Assessing the Potential Mechanisms of Isomerization Reactions of Isoprene Epoxydiols on Secondary Organic Aerosol

Alex C. Watanabe, Santino J. Stropoli, and Matthew J. Elrod*

Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio, 44074 USA

Email: mjelrod@oberlin.edu

Contents

Synthesis of 2-methyl tetrols	S-2
Figure S1: NMR assignments in D ₂ O for the synthesized 2MTs sample	S-4
Figure S2: Correlation NMR spectroscopy methods	S-5
Figure S3: First order kinetics analysis of 2MT diastereomers reacting in 60 wt% DClO ₄	S-6
Table S1: First order lifetimes of 1,4-polyols in strong acid aqueous solutions	S-7
Figure S4: 2MT polyol dehydration cyclization mechanism	S-8
Figure S5: NMR assignments in CD ₂ Cl ₂ for various species identified in the work	S-9
Figure S6: Numbering system for NMR correlation spectroscopy annotations	S-10
Figure S7: HMQC spectra used for NMR assignments for 3-methyltetrahydrofuran-2,4-diol-diastereomer	
Figure S8: HMBC spectra used for NMR assignments for 3-methyltetrahydrofuran-2,4-diol-diastereomer	
Figure S9: COSY spectrum used for NMR assignments for 3-methyltetrahydrofuran-2,4-dio diastereomer	
Table S2: Computed G2MS relative free energies of IEPOX isomers and 2MT isomers in w solvent	

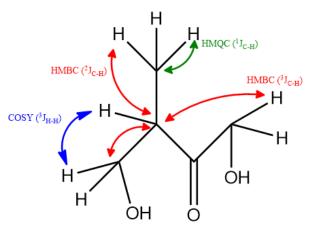
Synthesis of 2-methyltetrols.


A mixture of 2-methylerythritol and 2-methylthreitol was prepared in two steps. First, (±)-2-methyl-1,2,3,4-diepoxybutane was synthesized based on the procedures of Cole-Filipiak *et. al.*¹ and Wistuba *et al.*² 12 mL (110 mmol) of isoprene (Sigma-Aldrich, >99%) was added to a 1 L round-bottom flask containing 600 mL of dichloromethane (Pharmco-Aaper, 99.5%). 56.5g (327 mmol) of *meta*-chloroperoxybenzoic acid (*m*CPBA, Sigma-Aldrich, < 77%) was then added slowly, and the reaction was stirred for 8 days at room temperature. Upon completion of the epoxidation, the majority of the remaining *meta*-chloroperoxybenzoic acid as well as its reduction product, *meta*-chlorobenzoic acid (*m*CBA), were removed by vacuum filtration. Cooling at -20 °C was performed to force more *m*CPBA and *m*CBA out of solution and a second vacuum filtration was performed. The reaction mixture was then washed with a solution of 5% sodium sulfite and saturated sodium carbonate, dried with anhydrous magnesium sulfate, and reduced to approximately 30 mL under reduced pressure. The diepoxide product was isolated using vacuum distillation (30 °C/3 Torr) and characterized using ¹H NMR spectroscopy in CDCl₃ solvent according to the assignments reported by Wistuba *et al.*

In the second step, the purified diepoxide was combined with 50 mL of deionized water and 100 μ L of concentrated H₂SO₄ (Fisher Scientific, 95-98%) in a 500 mL round-bottom flask ([H₂SO₄] = 0.037 M) and stirred for 2 days at room temperature. The reaction mixture was then neutralized to pH 7.0 using 0.1 M NaOH (Sigma-Aldrich, >97%) and concentrated to a slurry under reduced pressure. The 2-methyltetrol products were extracted from the slurry using 80 mL of methanol (Pharmco-Aaper, 99.9%), and the remaining Na₂SO₄ was removed by vacuum filtration. Finally, the methanol solvent was allowed to evaporate, and the resulting 2-methyltetrols were characterized by NMR.

A complete ¹³C and partial ¹H assignment for both diastereomers is given in Figure S1. While the HMQC and HMBC experiments in the present work are sufficient to determine the unique nuclei that belong to a specific diastereomer, the absolute assignment of each set of nuclei to the specific diastereomeric form is based on a match of the present assignment with the partial assignment of the H4 protons to 2-methylerythritol and the H3 protons to 2-methylthreitol reported by Budisulistiorini *et al.*³

References


- (1) Cole-Filipiak, N. C.; O'Connor, A. E.; Elrod, M. J., Kinetics of the hydrolysis of atmospherically relevant isoprene-derived hydroxy epoxides. *Environ. Sci. Technol.* **2010**, *44*, 6718-6723.
- (2) Wistuba, D.; Weigand, K.; Peter, H., Stereoselectivity of in vitro isoprene metabolism. *Chem. Res. Toxicol.* **1994,** 7, 336-343.
- (3) Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T., *et al.*, Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. *Atmos. Chem. Phys.* **2015**, *15*, 8871-8888.

