MHz) 3.56 - 3.89 (30H, m,
crown-H); 3.98 - 4.04 (4H, m, crown-H); 4.1 (1H, m, CH); 4.42 (1H, dd, J, = 7 Hz, J,= 7 Hz, CH,OAr) and 4.49
ppm (1H, dd, J, = 4 Hz, ], = 4 Hz, CH,OAr); 3C-NMR (acetone-de, 125 MHz) 150.7, 147.9, 125.4, 116.6, 115.6, 115.3,
77.6, 721, 71.7, 71.6, 71.4, 71.2, 7114, 7111, 70.8, 70.7, 70.3, 70.1, 69.4 and 54.1 ppm; IR (ATR, cm™) 2863, 2226(CN),
1558, 1522, 1508, 1428, 1354, 1289, 1255, 1223, 1120, 982, 926 and 840. MS (APCI*) m/z: 552.3 [M+H]*.

5,6-bis(4-(hydroxymethyl)-2,6-diisopropylphenoxy)pyrazine-2,3-dicarbonitrile (16): Compound 18
(1.203 g, 5.78 mmol) was dissolved in 1M NaOH in water (5.78 mL) with THF (10 mL) and 5,6-dichloropyrazine-
2,3-dicarbonitrile (500 mg, 2.51 mmol) was added in THF (10 mL). Reaction mixture was stirred for 1 hour at rt.
Solvents were evaporated, water was added (5o mL) and crude product was extracted to ethyl acetate (3x50
mL). Organic layers were collected, dried over anhydrous Na,SO,, and solvent was evaporated to dryness.
Product was purified by column chromatography on silica with chloroform/acetone 9:1 as a mobile phase.
White solid, yield 1.34 g (98 %). Melting point 245.4-245.8 °C; 'H-NMR (aceton-ds, 500 MHz) 7.37 (4H, s, ArH);
4.70 (4H, d, ] = 5.9 Hz, CH,OH); 4.29 (2H, t, ] = 5.9 Hz, OH); 3.06 (4H, hept, ] = 6.9 Hz, CH) and 1.23 ppm (24H,
d, J = 7.0 Hz, CH;); 3C-NMR (aceton-ds, 125 MHz) 152.3, 146.0, 142.6, 140.7, 125.3, 123.6, 114.3, 64.6 and 28.4 and
23.6 ppm; IR (ATR, cm™) 2967, 2933, 2872, 2241 (CN), 1607, 1548, 1508, 1465, 1444, 1405, 1385, 1362, 1334, 1271, 1232,
188, 1157, 1114, 1089 and 1018.

4-(hydroxymethyl)-2,6-diisopropylphenol (18): NaBH, (303 mg, 8.0 mmol) was added dropwise to a
solution of 4-hydroxy-3,5-diisopropylbenzaldehyde (1.5 g, 7.27 mmol) in MeOH (70 mL) and the mixture was
left stirring for 30 min at rt. Reaction was acidified by diluted H,SO,, water was added (50 mL) and crude
product was extracted to ethyl acetate (3x50 mL). Organic layers were collected, dried over anhydrous Na,SO,
and solvent was evaporated to dryness. Product was purified by column chromatography on silica with
chloroform/acetone 9:1 as a mobile phase. Colourless oil, yield 1.42 g (94 %). 'H-NMR (aceton-ds, 500 MHz) 7.05
(2H, s, ArH); 7.00 (1H, s, ArOH); 4.53 (2H, dd, J, = 5.8 Hz, ], = 0.6 Hz, CH,OH); 3.92 (1H, td, J, = 5.8 Hz, J, = 0.5
Hz, CH,OH); 3.37 (2H, hept, ] = 6.9 Hz, CH) and 1.22 ppm (12H, d, ] = 6.9, 0.5 Hz, CH;); 3C-NMR (aceton-ds, 125
MHz) 145.5, 130.4, 129.7, 117.8, 60.2, 22.5 and 18.4 ppm; IR (ATR, cm™) 2961, 2870, 1598, 1468, 1444, 1383, 1363,
1285, 1259, 1201, 1171, 1153, 1122, 1104, 1091, 1075 and 1004.

