

1 Supporting Information

2 Ozonation of *para*-substituted phenolic compounds yields *p*- 3 benzoquinones, other cyclic α , β -unsaturated ketones, and 4 substituted catechols

5
6 *Peter R. Tentscher*[†], *Marc Bourgin*[†], *Urs von Gunten*^{†,‡,*}

7
8 [†]Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133,
9 8600 Duebendorf, Switzerland

10 [‡]School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique
11 Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland

12
13 *Corresponding author
14 phone: +41 58 765 5270, fax: +41 58 765 5802, email: vongunten@eawag.ch

15 Section S0. Material and Methodology

16 **Table S1:** List of chemicals, manufacturers, and purities

17 Section S1. Second-order rate constants and pK_a s of phenols and phenolates

18 **Figure S1:** Regression models for pK_a and second order rate constant estimations for the reactions
19 with ozone of phenols/phenolates. The Theil-Sen slope was used; given statistical descriptors are the
20 mean absolute error (MAE) and the median error (MEE).

21 Section S2. Chromatograms and HRMS data from *p*-methylphenol reaction mixtures

22 **Figure S2.1:** Top: LC-HRMS retention times of metabolites found in *p*-methylphenol ozonation
23 reaction mixtures. Bottom: HPLC-DAD chromatograms of *p*-methylphenol ozonation reaction
24 mixtures, elution with either $H_2O/MeOH$ or $H_3PO_4/0.1\%/MeOH$ at pH 3 or pH 7 showcases easily
25 ionizable compounds.

26 **Figure S2.2:** Comparison of synthesized standard of 4-hydroxy-4'-methylcyclohexadiene-1-one with
27 the reaction mixture of *p*-methylcatechol ozonation. HPLC chromatograms at 220 nm of (a) sample

28 and (b) standard mix, 3D chromatograms of (c) sample and (d) standard mix, UV/Vis spectrum at a
29 retention time of 4.2 min of (e) sample and (f) standard mix, MS/MS mass spectra of this peak of (g)
30 sample and (h) standard.

31 **Table S2:** Properties of HRMS peaks with deuterated *p*-methylphenol. Ring deuteration refers to
32 aromatic deuterons (+4 d in the parent), methyl deuteration to the *p*-methyl-group (+3 d in the
33 parent)

34 **Section S3. Identification of 4-methyl-*o*-benzoquinone**

35 **Figure S3:** Left: HPLC-DAD chromatograms of *p*-methylphenol and *p*-methylcatechol reaction
36 mixtures with ozone and HOCl as oxidants. Middle: UV/Vis spectra at a retention time of 3.7 min.
37 Right: Zoom on the region around 400 nm.

38 **Section S4. Hydroquinone formation in the *p*-methoxyphenol reaction mixture**

39 **Figure S4:** HPLC-DAD chromatogram of a mixture of *p*-methoxycatechol and *p*-benzoquinone (mix of
40 100 μ M solution in phosphate buffer, pH 7). Extracted UV/Vis spectra of known components and
41 presumed *p*-methoxy-*o*-benzoquinone.

42 **Section S5. Expected post-ozonation dynamics in the presence of nucleophiles**

43 **Figure S5:** Examples of expected reactions of primary products of ozonation of (substituted) phenols.
44 In biological media (e.g. inside cells), nucleophiles in addition to hydroxide are present (amino groups
45 of amino acids, thiol groups of cysteine moieties of enzymes).

46 **Section S6. Product yield as a function of specific ozone dose**

47 **Figure S6.1:** Product yields as a function of specific ozone dose for unsubstituted phenol. Different
48 colors refer to different experimental series (see above). Empty plots indicate that no catechol was
49 detected.

50 **Figure S6.2:** Product yields as a function of specific ozone dose for *p*-methylphenol.

51 **Figure S6.3:** Product yields as a function of specific ozone dose for *p*-ethylphenol.

52 **Figure S6.4:** Product yields as a function of specific ozone dose for *p*-isopropylphenol.

53 **Figure S6.5:** Product yields as a function of specific ozone dose for *p*-*tert*-butylphenol.

54 **Figure S6.6:** Product yields as a function of specific ozone dose for *p*-methoxyphenol.

55 **Figure S6.7:** Product yields as a function of specific ozone dose for *p*-chlorophenol.

56 **Figure S6.8:** Product yields as a function of specific ozone dose for *p*-bromophenol.

57 **Figure S6.9:** Product yields as a function of specific ozone dose for *p*-formylphenol.

58 **Figure S6.10:** Product yields as a function of specific ozone dose for *p*-carboxyphenol.

59 **Figure S6.11:** Product yields as a function of specific ozone dose for 2,6-dimethylphenol.

60 **Figure S6.12:** Product yields as a function of specific ozone dose for 2,6-dibromophenol. 3-
61 bromocatechol was not unambiguously identified, owing to overlapping peaks. Given yields are best
62 estimates assuming the correct identity of the transformation product.

63 **Section S7. Mechanistic discussion**

64 **Figure S7.1:** Evaluated reaction pathways for neutral phenol. Reported energies are Gibbs free
65 energies (kcal/mol) with respect to separate molecules of ozone and phenol. IRC calculations for
66 transition structures leading to the cyclic ozonide and to the trioxo-species were not successful,
67 presumably because the potential energy surfaces are very flat in these regions.

68 **Figure S7.2:** Proposed formation pathways of hydroquinone in the reaction mixtures of *p*-tert-
69 butylphenol and *p*-methoxyphenol. Free energies from CBS-QB3 gas phase calculations and SMD
70 implicit solvation energies. Free energies for the S_N1 reaction vary depending on the inclusion of
71 explicit water molecules (not shown).

72

73 **S0. Materials and Methodology**

74 **S0.1 Compounds**

75 Purchased organic compounds are listed in Table S1. *p*-benzoquinone was further purified by
76 sublimation and the remaining hydroquinone content was corrected for, quantifying
77 hydroquinone by HPLC-DAD (see below). All other compounds were used as received.
78 4-hydroxy,4'-methylcyclohexadienone and 4-hydroxy,4'-ethylcyclohexadienone were
79 synthesized from *p*-methylphenol and *p*-ethylphenol with oxone as the oxidant [1]. They were
80 purified with flash chromatography, and the purity was estimated from the HPLC-DAD peak
81 areas at 200 nm. Ultrapurified water produced by a “barnstead nanopure” system from
82 Thermo Scientific was used for the preparation of all solutions. Organic solvents were HPLC
83 grade.

84

85 **S0.2 Ozonation batch experiments**

86 Experiments were performed as follows: phenol stock solutions (0.05-0.1 M) were freshly
87 prepared in a 50% (5.2 M) tertiary-butanol (*t*-BuOH) solution. 400 mL of 5 mM phosphate
88 buffer (pH 3.0, pH 7.0) was spiked with 400-800 μ L phenolic stock (final phenol
89 concentration 99 μ M) and 5 mL 50% *t*-BuOH (·OH scavenger, final concentration 65 mM).
90 The ozone stock solution was prepared by bubbling ozone from an oxygen-fed ozone
91 generator (CMG 3-3, Apaco AG, Switzerland) through room-temperature nanopure water.
92 The concentrations, ~500-700 μ M, were determined photometrically (ϵ (260 nm) = 3200 M⁻¹
93 cm⁻¹) [2].

94 50 mL of phenol solutions were stirred in a 100 mL beaker at room temperature (22 \pm 2 °C),
95 different volumes (1, 2, 5, 10 mL) of room temperature O₃ stock solution (~500-700 μ M)
96 were added and the mixture was stirred for another 10 s. This corresponds to molar ratios of
97 O₃ to substrate of ~0.125 to ~1.75, which resulted in immediate complete depletion of O₃
98 because of the high second order rate constants for the reactions of ozone with the selected
99 phenolic compounds [2]. Within a series, duplicate experiments were performed for the
100 lowest three O₃ doses. An experimental series was completed within 20 min. Reaction
101 mixtures at pH 7 were acidified with 150 μ L of 42.5% H₃PO₄ directly thereafter, yielding a
102 pH <3. This was done to prevent hydrolysis of *p*-benzoquinones and autoxidation of
103 hydroquinones and catechols, which are strongly pH-dependent reactions. Samples were
104 stored in the dark at 4 °C prior to analysis by HPLC-DAD within 24 h.

105 To determine the yield of H_2O_2 during the ozonation of phenol, *p*-chlorophenol, *p*-
106 methylphenol, and *p*-methoxyphenol, experiments were performed as follows: phenol stock
107 solutions (0.025 M) were prepared in 10% *t*-BuOH. 30 mL of 5 mM phosphate buffer (pH 3,
108 pH 7) containing 209 mM *t*-BuOH were spiked with ~450 μL of a phenol stock to yield a
109 phenol concentration of 400 μM . Varying volumes of the O_3 stock solution at room
110 temperature (~700 μM) were added, yielding a total volume of ~10 mL; the solution was
111 stirred for another 10 s. The H_2O_2 yield in unaltered samples was measured within 4 h (see
112 below). For quantification of phenol abatement and product yields by HPLC, reaction
113 mixtures were diluted 1:2 in 0.1275% H_3PO_4 and were stored in the dark at 4 °C prior to the
114 analysis within 24 h.

115 The reaction of O_3 with H_2O_2 is too slow to interfere with the quantification of H_2O_2 or with
116 the reaction of O_3 with the target phenols. The highest measurements of the rate constants of
117 H_2O_2 and HO_2^- with O_3 are approximately 6.3×10^{-3} and $9.6 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$, respectively, with a
118 pK_a of H_2O_2 of 11.6-11.8. This results in apparent second order rate constants (k_{obs}) of
119 $2.4 \times 10^2 \text{ M}^{-1}\text{s}^{-1}$ (pH 7) and $6.5 \times 10^{-3} \text{ M}^{-1}\text{s}^{-1}$ (pH 3). k_{obs} for the reaction of O_3 with phenols
120 (Table 1) are more than three orders of magnitude higher.

121

122 **S0.3 Analytical methods**

123 **HPLC-DAD**

124 Compounds were separated on a Cosmosil 5C18-MS-II (3.0x100 mm) HPLC column at 30 °C
125 with a flux of 600 $\mu\text{L}/\text{min}$. Isocratic conditions (10% MeOH, 90% H_2O or 90% 0.1% H_3PO_4)
126 were maintained for 4 min, then the MeOH concentration was increased to 50% or 75% with
127 a gradient of 13%/min, depending on the compound. Injection volumes were 40-100 μL .
128 Samples at neutral pH were acidified (see section S0.2).

129

130 **HRMS**

131 An aliquot (20 μL) was loaded on to the HPLC system and separated in a Cosmosil 5C18-
132 MS-II (3.0x100 mm) HPLC column at 30 °C with a flux of 600 $\mu\text{L}/\text{min}$, using two eluents:
133 (A) ultrapure water + 0.1% formic acid, and (B) methanol + 0.1% formic acid. Organic
134 solvents were all LC-MS analysis grade from Merck. Initially, the proportion of eluent (A)
135 remained constant at 90% during 4 min, decreased linearly to 25% between 4 min and 9 min
136 and stayed at 25% over 4 min, and decreased again to 5% from 13.1 to 15 min, before going
137 to the initial conditions for re-equilibration between 15.1 and 21 min.

138 After separation, the compounds were detected with a ThermoScientific Q-Exactive high
139 resolution mass spectrometer. MS data were collected in full scan mode (m/z 60-700) at
140 70,000 resolution, using electrospray ionization, simultaneously in positive and negative
141 mode.

142 Phosphate present in the reaction mixtures should not interfere with MS detection. Phosphate
143 is ionized in the eluent (formic acid) and is not retained on the used column. A diversion
144 valve was used to prevent the injection of ionic compounds (first seconds on chromatographic
145 run) into the MS source.