(2S,3R)-2-methylbutane-1,2,3,4-tetraol (2-methylerythritol)

(2-methylbutane-1,2,3,4-tetraol) (2-methylthreitol)

Figure S1: ¹H and ¹³C NMR assignments in D₂O for the synthesized 2MTs sample (¹H NMR assignments in black, referenced to HDO at 4.79 ppm and ¹³C NMR assignments in blue, referenced to DSS at 0.0 ppm).

Correlation Technique	Full Name	Correlation Type	Bond Coupling
COSY	¹ H- ¹ H Correlation Spectroscopy	¹ H- ¹ H	3
НМQС	¹ H- ¹³ C Heteronuclear Multiple Quantum Correlation Spectroscopy	¹ H- ¹³ C	1
НМВС	¹ H- ¹³ C Heteronuclear Multiple Bond Coherence Spectroscopy	¹ H- ¹³ C	2,3

Figure S2: Correlation NMR spectroscopy methods.

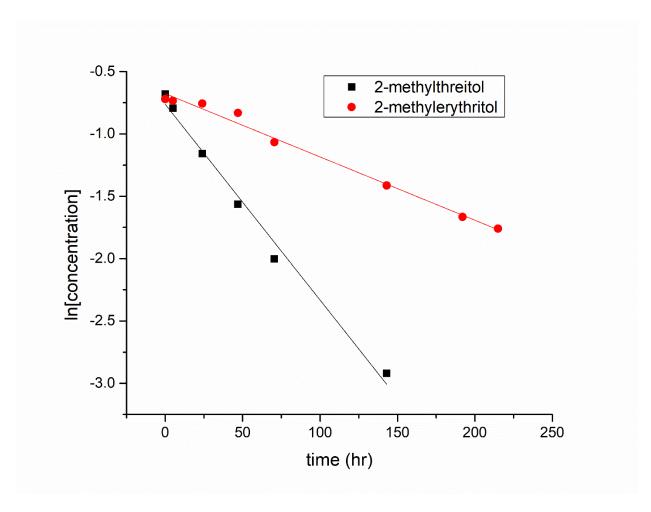
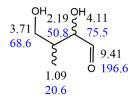
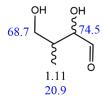


Figure S3: First order kinetics analysis of 2MT diastereomers reacting in 60 wt% DClO4.

reactant	catalyst	τ (d)
1,4-butanediol	70 wt% DCIO ₄	1.29
meso (2R,3S)-butane- 1,2,3,4-tetraol (meso-erythritol)	70 wt% DCIO ₄	20.5
(2S,3S)-butane-1,2,3,4- tetraol (D-threitol)	70 wt% DCIO ₄	20.2
racemic (2S,3R and 2R,3S)-2-methylbutane-1,2,3,4-tetraol (2-methylerythritol)	70 wt% DCIO ₄	0.146
racemic (2R,3R and 2S,3S)-2-methylbutane-1,2,3,4-tetraol (2-methylthreitol)	70 wt% DCIO ₄	0.0434
racemic (2S,3R and 2R,3S)-2-methylbutane-1,2,3,4-tetraol (2-methylerythritol)	60 wt% DCIO ₄	8.28
racemic (2R,3R and 2S,3S)-2-methylbutane-1,2,3,4-tetraol (2-methylthreitol)	60 wt% DCIO ₄	2.65


Table S1: First order lifetimes of 1,4-polyols in strong acid aqueous solutions.

HO
$$^{+}$$
 $^{+}$


Figure S4: 2MT polyol dehydration cyclization mechanism.

(2-methyloxirane-2,3-diyl)dimethanol (trans β-IEPOX)

(2-methyloxirane-2,3-diyl)dimethanol (cis β-IEPOX)