Synthesis of TPyzPzs

General method of statistical condensation: Precursors 12 or 15 (1 equiv) and 16 or 17 (3 equiv) with
anhydrous zinc acetate (4 equiv) were dissolved under an argon atmosphere in a small amount of anhydrous
pyridine (typically 1-3 mL). The reaction mixture was refluxed for sh. Then, pyridine was partially evaporated
followed by the addition of water (20 mL) to afford a dark suspension that was collected by filtration and washed
several times with water. The target congener was isolated by column chromatography on silica. The mobile
phases and quantities of starting compounds are provided below.

TPyzPz 35: Compound 12 (346 mg, 0.60 mmol), compound 17 (549 mg, 1.79 mmol), zinc acetate (438 mg, 2.39
mmol). Mobile phase: chloroform/MeOH/THF 10:0.5:1 (3x) (R¢ product = 0.59), then with CHF/THF 10:1. Green
oily solid, yield 48 mg (5 %). 'H-NMR (CDCl;/pyridine-ds 3:1, 500 MHz) 1.21 - 1.51 (6H, m, pyran-H); 1.88 (9H, s,
CCH,); 1.90 (45H, s, CCH;); 318 - 3.23 (1H, m, pyran-H); 3.32 - 3.43 (18H, m, crown-H); 3.47 - 3.61 (10H, m); 3.66
- 3.78 (4H, br s); 419 (2H, t, ] = Hz, 4 Hz, CH,OAr) and 4.34 ppm (1H, t, ] = 4 Hz, pyran-H); 3C-NMR
(CDCl,y/pyridine-ds 31, 125 MHz) 159.1, 158.6, 158.23, 158.20, 157.9, 157.8, 152.6, 152.4, 151.6, 1515, 151.3, 150.80,
150.75, 150.50, 150.48, 148.8, 146.8, 144.9, 144.7, 144.5, 144.4, 144.3, 125.1, 115.9, 114.8, 114.5, 99.2, 71.0, 70.7, 70.6,
68.6, 67.5, 66.9, 62.5, 52.3, 31.1, 311, 30.86, 30.82, 30.8, 30.3, 30.1, 25.6 and 19.7 ppm. IR (ATR, cm™): 2972, 2867,
1744, 1556, 1514, 1442, 1427, 1362, 1350, 1286, 1255, 1225, 1123, 1077, 1033 and 978; MS (MALDI-TOF) m/z: 1561.4
[M]*; 1584.4 [M+Nal*; 3122.7 [2M]*; Amax(THF, £) 654 (183 000), 596sh, 429sh and 377 nm (141 ooo dm3mol*cm™).

TPyzPz 45: Compound 12 (100 mg, 0.172 mmol), compound 16 (280 mg, 0.518 mmol), zinc acetate (127 mg,
0.69 mmol). Mobile phase: chloroform/MeOH/THF 20:3:2 (2x) (R¢ product = 0.26). Blue oily solid, yield 30 mg
(8 %). 'H-NMR (CDCl;/pyridine-d; 3:1, 500 MHz) 0.99 - 1.15 (78H, m, CH, and pyran-H); 3.07 - 3.26 (12H, m,
CH(CHs;),); 3.36 - 3.96 (34H, m, crown-H, CH,O in lariat ether and CH,O in pyran); 4.39 (1H, br s, OCHO); 4.60
(2H, s, CH,OH); 4.65 (2H, s, CH,OH); 4.69 (2H, s, CH,OH); 4.87 (6H, s, CH,OH); 5.27 (6H, br s, OH) and 7.21
- 7.39 ppm (12H, m, ArH, partially overlapped by solvent signal); 3C-NMR (CDCl;/pyridine-ds 3:1, 125 MHz)
151.6, 147.3, 147.0, 142.6, 142.5, 141.00, 140.98, 140.8, 140.4, 140.3, 127.9, 124.2, 99.2, 70.5, 69.0, 66.9, 65.0, 62.4, 50.3,
44.7, 321, 31.6, 31.2, 30.8, 30.6, 30.4, 29.9, 29.7, 29.5, 28.5, 25.6, 23.7 ppm; IR (ATR, cm™) 2963, 2928, 2870, 1467,
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1402, 1364, 1285, 1246, 1215, 1158, 1101, 1056, 1034 and 927; MS (MALDI-TOF) m/z: 2269.9 [M]*; 2292.9 [M+Na]*;
2308.8 [M+K]*; Amax(THF, €) 637 (183 000), 579sh and 370 nm (175 ooo dm3mol*cm™).