146

147 **Standards**

148 Stock solutions of analytes were freshly prepared in MeOH and were stored in the dark at 4
149 °C until being used within 3 days of preparation. No increase in autooxidation products was
150 observed in the stock solutions within this timespan, although many standards do contain
151 detectable impurities (e.g. *p*-benzoquinone in hydroquinone standards and vice versa).
152 External HPLC standards were prepared in 0.1% H₃PO₄ to prevent autooxidation of electron-
153 rich hydroquinones and catechols, and to prevent reductive hydrolysis by hydroxide ions. No
154 significant change in peak areas of standards was observed over the timespan of the analyses
155 (usually completed within 48 h of the experiment).

156

157 **Quantification of H₂O₂**

158 10 mM HOCl was prepared in 100 mM phosphate buffer at pH 7 from a 1.94 M HOCl
159 solution and standardized spectrophotometrically ($\epsilon(290\text{ nm}) = 350\text{ M}^{-1}\text{cm}^{-1}$) [3]. 1 mL of the
160 10 mM HOCl solution was placed in a 1 cm quartz cuvette, and 1 mL unaltered sample was
161 added with a Hamilton syringe. ¹O₂ was detected by its phosphorescence at 1270 nm with a
162 near infrared photomultiplier tube (Hamamatsu NIR-PMT H10330B-45, threshold level 200
163 mV, gate time 5 ms). All samples, prepared in duplicate, were measured as triplicates.
164 External H₂O₂ standards prepared from a 10 mM stock solution standardized
165 spectrophotometrically ($\epsilon(240\text{ nm}) = 40\text{ M}^{-1}\text{cm}^{-1}$) [4], were prepared in phosphate buffer with
166 *t*-BuOH and were measured as pentuplicates. The limit of quantification was ~3 μM.
167 Attempts to measure H₂O₂ yields with the DPD method [5] or other photometric methods
168 proved to be unsuitable, as (substituted) polyphenols produced during ozonation interfere with
169 the detection, presumably by reducing the DPD⁺ radical back to DPD.

170

171

172 **S0.4 Quantum chemical calculations**

173 **Reaction pathway calculations of ozone addition to phenols** were evaluated at the
174 M062x/6-311+G(2d,2p)//M062x/may-cc-pVDZ [6-10] level of theory, employing the solute
175 electron density (SMD) implicit solvation [11] model and a Grimme dispersion correction
176 [12]. Selected results were checked against wB97XD/6-311+G(2d,2p) [13], which yielded
177 comparable results. Yamaguchi's approximate spin projection method [14] was employed for
178 O₃, ¹O₂, and complexes of these species. The (uncorrected) high-spin potential energy surface
179 was used for structures and vibrational frequencies. In cases where the nature of the transition
180 structures was not obvious from visual inspection of the imaginary frequency, intrinsic
181 reaction coordinate (IRC) [15] calculations were employed to ensure that transition structures
182 connect reactants and products.

183 Free energies referring to complexes are indicated by using square brackets in the reaction
184 schemes (Figures 3&4 (main text) and Figure S7.1). For example, reaction (B) in Figure 3
185 refers to the activated complex in the energy of the transition structure, but to separated
186 molecules on the product side.

187 Protonation reactions were modeled as the reaction of a separate molecule of H₃O⁺ with the
188 anionic species, resulting in the neutral species and a separate molecule of H₂O. Although this
189 is not very accurate energetically and cannot be used for the estimation of pK_a values, it is
190 clear that protonation of the depicted alcoholates is energetically downhill.

191 Two reactions were modeled as catalyzed by two water molecules, indicated by “+2 H₂O / -2
192 H₂O” on the reaction arrow. The reported energies refer to the following: on the reactant and
193 product side, energies of the bare molecules (no explicit water molecules) are reported. The
194 activation barrier is computed as the difference between the transition structure and the pre-
195 reactive complex, both including explicit water molecules. This energy difference is added to
196 the ΔG value of the reactants in order to get ΔG(TS).

197 Generally, the reaction reported include many conformers, which are close (~2-3 kcal/mol) in
198 energy. The reported energies always refer to the conformers lowest in energies or to the
199 conformers which exhibited the lowest activation barriers for ΔG(TS).

200

201 **QSAR descriptors** for the estimation of rate constants and pK_a values used the M11/6-
202 311+G(2d,2p)//M05/6-31+G(d)[16] model with SMD implicit solvation. The regression

203 model for rate constant calculations was adapted from the literature [17], although we used
204 vertical ionization energies instead of orbital energies as descriptors. The regression models
205 are described in more detail below (section S1.1).

206 **Thermodynamic calculations on post-ozonation reactions** (redox reactions and hydrolysis)
207 applied a mix of different methods to get an accurate estimate of the free energies. Structures
208 were optimized at the M062x/may-cc-pVDZ level employing the SMD solvation and Grimme
209 dispersion. Vibrational and rotational contributions to the free energy were taken from these
210 calculations. On these structures, gas phase energies were computed with the CBS-QB3 [18]
211 composite method, without re-optimizing the geometries. On the same structures, free
212 energies of solvation were computed with the SMD model using the M06-2X/6-31G(d)
213 method, without re-optimizing the geometries. The total Gibbs free energy G is thus given by
214 $E(\text{gas, CBS-QB3}) + \Delta G(\text{vib/rot, M062x/may-cc-pVDZ/SMD}) + \Delta G(\text{solv/SMD, M062x/6-}$
215 $31+G^*)$.

216 Table S3: List of chemicals, manufacturers, and purities

Compound name	Manufacturer	Purity	Manufacturer Ref.
Phenol	Fluka, Buchs, Switzerland	≥ 99.5%	RA10224
p-methylphenol	Fluka	≥ 99%	GA12831
p-ethylphenol	Aldrich, Steinheim, Germany	99%	E44205
p-isopropylphenol	Aldrich	98%	175404
p-tertbutylphenol	Aldrich	99%	425761
p-chlorophenol	Sigma-Aldrich	≥ 98%	25860
p-bromophenol	Aldrich	99%	B75808
p-cyanophenol	Fluka	≥ 97%	54797
p-formylphenol	Aldrich	98%	144088
p-carboxyphenol	Fluka	98%	54630
p-carboxyphenol	Aldrich	≥ 99%	240141
p-methoxyphenol	Aldrich	99%	M18655
Catechol	Merck, Hohenbrunn, Germany	99%	822261.0250
p-methylcatechol	Merck	98%	821257
p-ethylcatechol	Alfa Aesar, Karlsruhe, Germany	98%	A12048
p-tertbutylcatechol	Merck, Darmstadt, Germany	98%	801987
p-bromocatechol	Tokyo Chemical Industry	> 98%	B2173
p-cyanocatechol	Alfa Aesar	97%	A14738
p-formylcatechol	Aldrich	97%	D108405
p-carboxycatechol	Aldrich	≥ 97%	37580
p-methoxycatechol	Apollo Scientific, Manchester, UK	98%	
2,6-dimethylphenol	Fluka	≥ 99%	41345
2,6-dibromophenol	Fluka	≥ 97%	WB11048
3-bromocatechol	Alfa Aesar	95%	H26925
Hydroquinone	Sigma-Aldrich	≥ 99%	H9003
p-benzoquinone	Fluka	resublimated	12309
2,6-dimethyl-p-benzoquinone	Aldrich	99%	D149705
2,6-dibromo-p-benzoquinone	Indofine Chemical Comp, Hillsborough, NJ, USA	>98%	CS-257
2,6-dimethylhydroquinone	Tokyo Chemical Industry	>98%	D2667
3-methylcatechol	Aldrich	98%	M34006
H ₂ O ₂	Sigma	ppa ≥ 35%	95299
HOCl/ClO ⁻	Sigma	6-14%	13440
NaOH	Merck	≥ 99%	106498
H ₃ PO ₄	Sigma	ppa >= 85%	30417
NaH ₂ PO ₄ *H ₂ O	Merck	99-102%	1.06346
Na ₂ HPO ₄ *2H ₂ O	Merck	≥ 99.5%	1.06580
Tert-butanol	Sigma	ppa ≥ 99.7%	19460

218

219

220

221 **S1. Second-order rate constants and pK_a s of phenols and phenolates.**

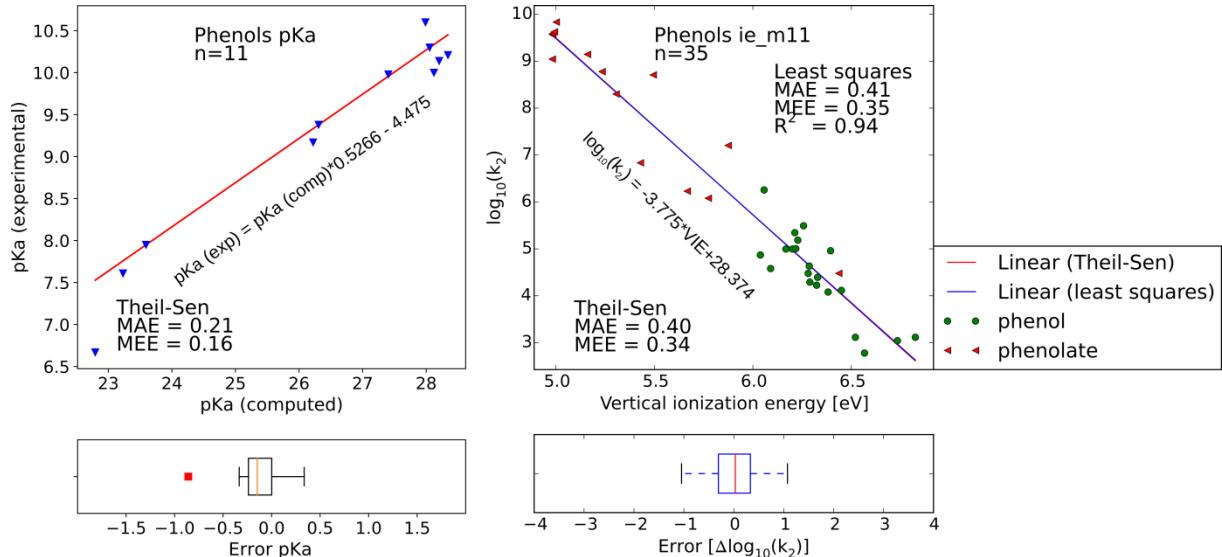
222 **S1.1 Estimation of unknown second order rate constants and pK_a s**

223 Quantum chemical calculations were performed with the Gaussian09 software package. All
224 geometries were optimized at the M05/6-31+G(d) in conjunction with the SMD implicit solvation
225 model. All structures were confirmed as minima by frequency calculations. On these structures,
226 single point energy calculations were performed at the M11/6-311+G** level of theory in
227 conjunction with the SMD implicit solvation model. For iodine (iodophenols are among the
228 experimental rate constants), the def2-TZVPP basis set was used instead.

229 pK_a values were computed by evaluating the electronic energy difference

230
$$\Delta E = E(\text{H}_3\text{O}^+) + E(\text{PhO}^-) - E(\text{H}_2\text{O}) - E(\text{PhOH})$$

231
$$pK_a = -\log(\exp(-\Delta E/(R*T)))$$


232 Although using electronic energies instead of Gibbs free energies is not theoretically thorough, we
233 decided to use ΔE instead of ΔG as this yielded a (slightly) better correlation with experimental pK_a
234 values (Figure S1).