2,4-dihydroxy-3-methylbutanal diastereomer A

2,4-dihydroxy-3-methylbutanal diastereomer B

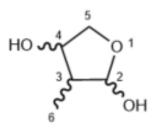
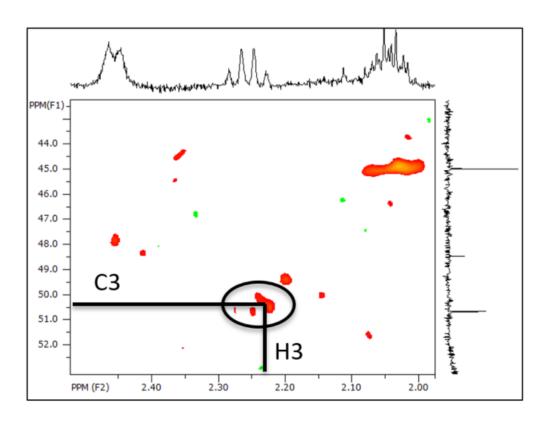
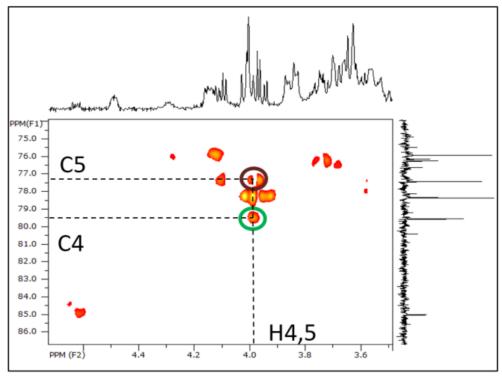
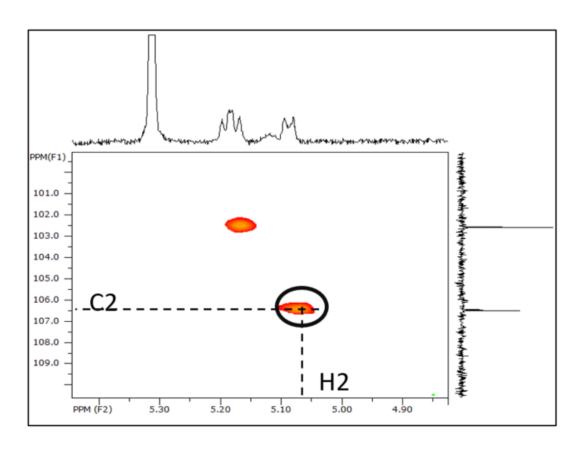
3,4-dihydroxy-2-methylbutanal

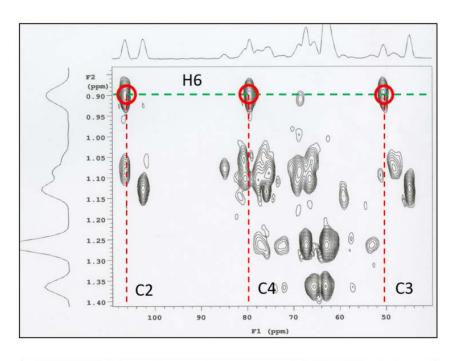
3-methyltetrahydrofuran-2,4-diol diastereomer A

3-methyltetrahydrofuran-2,4-diol diastereomer B

3-methyltetrahydrofuran-2,4-diol diastereomer C

Figure S5: ¹H and ¹³C NMR assignments in CD₂Cl₂ for various species identified in the work. ¹H NMR assignments in black, referenced to DSS at 0.00 ppm (CD₂Cl₂ at 5.30 ppm) and ¹³C NMR assignments in blue, referenced to DSS at 0.0 ppm (CDCl₂ at 55.7 ppm).


Figure S6: Numbering system for NMR correlation spectroscopy annotations

 $\begin{tabular}{ll} Figure S7: HMQC spectra used for NMR assignments for 3-methyltetrahydrofuran-2, 4-diol-A diastereomer \\ \end{tabular}$

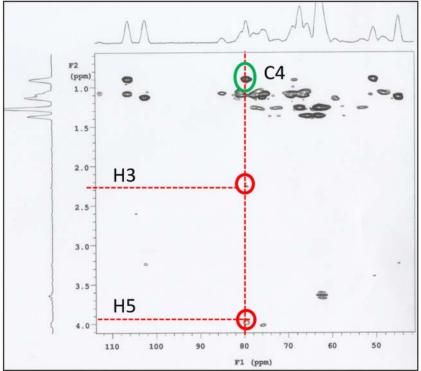


Figure S8: HMBC spectra used for NMR assignments for 3-methyltetrahydrofuran-2,4-diol-A diastereomer

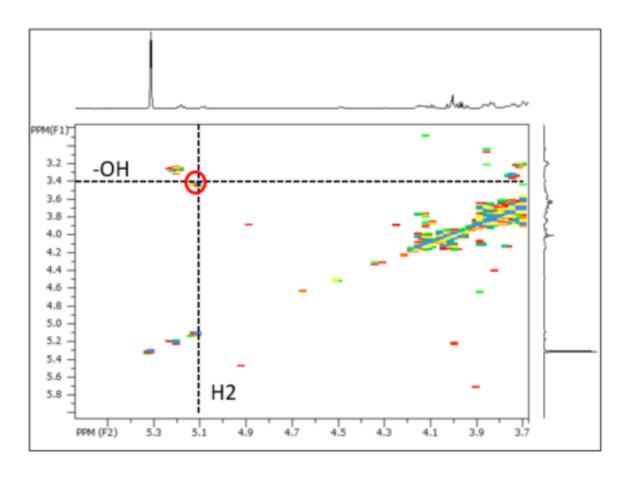


Figure S9: COSY spectrum used for NMR assignments for 3-methyltetrahydrofuran-2,4-diol-A diastereomer