TPyzPz 5¢: Compound 15 (100 mg, 0.181 mmol), compound 17 (167 mg, 0.544 mmol), zinc acetate (133 mg,
0.725 mmol). Mobile phase: chloroform/MeOH/THF 10:0.51 (Rf product = 0.39), then twice with
chloroform/MeOH/THF 10:0.251 (R product = o0.5). Green oily solid, yield 27 mg (9 %); 'H-NMR
(CDCly/pyridine-ds 3:1, 500 MHz) 1.93 (9H, s, CCH;); 1.947 (27H, s, CCH;); 1.952 (18H, s, CCH;); 3.37 - 4.28 (35H,
m); 4.93 (1H, dd, J; = 6 Hz, J, = 6 Hz, CH,OAr) and 5.02 ppm (1H, dd, J; = 5 Hz, J, = 5 Hz, CH,OAr); 3C-NMR
(CDCl,/pyridine-ds 3:1, 125 MHz) 158.7, 158.2, 157.9, 157.8, 157.6, 157.4, 152.2, 151.9, 151.22, 151.20, 150.9, 150.49,
150.45, 150.20, 150.17, 148.1, 146.2, 144.55, 144.47, 144.3, 144.2, 144.04, 144.02, 143.97, 137.5, 124.7, 115.8, 114.4, 114.1,
76.7, 71.04, 71.02, 70.86, 70.81, 70.7, 70.45, 70.32, 70.23, 70.21, 70.05, 69.7, 69.4, 68.2, 53.6, 53.4, 51.06, 51.04, 51.03,
51.00, 50.97, 30.7, 30.6, 30.50 and 30.46 ppm; IR (ATR, cm™) 2916, 2863, 1524, 1470, 1446, 1427, 1362, 1252, 1138,
1101, 1045, 976, 847 and 784; MS (MALDI-TOF) m/z: 1533.3 [M]*, 1556.3 [M+Na]*; 3066.7 [2M]*; 3089.6 [2M+Na]*;
Amax (THF, €): 653 (142 000), 594sh and 376 nm (100 0coo dm3mol“cm™).

TPyzPz 6¢: Compound 15 (100 mg, 0.181 mmol), compound 16 (295 mg, 0.544 mmol), zinc acetate (133 mg,
0.725 mmol). Mobile phase: chloroform/MeOH/THF 10:1:1, then with chloroform/MeOH/THF 10:0.5:1 (R¢
product = 0.40). Blue oily solid, yield 20 mg (5 %). 'H-NMR (CDCl,/pyridine-ds 3:1, 500 MHz) 0.91 - 1.24 (72H,
m, CH;); 1.92 - 2.00 (12H, m, CHCH,); 3.08 - 3.26 (4H, m, crown-H); 3.32 - 4.10 (30H, m, crown-H); 4.66 (2H, d,
J =7 Hz, CH,OH); 4.83 - 4.89 (4H, m, CH,OH); 5.03 (2H, s, CH,OH); 5.18 - 5.28 (4H, m, CH,OH); 5.35 - 5.52
(6H, m, OH) and 718 - 7.28 ppm (12H, m, ArH, partially overlapped by solvent signal); 3C-NMR
(CDCly/pyridine-ds 3:1, 125 MHz) 171.3, 171.1, 148.4, 142.1, 141.9, 141.3, 1411, 140.4, 128.0, 125.1, 124.9, 108.1, 107.9,
106.7, 98.4, 71.4, 70.8, 70.7, 70.5, 67.9, 67.6, 67.5, 67.1, 66.9, 65.4, 65.2, 65.1, 53.9, 30.0, 29.82. 29.78, 29.73, 28.7
and 28.6 ppm; IR (ATR, cm™) 2966, 2930, 2870, 1734, 1541, 1522, 1489, 1398, 1363, 1338, 1286, 1245, 1214, 1158, 1101,
1056 and 927; MS (MALDI-TOF) m/z: 2365.9 [M+2Na+2K]*, 2388.9 [M+3Na+2K]*; Amax (THF, £): 637 (128 000),
579sh and 365 nm (115 ooo dm3mol“cm™).