235 To estimate second order rate constants, vertical ionization energies (VIEs) were computed as
236 descriptors. That is, opposed to adiabatic ionization energies, the geometry of the ionized species
237 was computed in the (frozen) geometry of the unionized species. Reported values refer to simple
238 electronic energy differences:

239
$$\text{VIE} = E(\text{PhOH}^+) - E(\text{PhOH}) \text{ or } \text{VIE} = E(\text{PhO}^-) - E(\text{PhO}^-)$$

240 The calculations used the restricted open-shell Kohn-Sham (ROKS) approach. However, unrestricted
241 (UKS) calculations were initially performed, a wavefunction stability analysis was performed, and the
242 resulting unrestricted solution was used as a guess for the restricted solution.

243 Computed VIEs were correlated with experimental second order rate constants ($n=35$) from von
244 Sonntag and von Gunten [2]. Experimental pK_a values were those of the remainder of the set of
245 phenols used in the present study ($n=10$). Resulting regression models are shown in Figure S1 and
246 they were used to calculate unknown pK_a s and second order rate constants.

247

248 Figure S6: Regression models for pK_a and second order rate constant estimations for the reactions
 249 with ozone of phenols/phenolates. The Theil-Sen slope was used; given statistical descriptors are the
 250 mean absolute error (MAE) and the median error (MEE).

251 **S1.2 Kinetic treatment of phenol-ozone reactions**

252 The total rate of disappearance of phenol in a second order reaction with ozone is given by

$$253 -\frac{d}{dt}[PhOH_{tot}] = k(PhO^-)\alpha[PhOH_{tot}][O_3] + k(PhOH)(1 - \alpha)[PhOH_{tot}][O_3]$$

254 where k are second order rate constants for the reactions of phenolate (PhO^-) and phenol ($PhOH$)
 255 with ozone, k_{obs} is the apparent second order rate constant, and $PhOH_{tot}$ refers to the phenol
 256 concentration irrespective of speciation. This can be rewritten in terms of degrees of dissociation
 257 alpha, equivalent to fractions of the species f:

$$258 -\frac{d}{dt}[PhOH_{tot}] = k_{obs}[PhOH_{tot}][O_3] = k(PhO^-)[PhO^-][O_3] + k(PhOH)[PhOH][O_3]$$

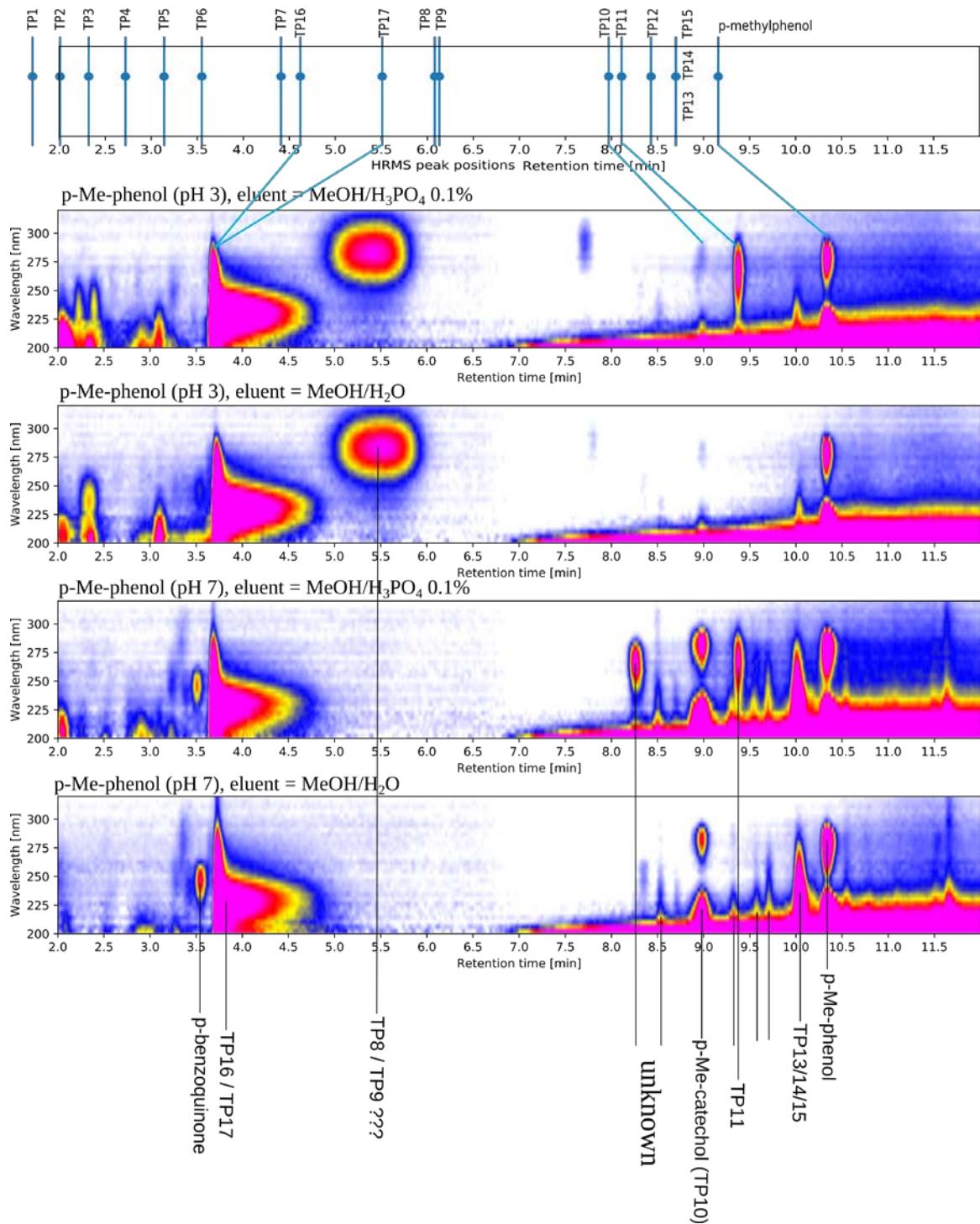
$$-\frac{d}{dt}[PhOH_{tot}] = (\alpha k(PhO^-) + (1 - \alpha)k(PhOH)) [PhOH_{tot}][O_3]$$

$$\alpha = \frac{1}{1 + \frac{[H^+]}{K_a}} = f_{PhO^-}; (1 - \alpha) = f_{PhOH}$$

$$259 k_{obs} = f_{PhO^-}k(PhO^-) + f_{PhOH}k(PhOH)$$

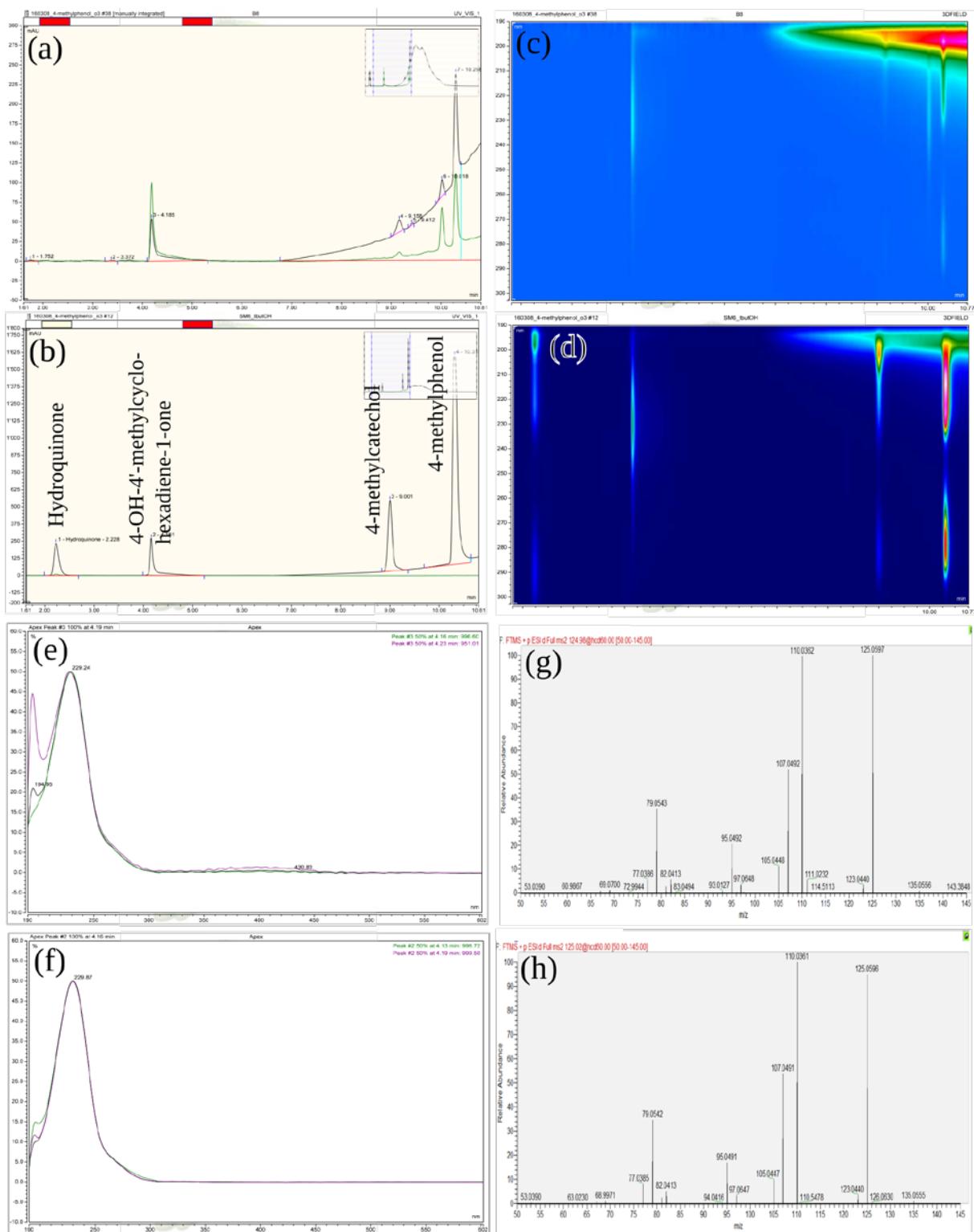
260 In Table 1 (main text), we report the (percentage) contribution of each species to the apparent rate
 261 constant:

$$262 \%k(PhOH) = \frac{f_{PhOH}k(PhOH)}{k_{obs}}; \%k(PhO^-) = \frac{f_{PhO^-}k(PhO^-)}{k_{obs}}$$


263 Electronic effects of the ring have two effects: activation will lead to an increase of the pK_a and thus
264 to a decrease of $f(\text{PhO}^-)$. As $k(\text{PhO}^-) > k(\text{PhOH})$, this leads to a decrease in k_{obs} . However, activation
265 also leads to an increase in $k(\text{PhO}^-)$ and $k(\text{PhOH})$, which leads to an increase of k_{obs} .

266 For the upper and lower boundaries given in Table 1 for $\%k_2$ values, we considered an uncertainty of
267 $1 \times \log(k_2)$ in both the rate constant of the phenol and the phenolate, and we assumed no uncertainty
268 in the pK_a .

269 For the calculation of the apparent second order rate constant k_{obs} at pH 7, we did not consider
270 uncertainties in the underlying pK_a and rate data. Experimental data was used whenever available.
271 We note that the outlier in the pK_a regression in Figure S1 (lower left corner) is 2,6-dibromophenol.
272 Its predicted pK_a would amount to 7.5 (instead of the experimental value of 6.67), and the associated
273 k_{obs} value at pH 7 would be reduced to $4.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$.