#	Structure	Name	G (kcal/mol)		
	epoxides				
1	OH OH	trans (2-methyloxirane-2,3- diyl)dimethanol (trans β- IEPOX)	+8.4		
2	OH OH	cis (2-methyloxirane-2,3- diyl)dimethanol (cis β- IEPOX)	+11.4		
	alke	enetriols			
3	НО	(E)-3-methylbut-3-ene-1,2,4- triol	-9.2		
4	ОН ОН	(Z)-3-methylbut-3-ene-1,2,4- triol	-6.8		
5	НО	(Z)-3-methylbut-1-ene-1,2,4- triol	-6.2		
6	НО	(E)-3-methylbut-2-ene-1,2,4- triol	-4.0		
7	НО	(Z)-3-methylbut-2-ene-1,2,4- triol	-3.9		

8	НО ОН	3-methylenebutane-1,2,4- triol	-3.2
9	но	(E)-3-methylbut-1-ene-1,2,4- triol	-2.9
10	OH OH	2-(hydroxymethyl)but-2-ene-	+3.1
	но	1,4-diol	75.1
	ald	lo diols	
11	но	3,4-dihydroxy-3- methylbutanal	-15.8
12	ОНОН	(2R,3R)-3,4-dihydroxy-2- methylbutanal	-13.5
13	ОН	(2S,3R)-3,4-dihydroxy-2- methylbutanal	-12.6
14	ОН	2,4-dihydroxy-2- methylbutanal	-12.2
15	OH OH	(2R,3S)-2,4-dihydroxy-3- methylbutanal	-11.9
16	OH OH	(2S,3S)-2,4-dihydroxy-3- methylbutanal	-9.8
17	ОНООН	4-hydroxy-2- (hydroxymethyl)butanal	-8.0

keto diol				
18	но	1,4-dihydroxy-3- methylbutan-2-one	-14.0	
	polyol cyc	lization THFs		
19	HO _{IIII} ,,	(3R,4R)-3- methyltetrahydrofuran-3,4- diol (trans-MeTHF-3,4-diol)	-9.8	
20	НО	(3S,4R)-3- methyltetrahydrofuran-3,4- diol (trans-MeTHF-3,4-diol)	-7.6	
hemiacetal cyclization THFs				
21	HO _{Mun} ,	(2S,4R)-4- methyltetrahydrofuran-2,4- diol	-18.5	
22	HO	(2S,4S)-4- methyltetrahydrofuran-2,4- diol	-17.1	
23	ноши	(2R,3R)-3- methyltetrahydrofuran-2,3- diol	-17.0	
24	но	(2R,3R,4R)-4- methyltetrahydrofuran-2,3- diol	-16.2	

25	НОШ	(2R,3S,4S)-3- methyltetrahydrofuran-2,4- diol	-15.9
26	но	(2R,3S)-3- methyltetrahydrofuran-2,3- diol	-15.7
27	НОШ	(2S,3S,4R)-4- methyltetrahydrofuran-2,3- diol	-15.6
28	но о	(2S,3S,4R)-3- methyltetrahydrofuran-2,4- diol	-15.4
29	НО	(2R,3S,4R)-3- methyltetrahydrofuran-2,4- diol	-15.0
30	но он	(2R,3R,4R)-3- methyltetrahydrofuran-2,4- diol	-14.9
31	но Но	(2S,3R,4S)-4- methyltetrahydrofuran-2,3- diol	-14.2
32	но	(2S,3R,4R)-4- methyltetrahydrofuran-2,3- diol	-12.3
	Hydrati	on species	
33	HO OH OH	(2S,3R)-2-methylbutane- 1,2,3,4-tetraol (2- methylerythritol)	0.0 (by definition)

34	HO OH OH	(2R,3R)-2-methylbutane- 1,2,3,4-tetraol (2- methylthreitol)	+1.5

Table S2: Computed G2MS relative free energies of IEPOX isomers and 2MT isomers in water solvent. A single arbitrary configuration is given above for the cases in which enantiomers are possible because the enantiomeric pairs have identical free energies (i.e., G(2R,3S,4R)-3-methyltetrahydrofuran-2,4-diol) = G(2S,3R,4S)-3-methyltetrahydrofuran-2,4-diol).