Always-ON control TPyzPz was isolated from synthesis of unsymmetrical TPyzPz sensors 48 and 6¢ as a
first (dark blue) fraction in column chromatography. 'H-NMR (CDCl;/pyridine-d; 3:1, 500 MHz) 0.88 - 1.11 (96H,
m, CH;); 3.07 (16H, hept, | = 6.8 Hz, CHCHj,); 4.85 (16H, s, CH,OH) and 7.21 ppm (16H, s, ArH); 3C-NMR
(CDCl,/pyridine-ds 3:1, 125 MHz) 151.4, 149.8, 146.6, 142.4, 140.5, 139.4, 64.5, 28.0 and 23.2 ppm; MS (MALDI-
TOF) m/z: 2233.0 [M]*, 2256.0 [M+Na]*, 2271.9 [M+K]*

HO

always-ON
control TPyzPz

Alternative synthesis of cpd. 16
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5,6-bis(4-formyl-2,6-diisopropylphenoxy)pyrazine-2,3-dicarbonitrile ~ (19): 5,6-dichloropyrazine-2,3-
dicarbonitrile (1.0 g, 5.02 mmol) in THF (20 mL) was added to 4-hydroxy-3,5-diisopropylbenzenaldehyde' (2.17
g, 10.56 mmol) in 1M NaOH (10.56 mL) at rt. Product was formed immediately. Product was extracted with
chloroform/brine (50 mL, 3x), organic layers were collected, dried over anhydrous Na2SO4 and evaporated to
dryness. Crude product was purified by column chromatography on silica with toluene/chloroform 1:1 (R=0.29)
and crystallized from EtOH. White solid, yield 1.82 g (67 %). 'H-NMR (aceton-ds, 500 MHz) 10.12 (2H, s, CHO);
7.98 (4H, s, ArH); 3.16 (H, hept, ] = 6.8 Hz, CHCHj;) and 1.31 ppm (24H, d, J = 6.7 Hz, CH3); 13C-NMR (aceton-
ds, 125 MHz) 192.3, 151.60, 151.57, 142.7, 136.9, 127.0, 125.8, 114.1, 28.5 and 23.0 ppm; IR (ATR, cm™) 2972, 2939,
2872, 2241(CN), 1698, 1598, 1550, 1432, 1386, 1363, 1263, 1277, 1224, 1175, 1158, 1114, 1097, 1007, 967, 945, 927 and
882.

5,6-bis(4-formyl-2,6-diisopropylphenoxy)pyrazine-2,3-dicarbonitrile (16): Compound 19 (100 mg, o0.19
mmol) and NaBH, (14 mg, 0.37 mmol) was dissolved in THF (5 mL) and stirred at rt for 1 h. Water (30 mL) was
slowly added and solution was neutralized to weakly acidic pH by diluted H2SO4. Product was extracted with
ethyl acetate (3x20 mL), organic layers were collected, dried over anhydrous Na,SO, and evaporated to dryness.
Crude product was purified by column chromatography on silica with chloroform/acetone 9:1 as an eluent.
Yellow oil, yield 68 mg (60 %). NMR spectra corresponded well to the data of 16 prepared from 5,6-
dichloropyrazine-2,3-dicarbonitrile and compound 18.

Synthesis of nanoparticles (3s@NPs)

First, 180 mg of Tween 80, 0.4 mL of butanol, and 10 mL of deionized water were added to a vial (40 mL) and
vigorously stirred for 15 min. Then, a solution containing 0.1 mg of 3z and 0.1 mL of pyridine in 0.1 mL of DMF
was added dropwise to the micellar solution. After one hour, 0.03 mL of triethoxyvinylsilane were added
dropwise, and the emulsion was stirred for 3 days. The residual solvents and Tween 8o were removed by
dialysing the nanoparticle dispersion against deionised water in a 12-14 kDa cut-off cellulose membrane
(Spectrum Laboratories, Inc.) for 96 h where the water was changed every 24 hours. The average hydrodynamic
diameter was 7 nm with a low polydispersity (PDI = o0.15). (Fig. S12).

Methods

Fluorescence titration experiments of NP: A total of 2.5 mL of a 3B@NP (c ~ 1 uM) stock solution in water
was transferred to a 10 x 10 mm fluorescence quartz cell, and the absorption and emission spectra (Aexc = 595
nm) were recorded. Then, defined amounts (typically 5-50 pL) of the aqueous analyte stock solution (1 M) were
subsequently added and the absorption and emission spectra were measured after each addition. The
fluorescence intensity was corrected to the same absorption at the excitation wavelength and plotted as a
function of the analyte concentration.