274 **S2. Chromatograms and HRMS data from *p*-methylphenol reaction mixtures.**

275 Figure S2 shows retention times of transformation products from LC-HRMS and HPLC-DAD runs,
276 which use the same column but slightly different elution conditions. As a result, retention times are
277 not the same due to the implementation of differing HPLC equipments and gradients, but as we can
278 clearly assign some of the compounds (TP16/17, TP10, *p*-methylphenol), meaningful comparisons
279 can still be made.

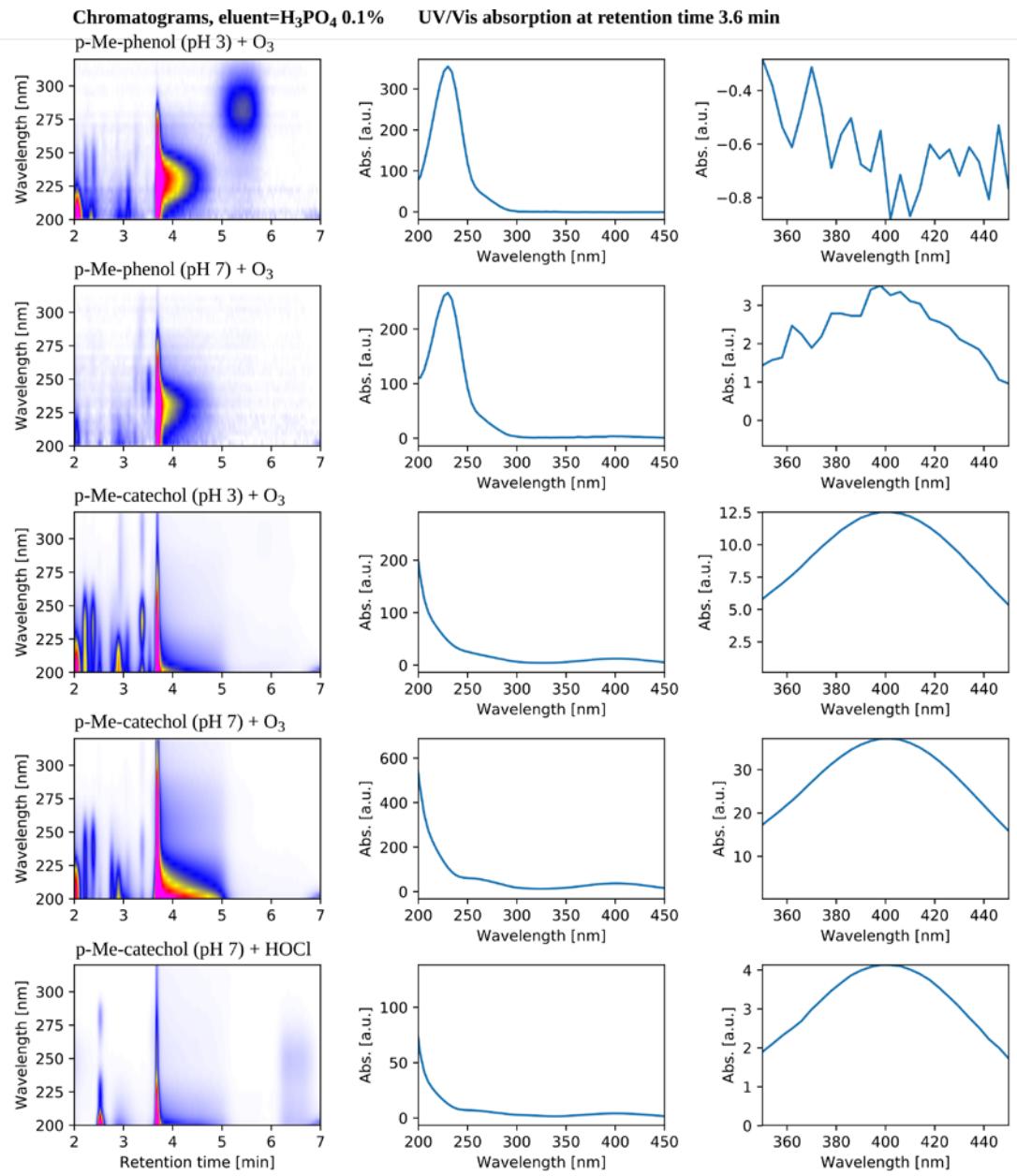
280

281 Figure S7.1: Top: LC-HRMS retention times of metabolites found in *p*-methylphenol ozonation
 282 reaction mixtures. Bottom: HPLC-DAD chromatograms of *p*-methylphenol ozonation reaction
 283 mixtures, elution with either H₂O/MeOH or H₃PO₄ /0.1%/MeOH at pH 3 or pH 7 showcases easily
 284 ionizable compounds.

285

286 Figure S2.2: Comparison of synthesized standard of 4-hydroxy-4'-methylcyclohexadiene-1-one with
287 the reaction mixture of *p*-methylcatechol ozonation. HPLC chromatograms at 220 nm of (a) sample
288 and (b) standard mix, 3D chromatograms of (c) sample and (d) standard mix, UV/Vis spectrum at a
289 retention time of 4.2 min of (e) sample and (f) standard mix, MS/MS mass spectra of this peak of (g)
290 sample and (h) standard.

291 Ozonation experiments were carried out with deuterated parent substances as well. Deuteration
292 pattern in the transformation products, along with absolute MS peak intensities, are shown in Table
293 S2.

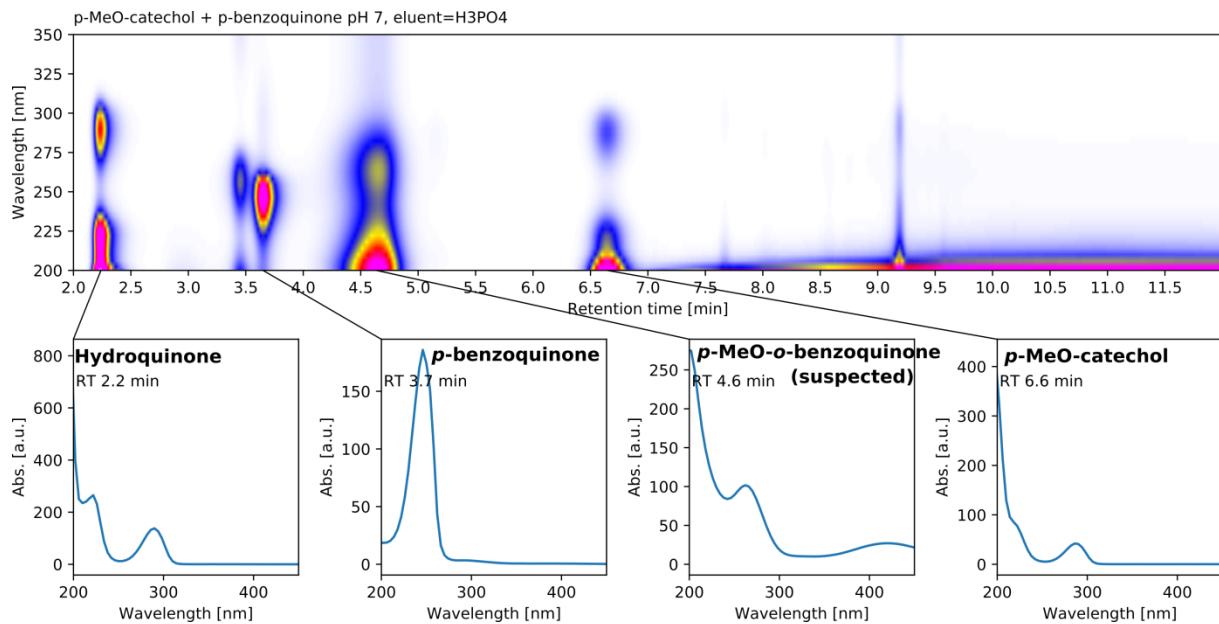

294 Table S4: Properties of HRMS peaks with deuterated *p*-methylphenol. Ring deuteration refers to
295 aromatic deuterons (+4 d in the parent), methyl deuteration to the *p*-methyl-group (+3 d in the
296 parent)

Retention time	Name	Mass shift	Ring deuteration	Methyl deuteration	Intensity (pH 3)	Intensity (pH 7)
1.71	TP1	+3 O	+4 d	+3 d	1.26E+07	3.39E+06
2.01	TP2	+4 O	+3 d	+3 d	6.34E+05	5.23E+06
2.32	TP3	+4 O	+3 d	+3 d	1.09E+06	2.68E+06
2.72	TP4	+2 O	+3 d	+2 d/+3 d	7.52E+06	3.55E+06
3.14	TP5	+3 O	+3 d	+3 d	4.39E+06	6.09E+06
3.55	TP6	+2 O, -2 H	+2 d (40%)/+3 d (60%)	+3 d	2.53E+07	4.75E+07
4.41	TP7	+2 O, -2 H	+3 d	+3 d	2.14E+07	2.24E+07
4.62	TP16	+1 O	+4 d	+3 d	7.73E+07	1.14E+08
5.51	TP17	+1 O, -2 H	+3 d	+3 d	-	2.91E+07
6.08	TP8	+3 O	+4 d	+3 d	8.13E+07	1.86E+06
6.13	TP9	+2 O	+4 d	+3 d	9.42E+05	-
7.97	TP10	+1 O	+3 d	+3 d	2.61E+06	4.14E+07
8.11	TP11	+3 O	+3 d	+3 d	7.25E+06	6.89E+06
8.43	TP12	+1 O, -2 H	+3 d	+2 d	3.49E+06	-
8.7	TP13	+2 O	+3 d (30%)/+4 d (70%)	+3 d	-	2.24E+06
8.7	TP14	+1 O, -2 H	+3 d	+3 d	2.36E+07	4.50E+08
8.7	TP15	+1 O	+4 d	+3 d	-	2.95E+07
9.16	<i>p</i> -methyl-phenol		+4 d	+3 d		

297

298 **S3. Identification of 4-methyl-*o*-benzoquinone**

299 LC-HRMS data of the *p*-methylphenol reaction mixture at pH 7 indicated that together with the 4-
300 hydroxy-4'-methylcyclohexadiene-1-one, 4-methyl-*o*-benzoquinone is co-eluting in a very broad
301 peak. Although the given retention times for these transformation products (TP16, TP17) are
302 different, these peaks share the same onset (likely the *t*-BuOH front). In the HPLC-DAD
303 chromatograms, the alleged "mix" of these compounds elutes at 3.7 min (Figure S1). In Figure S3, we
304 show the UV/Vis spectra of different reaction mixtures at 3.7 min: for *p*-methylphenol at pH 3, this is
305 identical to the spectrum of the synthesized standard of 4-hydroxy-4'-cyclohexadiene-1-one, and no
306 absorption can be seen around 400 nm. At pH 7, a weak absorption can be observed around 400 nm.
307 In ozonation experiments of *p*-methylcatechol, the cyclohexadienone band is missing, and the
308 absorption at 400 nm is pronounced (at both pHs). We assign this to the 4-methyl-*o*-benzoquinone.
309 The same peak is also observed when reacting *p*-methylcatechol with HOCl (Figure S3).

