Supporting Information

Organobismuth Molecular Crystals for Organic Topological Insulators

Soyoung Kim, †,‡ Jinyoung Koo, †,‡and Hee Cheul Choi*,†,‡

*E-mail: choihc@postech.edu

Contents of Supporting Information:

- 1: General Experimental Information
- 2: Syntheses
- 3: Single crystal X-ray structure determination
- 4: Supporting figures

1: General Experimental Information

All reagents were purchased from Tokyo chemical industry (TCI) and used without further purification. TGA spectra were obtained to confirm the vaporization temperature of organobismuth molecules using a thermogravimetric analyzer (TGA, SCINCO model no.1000) Also, the morphologies of the product crystals were characterized by SEM (JSM-7410F, JEOL) at National Institute for Nanomaterials Technology (NINT) in Pohang. The PL images and signals were obtained using a fluorescence microscope (Olympus microscope) and spectrometer (SpectraPro, Prineton Instruments) equipped with a filter set (Exciter BP 330 – 380 nm; beam splitter 400 nm; Emitter LP 410 nm, Semrock).

2: Syntheses

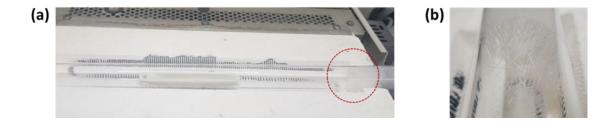
Synthesis of organobismuth (TPB, o-TTB, p-TTB) crystals using PVT method: A small amount of organobismuth precursor powder was located at the center of a heating furnace with a protection quartz tube, and a piece of SiO₂/Si substrate was attached at the end of furnace to collect resulting crystals. the quartz tube was flushed using pure argon gas (99.999 %) at a flow rate of 100 sccm for 30 min. Under argon atmosphere, the temperature was gradually increased from room temperature to 150 °C, 170 °C, 145 °C for TPB, o-TTB and p-TTB, respectively. During the crystallization, the flow rate of argon gas was maintained as 50 sccm. After 1 h, big, white and wire-shaped crystals were obtained on the SiO₂/Si substrate.

Synthesis of organobismuth (TPB, o-TTB, p-TTB) crystals in solution phase:

(1) Drop-drying method: Acetonitrile was used as a slovent to disolve **TPB**, **p-TTB** and **o-TTB** precursors respectively. The concentration was controlled to be 1 mg/mL. After 10

- minute sonication, a small aliquot of the final solution was dropped on SiO₂/Si substrate and dried under ambient condition.
- (2) Solvent-vapor annealing method: 10 mL of aeetonitrile was added in the 70 mL vial. To avoid contact between precursor solutions and pre-loaded acetonitrile solvent, pillar was placed inside the 70 mL vial on which precursor solution which are identical with that of drop-drying method was dropped on a SiO₂/Si substrate, respectively. After 12 h, fully dried the samples were carefully taken out of the vial.

3: Single crystal X-ray structure determination


The X-ray diffraction data for **TPB**, **p-TTB** and **o-TTB** were recorded on an ADSC Q210 CCD area detector with a synchrotron radiation (l = 0.63000 Å) at 2D beamline in Pohang Accelerator Laboratory (PAL). The diffraction images were processed by using HKL3000.¹ Absorption correction was performed by using the program PLATON.² The structure was solved by ShelXT³ using Intrinsic Phasing and refined by ShelXL.⁴ All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were added to their geometrically ideal positions.