Job’s method of continuous variation: To avoid any influence from the dilution by MeOH, stock solutions
of TPyzPz (100 pM) in THF and of KSCN (1 mM) in MeOH were prepared. A series of fluorescence measurements
with different TPyzPz/KSCN ratios (20 measurements ranging between 1:5 to 51 ratios) was performed as
follows: an appropriate amount of THF that resulted in a the total volume of the solution being 2.0 mL after
addition of stock solutions of TPyzPz and KSCN was transferred to a 10 x 10 mm fluorescence quartz optical
cell. A stock solution containing compound TPyzPz was added, and the fluorescence emission spectrum was
recorded (Aexe = 591 nm) and obtained area under the emission curve was considered as Fo. An appropriate
amount of the KSCN stock solution was added to yield a total concentration of components 10 pM ([TPyzPz] +
[K*] = 10 pM), and the fluorescence emission spectrum was recorded under the same conditions as before
(Fkscn). The final stoichiometry of the TPyzPz/KSCN complex was determined from the Job s plot constructed
from the dependence of Fxscn-Fo on [TPyzPz]/([TPyzPz]+[KSCN]).

Cells for in vitro sensing: The human cervical carcinoma (HeLa) cell line was purchased from the American
Type Cell Culture Collection (ATCC; USA). The cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) without phenol red (Lonza, Belgium) and supplemented with 10 % FBS (Sigma), 1 %
penicillin/streptomycin solution (Lonza), 10 mM HEPES buffer (Sigma, Germany), and 4 mM L-glutamine
(Lonza), further referred to as the cell culture medium. The cells were cultured in 75 cm? tissue culture flasks
(TPP, Switzerland) and maintained in a CO2 incubator at 37 °C in a humidified atmosphere of 5 % CO, and
subcultured every 3—4 days.
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Toxicity assessment: HeLa cells were seeded on 96-well plates (TPP, Switzerland) at a density of 7.5 x 103 cells
per well. The cells were allowed to grow in a CO2 incubator for 24 hours prior to 4 addition. A wide
concentration range (10 nM to 10 ooo nM) was used. After 24 incubation with the sensor in the absence of light,
the cellular viability was evaluated using a neutral red (Sigma) uptake assay. The optical density was measured
using a Tecan Infinite 200 M plate reader (Tecan, Austria), and the viability is presented as a percentage (+
standard deviation) of the untreated control cells incubated under the same experimental conditions (100 %).
Prior to the cellular viability assessment, each sample was observed using an inverted microscope to detect the
presence of precipitated 4g. The solubility limit in the cell culture media was determined to be 5 pM.

Subcellular localization: The cells incubated with 1 pM 4 for 12 hours were washed with prewarmed serum
free medium and stained with 0.2 pM MitoTracker Green FM (Molecular Probes) and 0.25 pM LysoTracker Blue
DND-22 (Molecular Probes) in serum free medium containing KSCN (10 mM) for 20 min. After staining, the
cells were washed twice with prewarmed serum free medium for 5 min to wash out any free fluorescent probe.
The sample was imaged using a Nikon Eclipse Ti-E fluorescence microscope as described above. DAPI, FITC,
and Cys filter sets were used for visualization of lysosomes, mitochondria and 4s, respectively.

Cellular uptake: HeLa cells were seeded into 6 cm Petri dishes (TPP) at a density of 5.0 x 105 cells per dish.
The medium was removed 24 h after the seeding, and 5 mL of a 0.5 pM solution of always-ON control TPyzPz
in a cell culture medium was added (prepared from a 10 mM stock solution in DMSO). The cells were washed
twice with 5 mL of prewarmed phosphate-buffered saline (PBS; Sigma) after o, 0.5, 1, 2, 4, 6, 12 and 24 h. PBS (5
mL) was added, and the cells were scraped and transferred to 15 mL centrifugation tubes (TPP), petri dishes
were washed again with PBS (5 mL) to harvest all the remaining cells and centrifuged for 5 min at 70 g. Pellets
were left to dry and 500 pL of DMSO was added and cells were resuspended. Lysis of the cells was performed
overnight at —80 °C. The samples were quickly thawed at 37 °C and frozen at —-8o °C for an additional 2 h. The
fluorescence of the thawed samples (Aex = 369 nm, Aem = 640 Nm) was measured using an FSs spectrofluorimeter.
Nonspecific fluorescence was excluded by the control experiments. A calibration curve was constructed using
dilutions of the TPyzPz into the cell lysate prepared as described above. The uptake experiments were
performed in duplicate. The amounts of protein in the samples were assessed using the BCA (bicinchoninic
acid) method. A calibration curve was created using 10 pL of bovine serum albumin dissolved in MQ water at
concentrations of o, 50, 100, 200, 400, 600, 800, 1000 and 2000 pg/mL. A working solution of BCA (4%
CuSO,-6H,0 mixed ad hoc with BCA stock solution at a 1:50 ratio) was added to 10 pL of the samples. 10 pL of
DMSO or MQ water was added to a calibration curve or samples, respectively. Absorbance (562 nm) was
measured after 30 min incubation at 37 °C using a Tecan Infinite M 200 plate reader. Experiments were
performed in dark the entire time.
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Absorption spectra
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Fig. S1: Absorption spectra of TPyzPzs 3 or 4g (14 M) in different solvents.
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Titration experiments — the role of the structure of recognition moiety