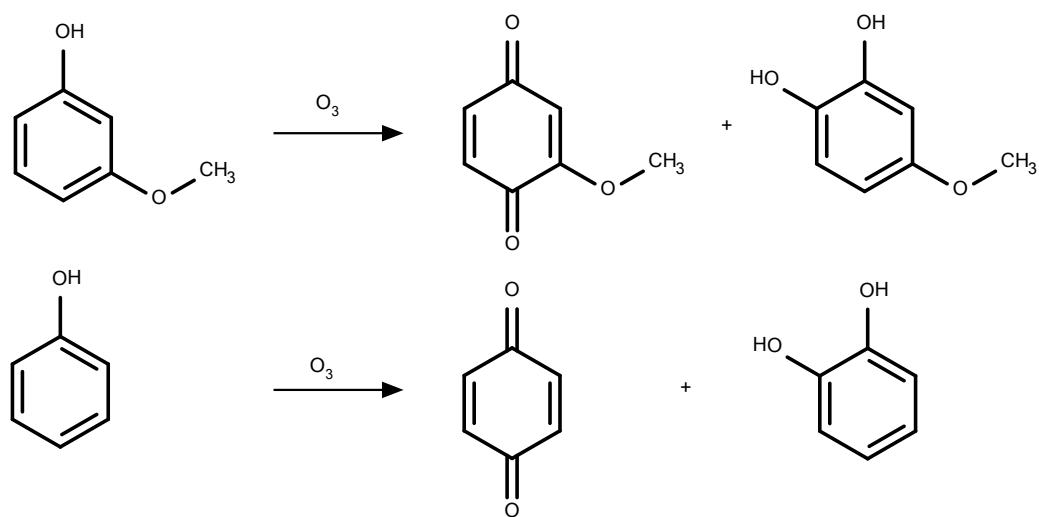

310

311 Figure S8: Left: HPLC-DAD chromatograms of *p*-methylphenol and *p*-methylcatechol reaction
 312 mixtures with ozone and HOCl as oxidants. Middle: UV/Vis spectra at a retention time of 3.7 min.
 313 Right: Zoom on the region around 400 nm.

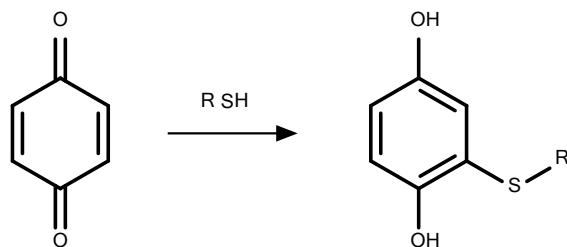
314 **S4. Hydroquinone formation in the *p*-methoxyphenol reaction mixture**

315 We propose that hydroquinone was formed by the reduction of initially formed *p*-benzoquinone by
 316 *p*-methoxycatechol. Quantum chemical calculations indicated a free energy of reaction of 1 kcal/mol,
 317 wherefore, this reaction should be thermodynamically feasible within the margin of error of such
 318 calculations. We believe the error on the computed free energy of reaction to be rather low: the
 319 reaction is homodesmic (meaning that the same types of bonds are present on the reactant and
 320 product side, which leads to error cancellation in computed thermodynamics), and also errors in the
 321 implicit solvation model should be mostly cancelled out. We repeated the calculations with the CBS-
 322 QB3 method (gas phase), to which we added SMD solvation energies, yielding a virtually unchanged
 323 result.

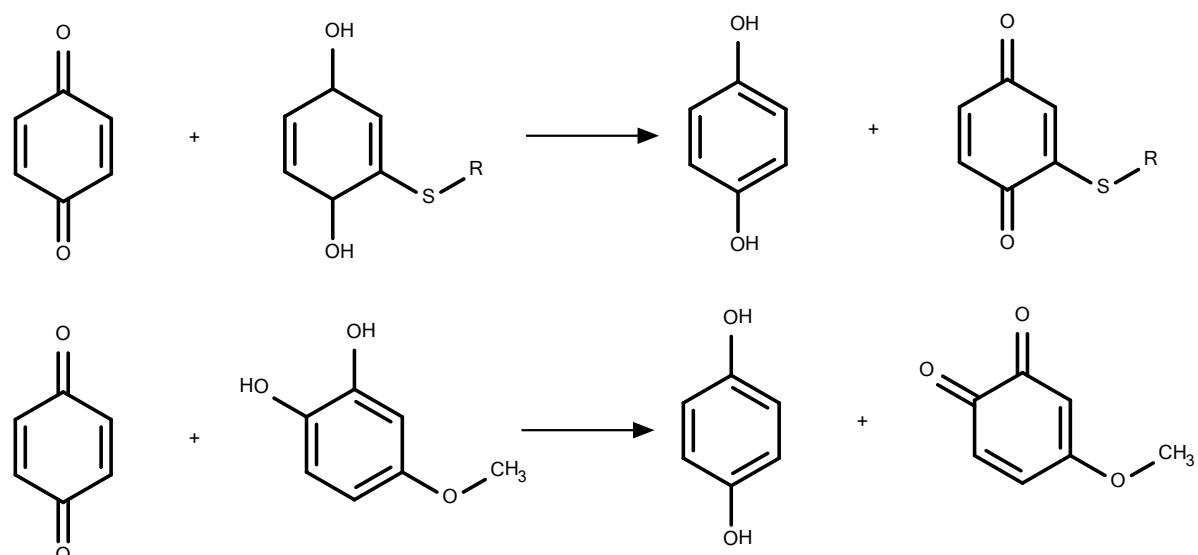
324 We conducted an additional experiment, mixing pure substances *p*-benzoquinone and *p*-
325 methoxycatechol. The chromatogram of this mixture is shown in Figure S4. Of the observed peaks,
326 we can clearly assign those for which standards were available: hydroquinone, *p*-benzoquinone, *p*-
327 methoxycatechol. Thus, it seems reasonable to assume that *p*-benzoquinone was reduced to
328 hydroquinone. This should yield the *o*-quinone, which we identified with the dominant unassigned
329 peak, owing to an absorption band at ~420 nm.


330

331 Figure S9: HPLC-DAD chromatogram of a mixture of *p*-methoxycatechol and *p*-benzoquinone (mix of
332 100 μ M solution in phosphate buffer, pH 7). Extracted UV/Vis spectra of known components and
333 presumed *p*-methoxy-*o*-benzoquinone.


334

S5. Expected post-ozonation dynamics in the presence of nucleophiles


(1) Ozonation of (substituted) phenols yields p-benzoquinones and catechols

(2) p-benzoquinones undergo reductive addition with nucleophiles (thiols, amines, hydroxide)

(3) Fast redox equilibria lead to the thermodynamically preferable benzoquinone/hydroquinone/catechol distribution

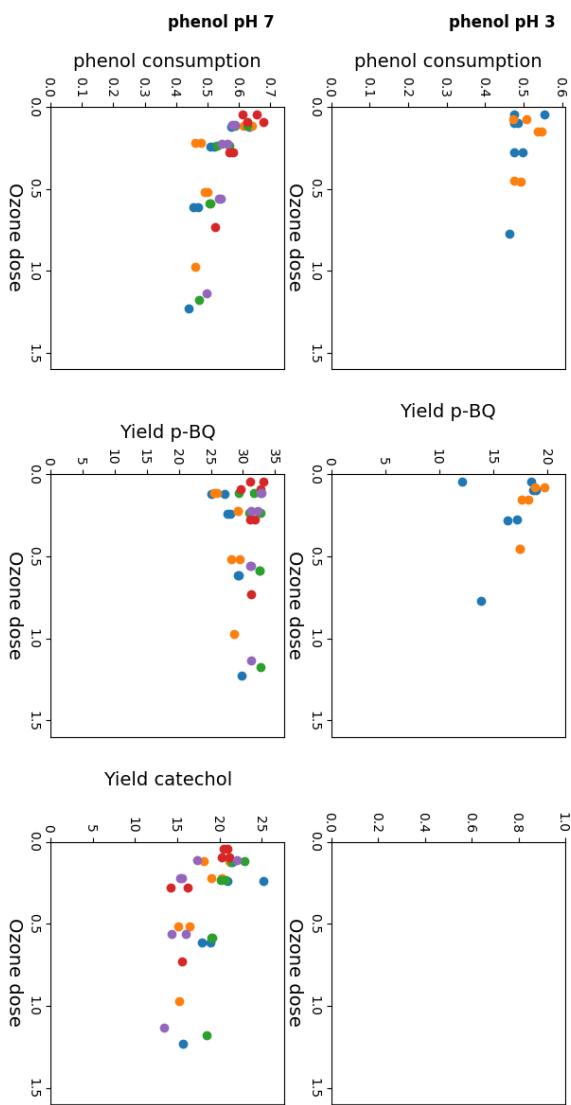
341

342

343 **S6. Product yield as a function of specific ozone dose**

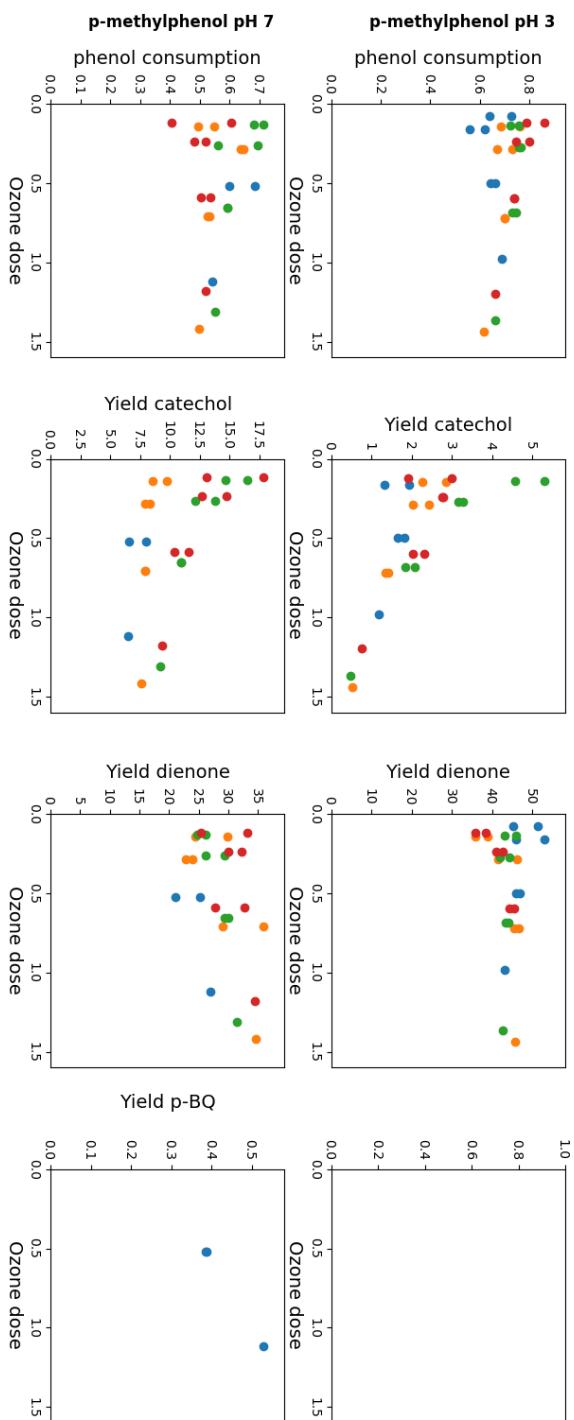
344 Batch ozonation experiments were conducted by adding different volumes of room temperature
345 ozone stock to a phenol solution. One experimental series consisted of 7 dosages, adding 1, 1, 2, 2, 5,
346 5, and 10 mL of ozone stock solution to the phenol solution. In the plots shown below, series
347 conducted on different days with different phenol and ozone stock solutions are shown in different
348 colors.

349 Where several series are shown, a significant spread of observed yields can be observed. The
350 experiments with the most repetitions are those of phenol at pH 7 and of p-methylphenol at both pH
351 3 and pH 7.


352 In ozonation reactions, the yield of transformation products is not independent of the O₃:parent
353 ratios. As products are themselves O₃-reactive (e.g., in the case of catechols, which are more reactive
354 than the parent compounds), the products are consumed with increasing O₃ dose.