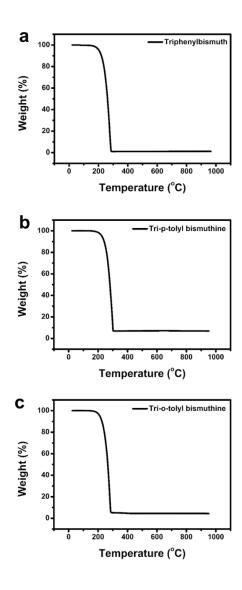
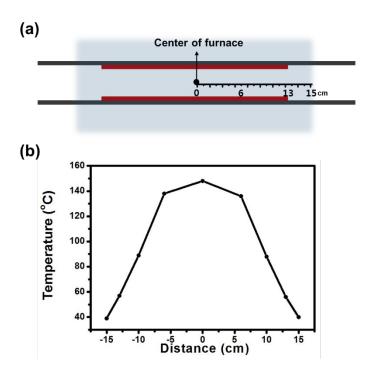
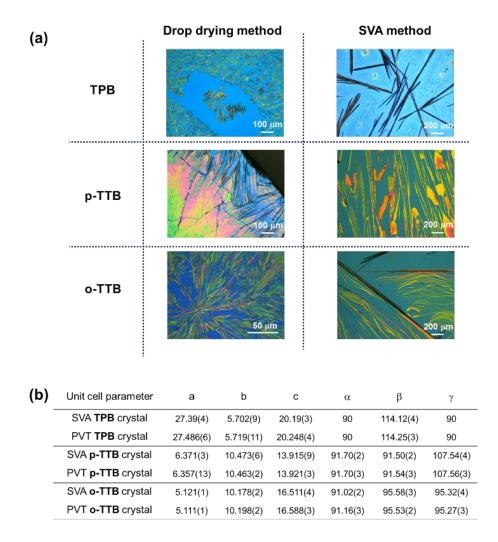
Triphenyl bismuth (**TPB** C18H15Bi1, Mr = 440.28, crystal dimensions $0.36 \times 0.05 \times 0.01$ mm3, monoclinic, C2/C, a =27.486(6) Å, b =5.7130(11) Å, c =20.248(4) Å, β = 114.25(3)° V = 2898.9(12) Å3, T = -173 °C, Z = 8, realed= 1.852 g cm-3, m = 8.89 mm-1, 5559 unique reflections out of 5435 with I>2s(I), 172 parameters, 1.44°< θ <29.85°, R1= 0.0287, wR2= 0.0999, GOF = 0.918. (Reported CCDC deposit number: 111762)

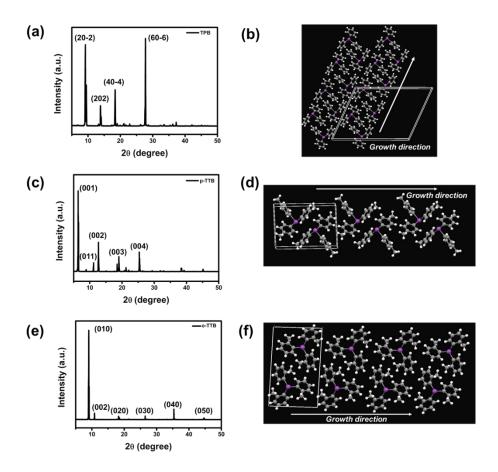
Tri-p-tolyl-bismuthine (**p-TTB**): $C_{21}H_{21}Bi_1$, Mr = 481.35, crystal dimensions $0.50 \times 0.10 \times 0.05$ mm³, triclinic, P-1, a = 6.3570(13) Å, b = 10.463(2) Å, c = 13.921(3) Å, $\alpha = 91.70(3)$ ° $\beta = 91.54(3)$ ° $\gamma = 107.56(3)$ °, V = 881.8(3) Å³, T = -173 °C, Z = 2, $r_{calcd} = 1.813$ g cm⁻³, m = 7.31 mm⁻¹, 6081

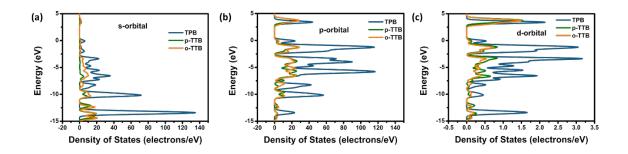
unique reflections out of 5164 with I > 2s(I), 202 parameters, 2.18°< θ <29.87°, R_1 = 0.0541, w R_2 = 0.1363, GOF = 0.967. (Reported CCDC deposit number: 1115925)