Table S1: Sensing properties of studied sensors in THF (analytes in the form of triflates)

1A 2A 3B 48 5¢C 6¢ 7D 8p
Free form @& (Fmax) 0.012 (666) o.o1 (667) 0.012 (667) 0.014 (643) 0.017 (666) 0.010 (646) 0.00039 (670) 0.0010 (673)
Amax (€) 654 (144 000) 654 (165 000) 654 (183 000) 637 (183 000) 653 (142 000) 637 (128 000) 654 (158 000) 654 (152 000)
Na* Dr 0.012 0.015 0.013 0.027 0.035 0.021 0.0013 0.0050
FEF (Ka) 1.0 1.4 11 1.9 2.0 (30) 2.1 (30) 3.3 5.0
K+ Dr 0.013 0.044 0.092 0.086 0.14 0.090 0.0055 0.0050
FEF (K4) 11 4.0 (540) 7.4 (490) 6.0 (10 800) 7.9 (750) 8.9 (4 100) 14 5.0
Li+ Dr 0.007 0.011 0.012 0.013 0.017 0.0081 0.0004 0.0008
FEF <17 <1” <1” <1” <1’ <1’ <1 <1
NH,* Dr 0.007 0.011 0.029 0.023 0.016 0.0095 0.0004 0.0007
FEF <1’ 1.0 2.3 1.6 <1’ <1’ <1’ <1
Cax Dr 0.008 0.048 0.042 0.018 0.016 0.0095 0.0022 0.0008
FEF (Ka) <1” 4.4 (42 800) 3.4 1.2 <1” 1.0 5.5 <1
Ba* Dr 0.008 0.23 0.26 0.21 0.21 0.8 0.17 0.074
FEF (K») <1” 22 (1700)) 21 (10 100) 15 (53 100) 13 (1 200) 18 (18 500) 439 (69) 74
Mg Dr 0.008 o.o11 0.021 0.012 0.015 0.028 0.0079 0.036
FEF <1’ 1.0 <1” 1.0 <1’ 2.8 20 36

Amax - absorption maximum (nm), € - molar absorption coefficient (mol*dm3cm™), Fmax - fluorescence emission maximum, @x fluorescence quantum yield, FEF
- fluorescence enhancement factor for complete binding, Ka (in M) - apparent association constant of the formation of analyte-sensor complex (determined
from @x); *negligible decrease in FEF due to increase of polarity of medium
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Titration experiments - the role of counter anion

Table S2: Effect of the counter anion of sodium salt on the sensing properties of sensors in THF

1a 38 5¢ 8o

Free form @ (Frax) 0.012 (667) 0.013 0.017 (666) 0.00060 (670)

Amax (€) 654 (156 000) 654 (183 000) 653 (142 000) 654 (152 000)
CF3SO3 &: (FEF) 0.013 (1.1) 0.014 (1.1) 0.035 (2.0) 0.0050 (8.3)
Clos &: (FEF) 0.024 (2.0) 0.016 (1.2) 0.038 (2.3) 0.036 (61.0)
SCN- &: (FEF) 0.11(9.1) 0.14 (10.8) 0.15(9.2) 0.053 (88.2)
NOs &: (FEF) 0.012 (1.0) 0.016 (1.2) 0.017 (1.0) 0.00061 (1.0)
Br & (FEF) 0.019 (1.6) 0.038 (2.9) 0.031(1.9) 0.0031 (5.2))