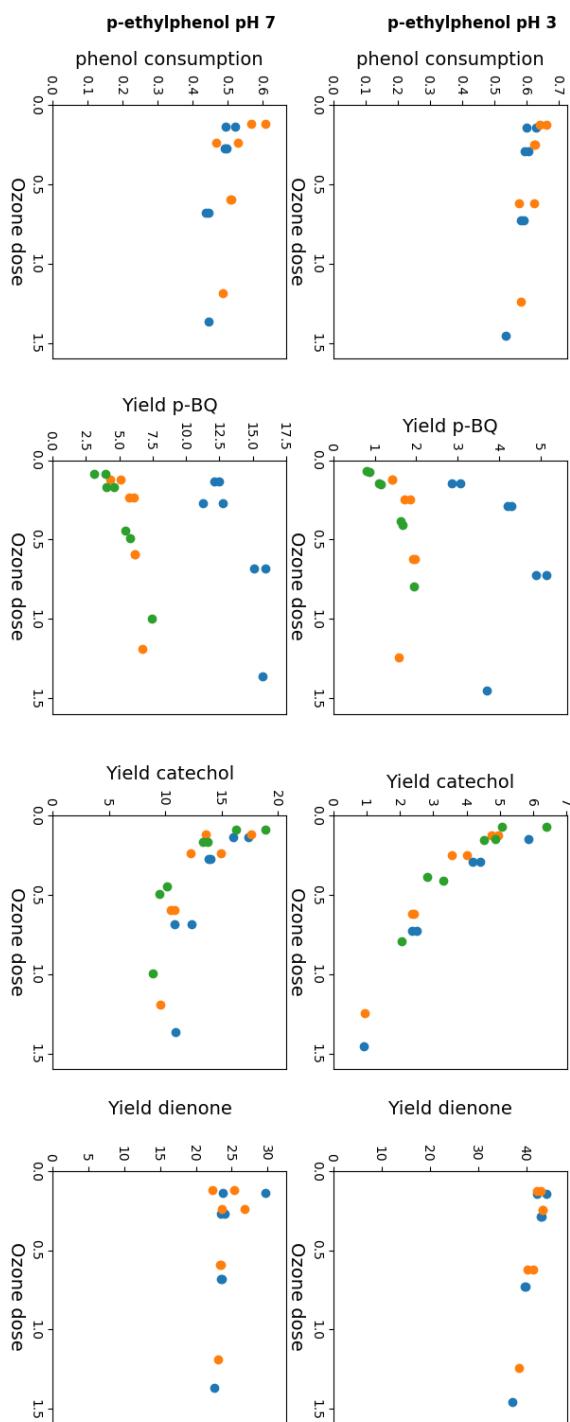
355 A linearly interpolated yield was calculated for each series between the averages of the four data
356 points adjacent to the target ozone dose of 0.5. That is, the two values at the first ozone dose higher
357 than 0.5 were averaged, the two values at the first ozone dose lower than 0.5 were averaged, and a
358 value between these two averages was interpolated.

359 As there are \leq 5 independent series, we give the uncertainty as the full range explored by these
360 values. These correspond to deviations from the arithmetic mean of $\pm 6\%$ (p-benzoquinone yield of
361 phenol at pH 7, N=5), $+16/-11\%$ (catechol yield of phenol at pH 7, N=5), $+10/-16\%$ (cyclohexadienone
362 yield of p-methylphenol at pH 7, N=4), $+21/-25\%$ (p-methylcatechol yield of p-methylphenol, pH 7,
363 N=4), $+4/-3\%$ (cyclohexadienone yield of p-methylphenol at pH 3, N=4) and $+20/-18\%$ (p-
364 methylcatechol yield of p-methylphenol, pH 3, N=4). It is assumed that similar uncertainties can be
365 expected for other parent substances as well. The error bars in Figure 1 (main text) correspond to an
366 uncertainty of the interpolated average of $\pm 6\%$ for p-benzoquinones, $+/-15\%$ for cyclohexadienones,
367 and to $\pm 25\%$ for catechols.


368 Owing coelution of several transformation products in the HPLC-DAD chromatogram, 3-
369 bromocatechol could not unambiguously identified or quantified. The yields shown are best
370 estimates under the assumption that the measured product is in fact 3-bromocatechol.

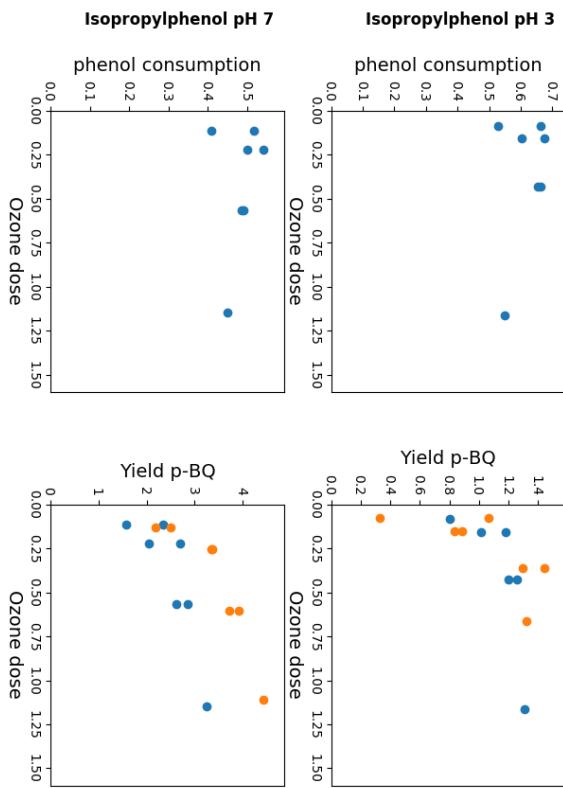
371

372


373 Figure S6.1: Product yields as a function of specific ozone dose for unsubstituted phenol. Different
 374 colors refer to different experimental series (see above). Empty plots indicate that no catechol was
 375 detected.