Tri-o-tolyl-bismuthine (**o-TTB**): $C_{21}H_{20}Bi_1$, Mr = 482.36, crystal dimensions $0.18 \times 0.01 \times 0.007$ mm³, triclinic, P-I, a = 5.111(1) Å, b = 10.198(2) Å, c = 16.588(3) Å, $\alpha = 91.16(3)$ ° $\beta = 95.53(3)$ ° $\gamma = 95.27(3)$ °, V = 856.6(3) Å³, T = -173 °C, Z = 2, $r_{calcd} = 1.870$ g cm⁻³, m = 9.831 mm⁻¹, 4686 unique reflections out of 4473 with I > 2s(I), 202 parameters, $1.12^{\circ} < \theta < 29.93^{\circ}$, $R_1 = 0.0525$, w $R_2 = 0.1478$, GOF = 0.947. (Reported CCDC deposit number: 1005303)

Figure S1. Photographs of obtained **TPB** crystals without SiO₂/Si substrate. (a) overall experimental setup after finishing the reaction (b) magnified view of the region where **TPB** crystals are grown in the quartz tube.


Figure S2. TGA results for TPB (a), p-TTB (b), and o-TTB (c) powder.


Figure S3. (a) Scheme of the furnace to indicate the distance from the center of furnace (b) measured temperature of each part of the furnace.

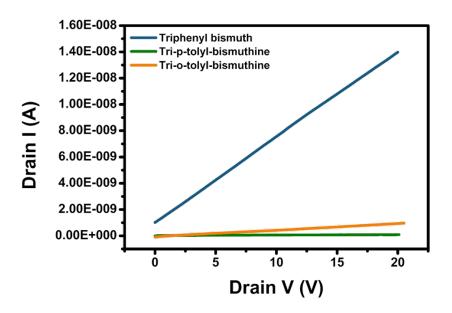

Figure S4. (a) Obtained **TPB**, **p-TTB** and **o-TTB** crystals using drop drying and solvent vapor annealing method (b) crystal structure information of **TPB**, **p-TTB** and **o-TTB** crystals grown by SVA and PVT method.

Figure S5. PXRD analysis and molecular packing structure according to the crystal growth direction (a,b) **TPB**, (c,d) **p-TTB** and (e,f) **o-TTB**.

Figure S6. Calculated partial DOS of three organobismuth crystals. (a) s-orbital, (b) p-orbital, and (c) d-orbital contribution in DOS of each crystal.

Figure S7. I-V characteristic curves of **TPB** (blue), **p-TTB** (green) and **o-TTB** (orange) crystals grown by PVT process. The devices were prepared on a SiO₂/Si substrate using silver paste as source and drain electrodes.

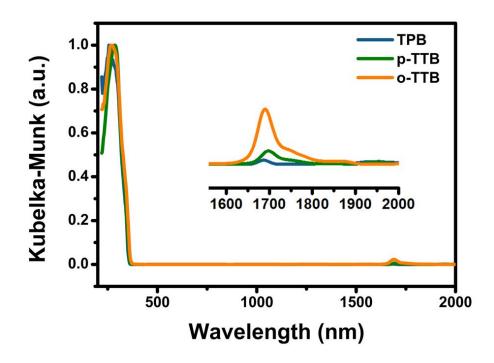
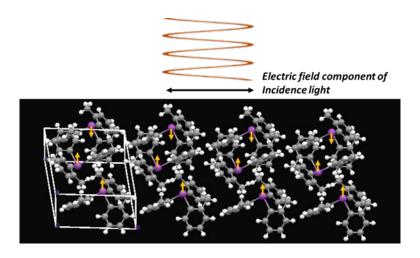



Figure S8. UV-VIS-NIR absorption spectra of TPB, p-TTB and o-TTB crystals.

Figure S9. Interaction between the electric field of incident light and the dipole moment of (010) plane of the obtained **o-TTB** crystal

References

- 1) Otwinowski Z.; Minor, W. *Methods Enzymol.*, Processing of X-ray Diffraction Data Collected in Oscillation Mode **1997**, *276*, 307-326.
- 2) Spek, A. L. Acta Crystallogr. D, 2009, 65, 148-155.
- 3) Sheldrick, G. M. University of Göttingen, Germany, 1996.
- 4) Sheldrick, G. M. Acta Crystallogr. A, 2008, A64, 112-122.