Amax - Q band absorption maximum (nm), € - molar absorption coefficient (mol*dm=3cm-), Fmax - position of fluorescence emission maximum,
@ fluorescence quantum yield (unsubstituted zinc phthalocyanine was used as a reference (@ = 0.32 in THF?)), FEF - fluorescence enhancement
factor for complete binding (i.e., ratio of fluorescence intensity between ON and OFF state).
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Titration of control TPyzPzs 9Zn and 9H (without aza-crown moiety)
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MS spectra of mixtures of TPyzPzs 3g, 9Zn and 9H with various salts
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Fig. S16: MS spectra of TPyzPz 3g in MeOH taken in positive (ESI*) (a, c) or negative (ESI) mode (b, d).
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Fig. $17: MS spectra of TPyzPz 9Zn in MeOH taken in positive (ESI*) (a, c, e, g) or negative (ESI") mode
(b, d, f, h). MS spectra were taken before addition of salt (a, b) after addition of particular salt
(NaSCN, NaClO4 or NaCFsS0s; ratio of TPyzPz/salt 1:10)
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Fig. S18: MS spectra of metal-free TPyzPz 9H in MeOH taken in positive (ESI*) (a, c) or negative (ESI’)
mode (b, d). MS spectra were taken before addition of NaSCN (a, b) after addition of NaSCN (ratio of
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Titration experiments in water
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Fig S19: Increase of fluorescence of 3s@NP upon addition of different triflates in water (a) K*, (b) Ba%,
(c) insensitive analytes (Li*, Ca®* and Na*), d) K* in the presence of 150 mM Na*.
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Fig. S20: Size distribution of 3sg@NP obtained by DLS in water dispersions at room temperature.
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Titration of TPyzPzs with KSCN
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Fig. S21: Fluorescence response of TPyzPzs with recognition moiety B (a) and C (b) in THF upon addition
of KSCN. Comparison of TPyzPzs with recognition moieties A, B, C and D (c). Graph (d) shows the

enlarged area of graph (c).
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Study of the sensitivity of 4g toward KSCN in EtOH/water solutions
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Fig. S22: Changes in absorption and emission spectra of 4g (1 uM) upon addition of KSCN. Right column
represents appropriate FEF, the solid line is the least-square fit to the experimental points. Excitation
wavelength was 580 nm.
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Quantification of SCN in saliva
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Fig. $23: Dependence of fluorescence intensity of 4s on the concentration of KSCN added in the saliva
of a smoker. Data represent mean of three independent experiments. Inset depicts the linearity of the
fluorescence intensity used for the quantification of SCN™ concentration by the method of standard
addition. Excitation wavelength was 580 nm.
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In vitro SCN™ sensing
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Fig. S24: Subcellular localization of 4 evaluated by fluorescence microscopy. Cells were stained with
MitoTracker Green and LysoTracker Blue to visualize mitochondria and lysosomes, respectively. Crops
of selected area (side of cropped area measures 10 um) are presented as monochromatic images to
better visualize the fluorescence signal. Bar represents 20 um.
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Fig. S25: Toxicity of 4g in the absence of light evaluated on Hela cell line. Red arrow indicates the
limit of solubility in cell culture media. Experiment was performed in triplicate.
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before after addition intensity profile
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Fig. S26: Photomicrographs of Hela cells stained for nuclei (blue, Hoechst 33342) and incubated with
6¢ (5uM) (red) before and after addition of appropriate salts (NaSCN, KSCN, KCI, KNOs) (10 mM). Red
fluorescence intensity profiles correspond to the emission at respective white bars before addition of
a salt; yellow fluorescence intensity profiles correspond to the emission at the same position after
addition of a salt.
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before after addition intensity profile
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Fig. S27: Photomicrographs of Hela cells incubated with always-ON control TPyzPz (i.e., always-ON
control, structure shown in Fig. S28) (5uM) (red) before and after addition of appropriate salts (NaSCN,
KSCN, KCI, KNOs) (10 mM). Red fluorescence intensity profiles correspond to the emission at respective
white bars before addition of a salt; yellow fluorescence intensity profiles correspond to the emission
at the same position after addition of a salt.
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Fig. $28: Cellular uptake of always-ON control TPyzPz by Hela cells after incubation with 0.5 uM of
TPyzPz. The experiments were performed in duplicate.
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