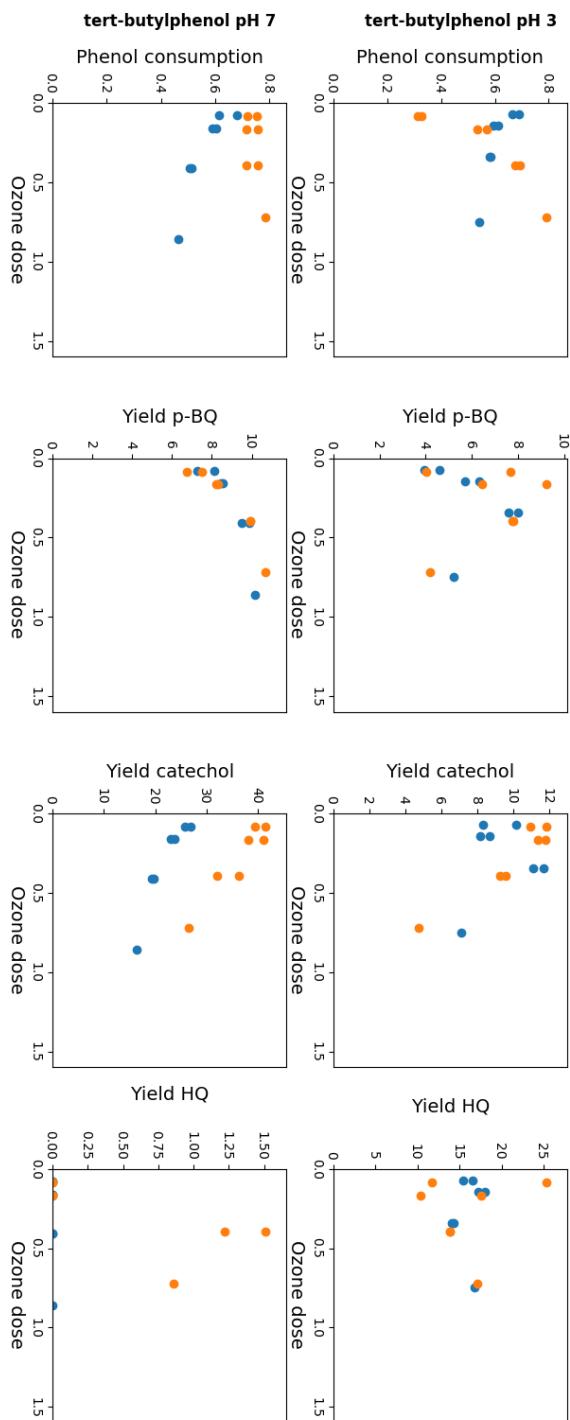
376

377 FigureS6.2: Product yields as a function of specific ozone dose for *p*-methylphenol.


378

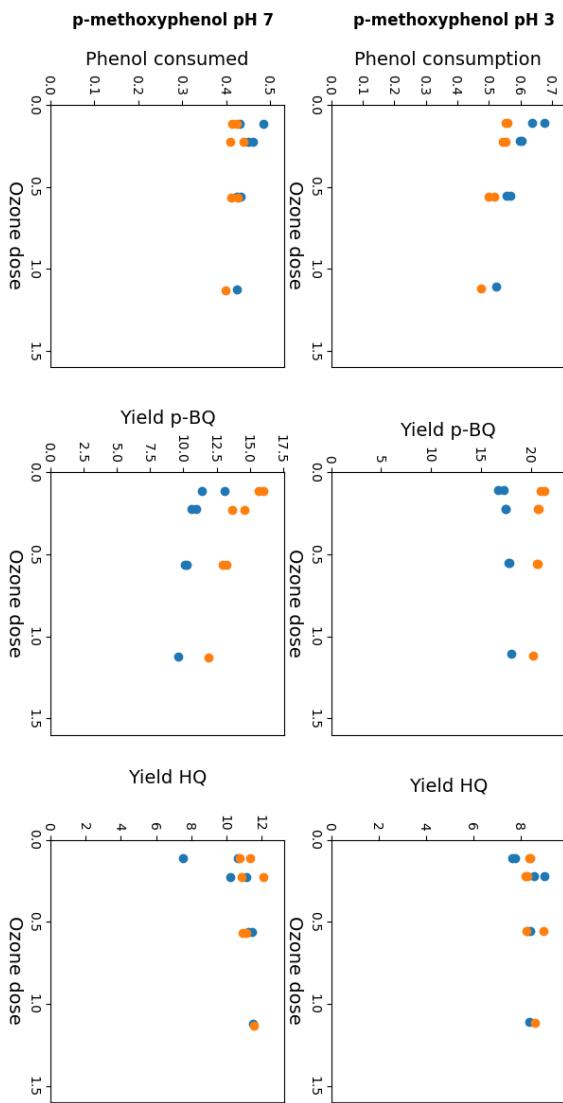
379

380 Figure S6.3: Product yields as a function of specific ozone dose for *p*-ethylphenol.


381

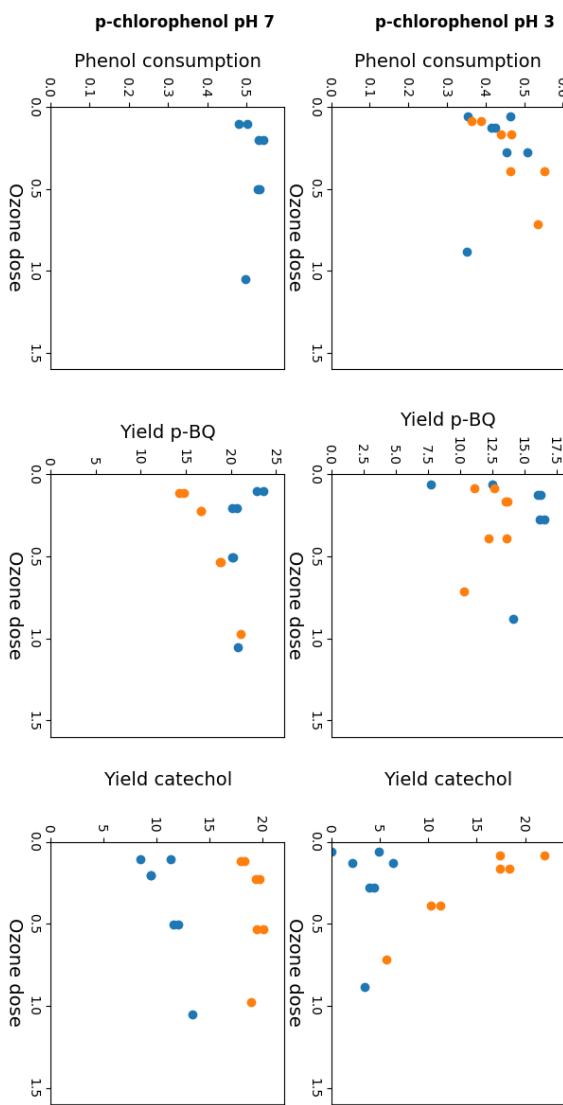
382

383 Figure S6.4: Product yields as a function of specific ozone dose for *p*-isopropylphenol.


384

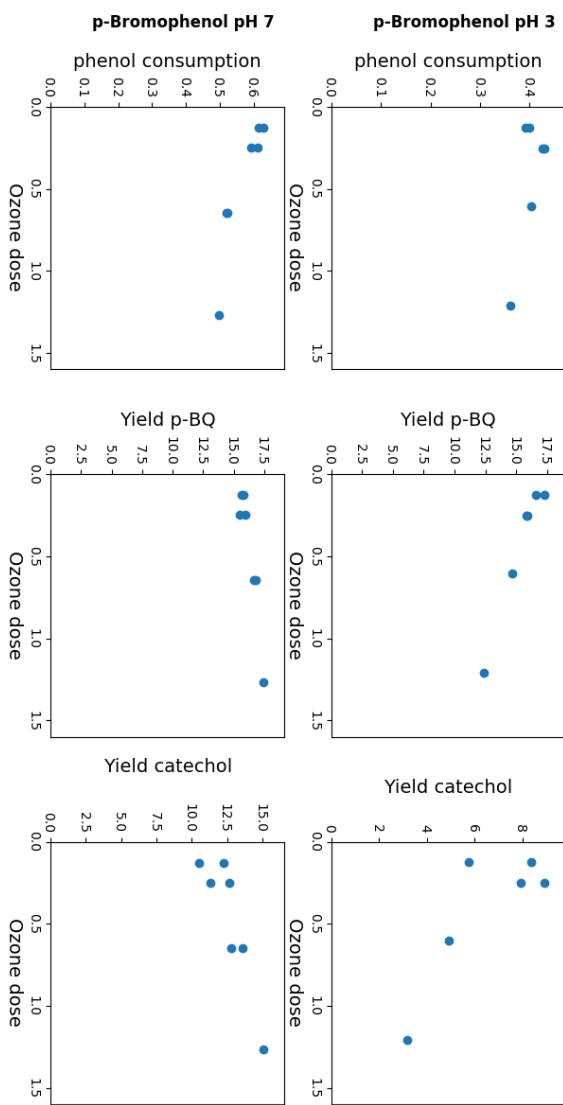
385

386 Figure S6.5: Product yields as a function of specific ozone dose for *p*-tert-butylphenol.


387

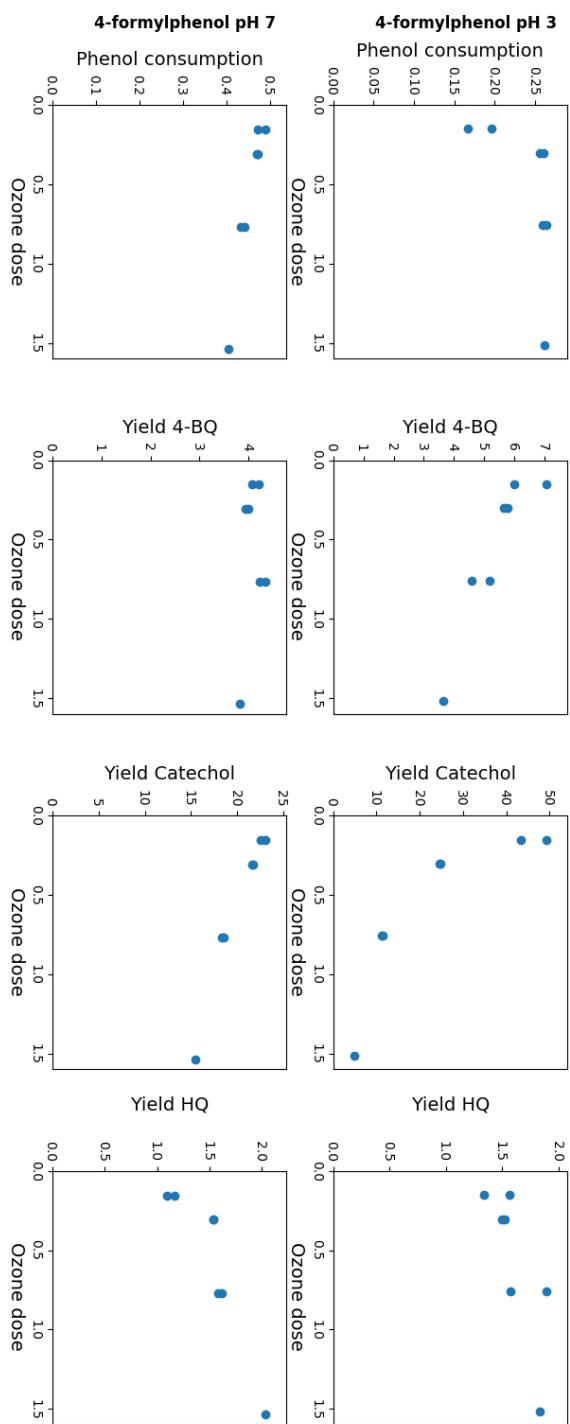
388

389 Figure S6.6: Product yields as a function of specific ozone dose for *p*-methoxyphenol.


390

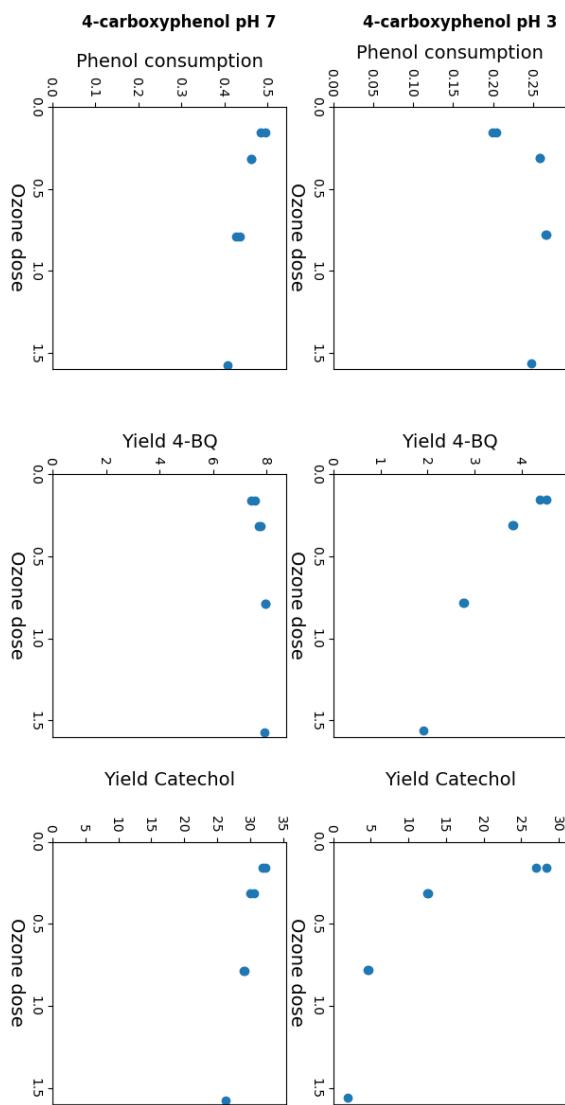
391

392 Figure S6.7: Product yields as a function of specific ozone dose for *p*-chlorophenol.


393

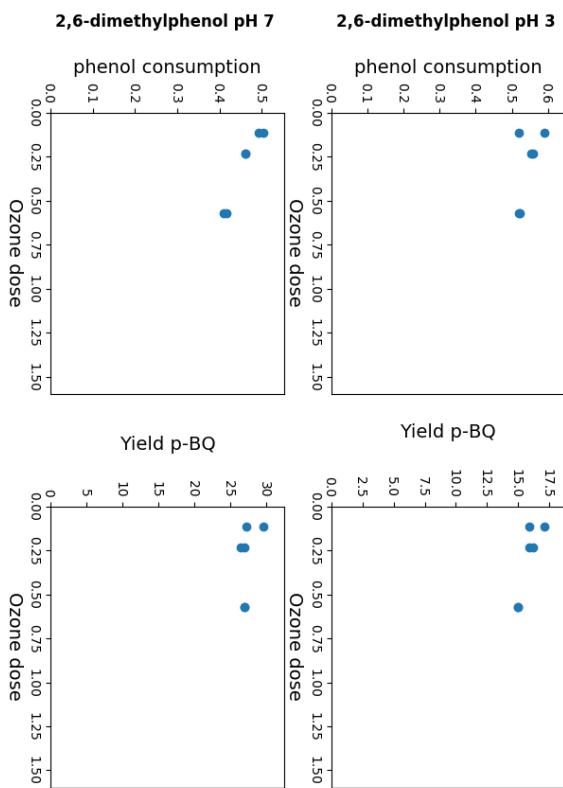
394

395 Figure S6.8: Product yields as a function of specific ozone dose for *p*-bromophenol.


396

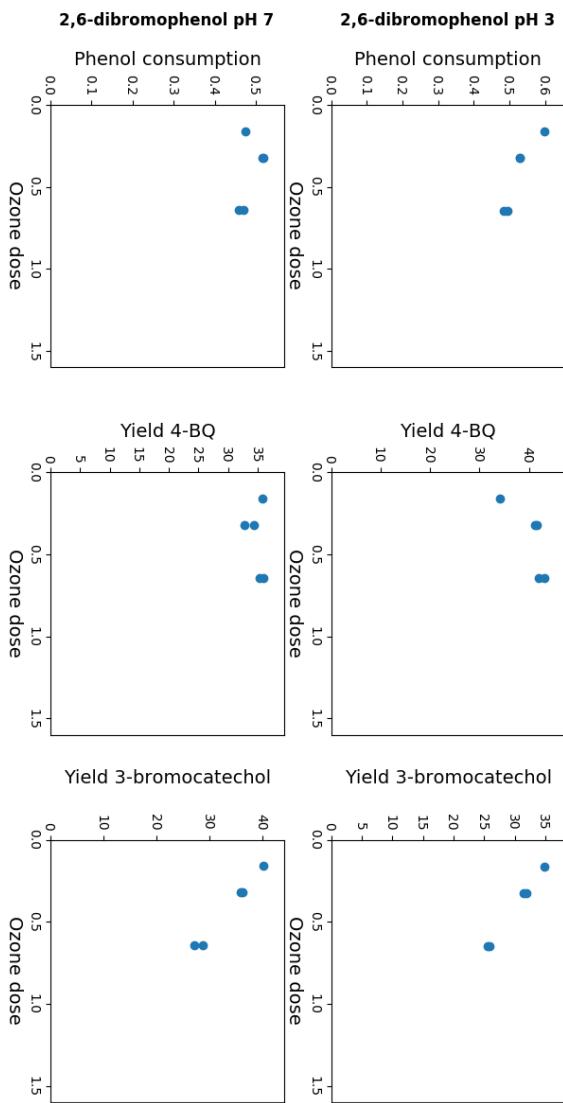
397

398 Figure S6.9: Product yields as a function of specific ozone dose for *p*-formylphenol.


399

400

401 Figure S6.10: Product yields as a function of specific ozone dose for *p*-carboxyphenol.


402

403

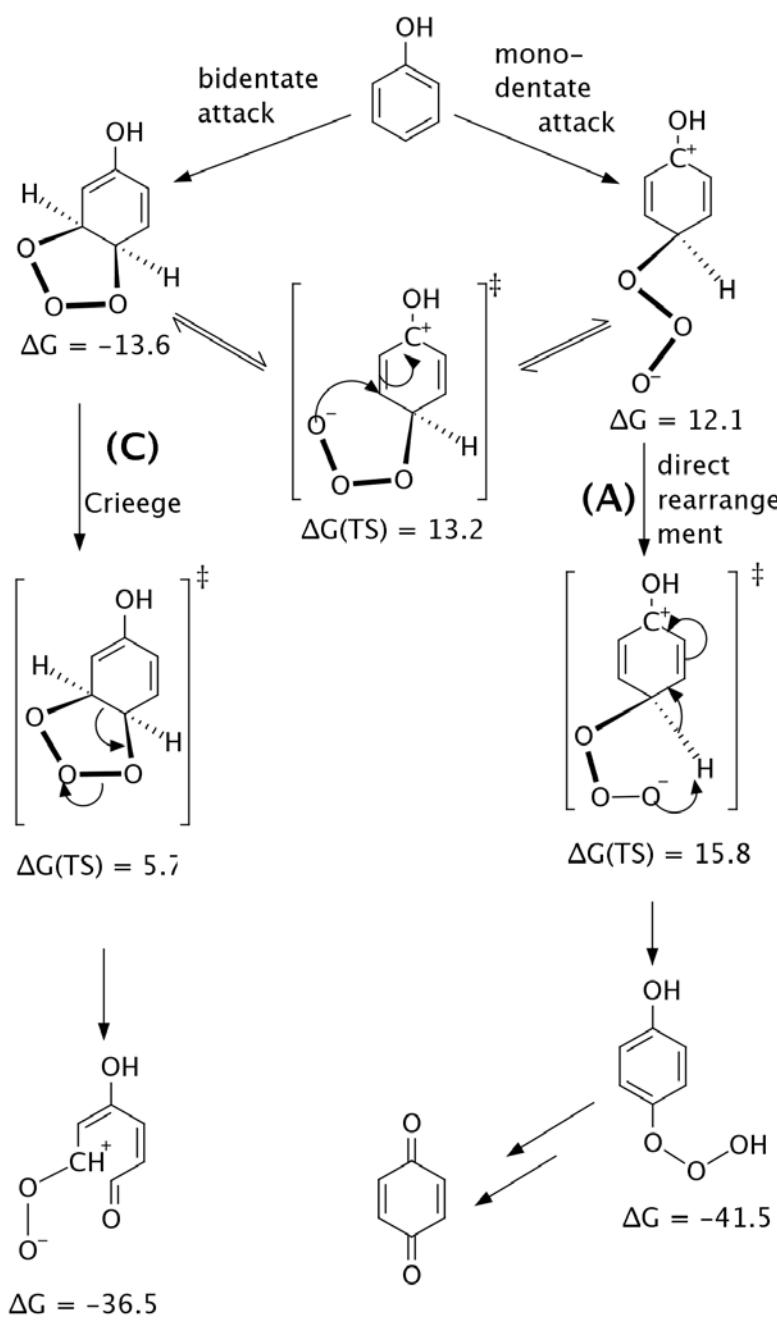
404 Figure S6.11: Product yields as a function of specific ozone dose for 2,6-dimethylphenol.

405

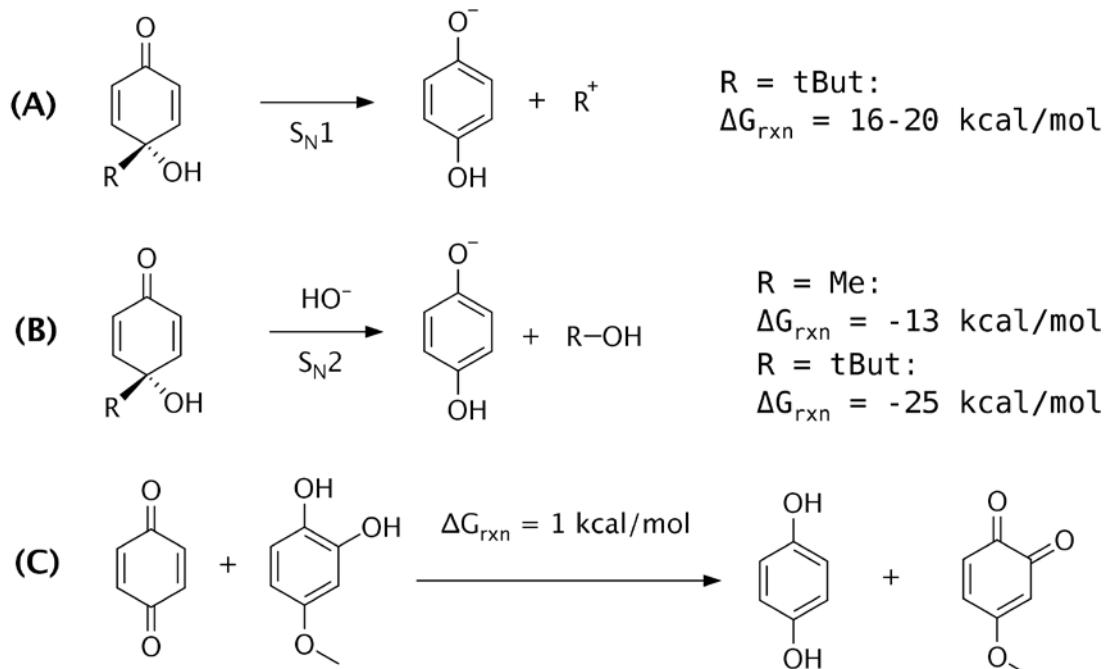
406

407 Figure S6.12: Product yields as a function of specific ozone dose for 2,6-dibromophenol. 3-
 408 bromocatechol was not unambiguously identified, owing to overlapping peaks. Given yields are best
 409 estimates assuming the correct identity of the transformation product.

410


411

412


413

414

415

417 **S7. Mechanistic discussion**418 $\Delta G = -36.5$

419 Figure S7.1: Evaluated reaction pathways for neutral phenol. Reported energies are Gibbs free
 420 energies (kcal/mol) with respect to separate molecules of ozone and phenol. IRC calculations for
 421 transition structures leading to the cyclic ozonide and to the trioxo-species were not successful,
 422 presumably because the potential energy surfaces are very flat in these regions.

423

424 Figure S7.2: Proposed formation pathways of hydroquinone in the reaction mixtures of *p*-tert-
 425 butylphenol and *p*-methoxyphenol. Free energies from CBS-QB3 gas phase calculations and SMD
 426 implicit solvation energies. Free energies for the S_N1 reaction vary depending on the inclusion of
 427 explicit water molecules (not shown).

428 **References**

1. Carreño, M.C., M. González-López, and A. Urbano, *Oxidative De-aromatization of *p*para-Alkyl Phenols into *p*ara-Peroxyquinols and *p*ara-Quinols Mediated by Oxone as a Source of Singlet Oxygen*. *Angewandte Chemie International Edition*, 2006. **45**(17): p. 2737-2741.
2. von Gunten, U. and C. von Sonntag, *Chemistry of Ozone in Water and Wastewater Treatment*. 2012: IWA Publishing.
3. Soulard, M., F. Bloc, and A. Hatterer, *Diagrams of Existence of Chloramines and Bromamines in Aqueous-Solution*. *Journal of the Chemical Society-Dalton Transactions*, 1981(12): p. 2300-2310.
4. M., B.H.U.G.K.G., *Methoden Enzym. Anal. (3. Aufl.)* 1970.
5. Bader, H., V. Sturzenegger, and J. Hoigne, *Photometric-Method for the Determination of Low Concentrations of Hydrogen-Peroxide by the Peroxidase Catalyzed Oxidation of N,N-Diethyl-P-Phenylenediamine (Dpd)*. *Water Research*, 1988. **22**(9): p. 1109-1115.
6. Zhao, Y. and D.G. Truhlar, *The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals*. *Theor. Chem. Acc.*, 2008. **120**(1-3): p. 215-241.

448 7. Clark, T., et al., *Efficient Diffuse Function-Augmented Basis Sets for*
449 *Anion Calculations. Iii. The 3-21+G Basis Set for First-Row Elements*, Li-
450 *F. Journal of Computational Chemistry*, 1983. **4**(3): p. 294-301.

451 8. Frisch, M.J., J.A. Pople, and J.S. Binkley, *Self-Consistent Molecular-
452 Orbital Methods .25. Supplementary Functions for Gaussian-Basis Sets*.
453 *Journal of Chemical Physics*, 1984. **80**(7): p. 3265-3269.

454 9. Krishnan, R., et al., *Self-Consistent Molecular-Orbital Methods .20. Basis
455 Set for Correlated Wave-Functions*. *Journal of Chemical Physics*, 1980.
456 **72**(1): p. 650-654.

457 10. Papajak, E., et al., *Perspectives on Basis Sets Beautiful: Seasonal
458 Plantings of Diffuse Basis Functions*. *Journal of Chemical Theory and
459 Computation*, 2011. **7**(10): p. 3027-3034.

460 11. Marenich, A.V., C.J. Cramer, and D.G. Truhlar, *Universal Solvation
461 Model Based on Solute Electron Density and on a Continuum Model of
462 the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface
463 Tensions*. *Journal of Physical Chemistry B*, 2009. **113**(18): p. 6378-6396.

464 12. Grimme, S., *Semiempirical GGA-type density functional constructed with
465 a long-range dispersion correction*. *Journal of Computational Chemistry*,
466 2006. **27**(15): p. 1787-1799.

467 13. Chai, J.D. and M. Head-Gordon, *Long-range corrected hybrid density
468 functionals with damped atom-atom dispersion corrections*. *Physical
469 Chemistry Chemical Physics*, 2008. **10**(44): p. 6615-6620.

470 14. Yamaguchi, K., et al., *A Spin Correction Procedure for Unrestricted
471 Hartree-Fock and Moller-Plesset Wavefunctions for Singlet Diradicals
472 and Polyradicals*. *Chemical Physics Letters*, 1988. **149**(5-6): p. 537-542.

473 15. Fukui, K., *The Path of Chemical-Reactions - the Irc Approach*. *Accounts
474 of Chemical Research*, 1981. **14**(12): p. 363-368.

475 16. Peverati, R. and D.G. Truhlar, *Improving the Accuracy of Hybrid Meta-
476 GGA Density Functionals by Range Separation*. *Journal of Physical
477 Chemistry Letters*, 2011. **2**(21): p. 2810-2817.

478 17. Lee, M., et al., *Development of Prediction Models for the Reactivity of
479 Organic Compounds with Ozone in Aqueous Solution by Quantum
480 Chemical Calculations: The Role of Delocalized and Localized Molecular
481 Orbitals*. *Environ Sci Technol*, 2015. **49**(16): p. 9925-35.

482 18. Montgomery, J.A., et al., *A complete basis set model chemistry. VII. Use
483 of the minimum population localization method*. *Journal of Chemical
484 Physics*, 2000. **112**(15): p. 6532-6542.

485

486